Studies on Optimisation of Bridle Lengths for Demersal Trawls

K. V. MOHAN RAJAN*, M. R. BOOPENDRANATH*, P. GEORGE MATHAI* and N. SUBRAMONIA PILLAI*

Research Centre of Central Institute of Fisheries Technology, Veraval - 362 265

Experiments were carried out to standardise the length of blidles in a 32 m large mesh demersal trawl and a 25 m high opening demersal trawl. Based on the comparative catch rates obtained, double blidles of 30 m length was adjudged a better choice for a 25 m high opening trawl whereas, 20 m blidles were found to improve the performance of 32 m large mesh trawl.

Demersal trawls depend upon the area of sea bed swept for their effectiveness in fish capture. The importance of bridles and sweeps in improving the performance of trawl system by herding the fish in the direction of trawl from wide swept areas has long been recognised (Bagenal, 1958; Scharfe, 1959; Chapman, 1964; Crew, 1964; Blaxter et al., 1964; Narayanappa, 1968; Wardle, 1976; Joseph Mathai et al., 1984; Fridman, 1986). The studies carried out at research centre of CIFT, Veraval in standardising bridle lengths of two demersal trawls are presented in this paper.

Materials and Methods

Fishing experiments were carried out with the tested designs of a 32 m large mesh trawl and a 25 m high opening trawl described by Kunjipalu et al. (1979) in order to standardise the length of bridles in these demersal trawls. Double bridles of 10 m, 20 m and 30 m in length made of 18 mm dia HDPE rope were used and data recorded keeping the duration of the haul fixed as one hour. Flat rectangular otter boards of the size 1524 x 762 mm weighing 100 kg each and constructed in wood and steel were employed throughout the study. Fishing operations were carried out during day time at depths varying from 20 to 45 m from the research vessel Fishtech No. 8 which is of 15.2 m LOA fitted with 165 HP engine. The towing speed was maintained at 2.5 knots at 1250/1300 rpm engine output. The gear rigged with different bridle lengths to be tested were operated in a rotational sequence so as to give equal chances maintaining identical depth, duration of the tow and engine rpm during each set of comparative experiments.

Results and Discussion

The particulars of the comparative fishing experiments conducted with different bridle lengths in the case of 25 m high opening demersal trawl and 32 m large mesh demersal trawl are furnished in Table 1. The catch details and the percentage composition of the catch by 25 m high opening trawl and 32 m large mesh trawl are furnished in Table 2. The results of analysis of variance of total catch and component groups of the 25 m high opening trawl are furnished in Table 3. Similar data regarding the 32 m large mesh trawl are given in Table 4.

In 25 m high opening trawl the mean catch rate was maximum when rigged with 30 m bridles, realising 90.82 kg/h which was 38.5%and 19.8% higher than 10 and 20 m bridles respectively. In the case of cephalopods and miscellaneous fishes better catch rate were obtained with 30 m bridles than 20 m whereas it was lower in the case of ribbon fish, *Lactarius* sp. and quality fishes. Catch rates were consistently higher for all species,

^{*}Present Address: Central Institute of Fisheries Technology, Cochin-682 029

K. V. MOHAN RAJAN, M. R. BOOPENDRANATH, P. GEORGE MATHAI AND N. SUBRAMONIA PILLAI

	25 m high trawl with c 10 m 2			32 m large mesh demersal trawl with double bridles 10 m 20 m 30 m				
Fishing grounds	Off Veraval, Gujarat within 20 to 45 m dep:h							
Number of hauls	37	37	37	36	36	36		
Towing time, h	1	1	1	1	1	1		
Towing speed	2.5 knots at 1250/1300 rpm engine output							
Mean warp tension, kg	656.9	664.1	665.6	674.4	679.8	679.2		
Total catch, kg	2424	2814	3373	1381	1419	1212		

Table 1. Particulars of comparative fishing operations with three different lengths of bridles

Table 2. Catch details and percentage composition

(a) 25m high opening trawl			Length of bridles				
	10 m catch		20 m		30 m		
			catch		catch		
	kg/h	%	kg/h	%	kg/h	%	
Quality fishes (pomfret, seer, silver bar, Pellona sp.	and Dis	Results	donanon longenon	ta tao bott	studies ea		
eel, large polynemids etc. and plawns)	1.53	2.35	2.45	3.23	1.97	2.17	
Ribbon fish	11.88	18.25	15.96	21.06	12.17	13.40	
Cephalopods	3.35	5.14	4.24	5.59	4.68	5.15	
Lactarius sp.	1.11	1.70	2.11	2.78	1.54	1.69	
Miscellaneous fish	47.22	72.54	51.04	67.34	70.46	77.58	
Total catch	65.09	100.00	75.80	100.00	90.82	100.00	
b) 32 m large mesh deme	rsal traw	Table 3	a MDPE Liceping	H 18 pan di		gas ni m 0 a anne sao	
Quality fishes (pomfret, see	r.		and boar.				
silver bar and prawn)	1.11	2.89	1.55	3.93	0.94	2.79	
Ribbon fish	12.25	31.94	6.23	15.81	8.41	24.97	
Cephalopod3	6.40	16.69	11.25	28.55	9.53	28.30	
Miscellaneous fish	18.59	48.48	20.33	51.71	14.79	43.93	
Total catch	38.35	100.00	39.41	100.00	33.67	100.00	

FISHERY TECHNOLOGY

STUDIES ON BRIDLE LENGTHS

Table 3. Analysis of variance of total catch component groups of 25m high opening trawl

	Source	SS	df	ms	F
ANOVA of total catch					
	Total	15.4338	113		
	Bridles	0.1195	2	0.05975	1.806
	Days	12.8714	37	0.34788	10.539**
	Error	2.4479	74	0.03308	116 JATOMA
ANOVA of miscellaneous					
catch	Total	41.5623	113	_	-
	Bridles	0.0432	2	0.02160	2.720
	Days	35.6438	37	0.96335	12.133**
	Error	5.8753	74	0.07940	-
ANOVA of other fish				4.4	
0.0377	Total	8.4281	11		
	Bridles	0.0471	1	0.02355	0.894
	Days	6.4325	37	0.17385	6.603**
	Error	1.9485	74	0.02633	-
ANOVA of quality fish		NOTA C	100220 100000	0.02055	
The off of quality fish	Total	10.8824	113		
	Bridles	0.1652	2	0.0826	2.000
	Days	7.6588	37	0.0820	5.012**
	Error	3.0584	74	0.0413	5.012
ANOVA of sciaenids		510501		0.0415	ANOVA of
ATOTA OF Schernichs	Total	24.7472	11		
	Bridles	0.1009	2	0.05045	0.814
	Days	20.0622	37	0.03043	8.753**
	Error	4.5841	74	0.06195	8.755
ANOVA of cephalopods	10	1.5011	[mol]	0.00175	
ANOVA of cephalopods	Total	17.4247	112		
0.0953	Bridles	0.0886	113	-	-
	Days	14.0363	2	0.0443	0.993
	Error	3.2993	37 74	0.3794 0.0446	8.507**
ANOVA of Lastanius an	LIIOI	5.2795	/4	0.0440	-
ANOVA of Lactarius sp.	Tatal	14 5(0)	110		
	Total Bridles	14.5691	113	-	-
		0.1178	2	0.0589	1.272
formation and the states and	Days Error	11.0277	37	0.2980	6.436**
	Eno	3.4236	74	0.0462	120 - L 20 01
ANOVA of ribbon fish		22.07-2	abited in Of	ban diwy 1 ap	
	Total	32.9672	113	dates leadely	10.00
	Bridles	0.1988	2	0.0994	0.702
	Days	22.2873	37	0.6024	4.2554*
	Error	10.4811	74	0.1416	dat -
** Indicates significance at 1	% level				

1.16

ANOVA of total catch	Source	SS	df	m3	F
	Total	17.5173	107	60865 180	
	Bridles	0.2765	2	0.13823	1.311
	Days	9.8599	35	0.28171	2.672**
	Error	7.3809	70	0.10544	
ANOVA of miscellaneous fit	sh				
	Total	23.8831	107		_
	Bridles	0.8557	2	0.42785	3.843*
	Days	15.2357	35	0.43531	3.911**
	Error	7.7917	70	0.11131	5.511
ANOVA of other fish	112	1251.212.2		0.11151	
	Total	4.2773	107		
	Bridles	0.0394	2	0.0197	0.523
	Days	1.5982	35	0.0457	1.212
	Error	2.6397	70	0.0377	1.212
ANOVA of quality fish			10	0.0377	_
• • • •	Total	8.8599	107		
	Bridles	0.0423	2	0.02115	0.712
	Days	6.7379	35	0.19251	6.480**
	Error	2.0797	70	0.02971	0.400
ANOVA of sciaenids	2.101	2.0171	70	0.02971	19-36 77 763/9
	Total	3.7024	107		
	Bridles	0.1207	2	0.06035	2 700
	Days	2.0672	23	0.05906	2.789
	Error	1.5147	23 70		2.729**
ANOVA of cephalopods	LIIOI	1.5147	/0	0.02164	
er copiaiopous	Total	23.0363	107		
	Bridles	0.4361	2	0 2102	0.000
	Days	17.4531	35	0.2182	2.967
	Error	5.1468		0.4987	6.785**
ANOVA of ribbon fish	LIIOI	5.1408	70	0.0735	—
the set the set has	Total	31.0490	107		
	Bridles	0.0131	107	0.0007	
			2	0.0067	0.059
	Days	24.3632	35	0.6961	7.304**
	Error	6.6724	70	0.0953	
*Significant at 5% level; **	Significant at	1% level			

Table 4. Analysis of variance of total catch and component groups of 32 m large mesh trawl

groups, quality fishes and miscellaneous catch with 30 m bridles compared to 10 m bridles. 32 m large mesh trawl was found to be most efficient when rigged with 20 m bridles realising 39.4 kg/h followed by 10 m bridles with 38.4 kg/h and 30 m bridles with 33.6 kg/h. Highest catch rate for cephalopods and the quality fishes consisting of pomfrets, seer, silver bar and prawns was obtained with 20 m bridles. The miscellaneous catch was highest in 32 m trawl with 20 m bridles followed by 10 m bridles. The ribbon fish landings were higher in the

case of 10 m bridles followed by 30 m bridles due to chance catch at a single instance. In case of miscellaneous catch the efficiency of the gear was significantly higher when rigged with 20 m bridles, compared to 30 m bridles. Increase in miscellaneous catch obtained by using 20 m bridles was 9.6 and 37.8% respectively, compared to 10 m and 30 m bridles. The least significant difference at 5% level for miscellaneous catch was 0.1573 and the mean of logarithm of the catch of 10, 20 and 30 m bridles lengths were 1.0148, 1.0681 and 0.8583 respectively.

90

FISHERY TECHNOLOGY

STUDIES ON BRIDLE LENGTHS

Several demersal species excluding crustaceans are known to respond to herding by sweeps and bridles crossing the sea bed at a small lead in angle. Fish also respond to the noise and vibration of the otter boards and to the clouds of mud and sand generated by them. The herding effect is maximised when the trail of the sand and the mud cloud is placed in alignment along the bridles and the sweeps (Main & Sangster, 1981 and Thompson & Ben Yami, 1984). Optimum lengths of the bridles for any given trawl system would be that which will sweep the maximum sea bed area and also maintain a correct bridle angle for enhanced herding effect.

Based on the comparative catch rate obtained, double bridles of 30 m in length was adjudged a better choice for 25 m high opening trawl, whereas 20 m bridles were found to improve the performance of 32 m large mesh demersal trawl.

The authors wish to express their thanks to Shri M.R. Nair, Director, Central Institute of Fisheries Technology, Cochin for permission to publish the paper and to Shri P.A. Panicker, Project Leader for guidance from time to time. They are also thankful to Shri H. Krishna Iyer, Head of the Statistical Division for statistical analysis of the data.

References

- Bagenal, T.B. (1958) Journal du Conseil International pour I 'Exploration, de la Mer 24, 62
- Blaxter, J.H.S., Parrish, B.B. & Dickson, W. (1964) in Modern Fishing Gear

of the World (Kristjonsson, H., Ed.) 2, 529, Fishing News (Books) Ltd., London

- Chapman, C.J. (1964) in Modern Fishing Gear of the World (Kristjonsson, H., Ed.) 2, 537, Fishing News (Books) Ltd., London
- Crew, P.R. (1964) in Modern Fishing Gear of the World (Kristjonsson, H., Ed.) 2, 494, Fishing News (Books) Ltd., London
- Fridman, A.L. (1986) Calculations for Fishing Gear Designs (FAO Fishing Manual), p. 15
- Joseph Mathai, T., Syed Abbas, M. & Mhalathkar, H.N. (1984) Fish. Technol. 21, 106
- Kunjipalu, K.K., Kuttappan, A.C. & George Mathai, P. (1979) Fish. Technol. 16, 19
- Main, J. & Sangster, G.I. (1981) Scottish Fisheries Research Report No.20, Department of Agriculture and Fisheries for Scotland
- Narayanappa, G. (1968) Proc. Indo-Pacific Fish. Counc., 13, 437
- Scharfe, J. (1959) Stud. & Dev. Gen. Fish Coun. Medit. 6 (Nos. 2 & 3)
- Thompson, David B. & Ben Yami, M. (1984) FAO Fisheries Report No. 289 Supplement 2, p. 105
- Wardle, C.L. (1976) in Scottish Fish. Bull. No. 43, p. 16