Impact of sublethal levels of mercury on glycogen and selected respiratory enzymes in *Heteropneustes fossilis* and role of water hyacinth in reduction of Hg toxicity

R JAMES¹, V JANCY PATTU², G DEVAKIAMMA³ and K SAMPATH⁴

Manonmaniam Sundaranar University, Tirunelveli, Tamil Nadu 627 001

Received: 25 June 1991

Mercury adversely affects various physiological and biochemical functions of fish (Snarski and Olson 1982; Muthukrishnan *et al.* 1986). Water hyacinth, *Eichhornia crassipes*, has been reported to have the capability of absorbing and removing some heavy metals from polluted water bodies (Wolverton and McDonald 1975; Chigbo *et al.* 1982). However, studies on utilization of aquatic plants for the reduction of mercury toxicity to fish are lacking. This study reports the sublethal effects of mercury on glycogen and selected respiratory enzymes in *Heteropneustes fossilis* and the role of water hyacinth in reducing the metal toxicity.

Heteropneustes fossilis (300) were collected from Korampallam pond near Tuticorin (Lat. 8º46'; Long. 75º5'), Tamil Nadu, and acclimated to the laboratory conditions and feeding schedule. Well-acclimated and active (126 fish) *H. fossilis* (weight 12.5 ± 1.0 g; length 14.5 ± 1.3 cm) were chosen from acclimation tank and were starved for 24 hr prior to the experiment. Static renewable bioassay method was adopted (Sprague 1973) and the 96 hr LC₅₀ was determined separately as 0.099 ppm following Litchfield and Wilcoxon (1949). Healthy individuals were divided into 7 groups. Triplicates were maintained for each group. Group 1 served as control. Individuals in groups 2, 3 and 4 were exposed to sublethal concentrations 0.01, 0.02 and 0.03 ppm of mercury and groups 5, 6 and 7 were exposed to the above concentration along with healthy water hyacinth, *E. crassipes*, of uniform sizes and number. Mercuric chloride (HgCl₂) was used for getting required concentration of mercury. The experiment was conducted in plastic trough containing 10 litres of test medium.

Test individuals were fed on minced pieces of goat liver *ad libitum*. The medium was changed daily (Sprague 1971) to maintain constant toxic concentration by adding appropriate amount of mercury stock solution. Salinity, dissolved oxygen content, temperature and pH of test medium averaged 0.13‰, 5.07 ml O₂/litre, 30°C and 7.35 respectively. The experiment was conducted for 15 days. Feeding was discontinued 1 day before the experiment. After exposing for 15 days the control and experimental fishes were sacrificed and tissue muscle, liver and gill were isolated and kept at 0°C for the estimation of glycogen and dehydrogenases. The glycogen content was estimated by the method of Kemp and Kits (1954). Succinate dehydrogenase (SDH) and glyceraldehyde
dehydrogenase (GDH) activities were estimated as per Kun and Abood (1949). The chlorophyll content of *E. crassipes* was estimated as per Amon (1949).

Of the 3 tissues analysed, liver was the major site of stored glycogen followed by muscle and gill (Table 1). Compared to control, the glycogen content in liver, muscle and gill was reduced by 82, 73 and 72% respectively in fish exposed to mercury alone at a concentration of 0.03 ppm whereas it was 60, 58 and 57% respectively in animals exposed to mercury + plant at 0.03 ppm. This indicated maximum utilization of glycogen in fish exposed to mercury alone. SDH activity showed a decline in all tested tissues both in fish exposed to metal alone and metal + plant combination. The activity of GDH, on the other hand, increased in all the tissues with the increase in mercury concentration. This increase in liver, muscle and gill at 0.03 ppm was 112, 95 and 75% respectively in fish exposed to mercury alone and 96, 65 and 58 respectively in fish exposed to metal + plant, as compared to controls.

The increase in the sublethal concentrations of mercury caused a significant reduction in chlorophyll content of *E. crassipes*. It was 0.34 mg/g wet tissue when reared in metal free water but it decreased to 0.08 mg/g wet tissue in plants exposed to 0.03 ppm of mercury (Table 2). The green colour of leaf gradually changed to brown during the experimental period due to mercury toxicity.

The significant decrease in glycogen reserves in tested tissues on exposure to mercury indicated that carbohydrate metabolism is altered. Perhaps the reserve glycogen was mobilized and broken down through glycogenolysis to meet the high energy requirement caused due to mercury stress. Mercury exposure may stimulate hormones that accelerate glycogen breakdown or inhibition of those associated with glycogen synthesis (Sahib et al. 1983). The decrease in glycogen content was relatively more in fish exposed to

Table 1. Effect of sublethal concentrations of mercury alone and with water hyacinth on glycogen, succinate dehydrogenase and glyceraldehyde dehydrogenase in chosen tissues of *Heteropeustes fossilis* (each value is the mean + SD of 3 observations)

<table>
<thead>
<tr>
<th>Tissue</th>
<th>Control</th>
<th>Mercury alone (ppm)</th>
<th>Mercury (ppm) + Plant</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0.01</td>
<td>0.02</td>
</tr>
<tr>
<td>Liver</td>
<td>9.13 ± 0.38</td>
<td>7.10 ± 0.53</td>
<td>5.81 ± 0.39</td>
</tr>
<tr>
<td>Muscle</td>
<td>4.54 ± 0.17</td>
<td>3.19 ± 0.20</td>
<td>2.21 ± 0.24</td>
</tr>
<tr>
<td>Gill</td>
<td>2.23 ± 0.13</td>
<td>1.51 ± 0.21</td>
<td>1.01 ± 0.06</td>
</tr>
<tr>
<td>Liver</td>
<td>98.41 ± 1.49</td>
<td>67.05 ± 0.85</td>
<td>51.91 ± 0.54</td>
</tr>
<tr>
<td>Muscle</td>
<td>66.33 ± 0.19</td>
<td>49.74 ± 0.63</td>
<td>38.30 ± 0.69</td>
</tr>
<tr>
<td>Gill</td>
<td>54.10 ± 0.39</td>
<td>41.05 ± 0.19</td>
<td>35.72 ± 0.13</td>
</tr>
</tbody>
</table>

A. Glycogen

B. Succinate Dehydrogenase

C. Glyceraldehyde Dehydrogenase

* A. Values expressed as mg glucose/g of wet tissue; B and C, values expressed as µg reduced TTC/100 mg wet tissue/hr; *P < 0.01; **P < 0.05
Table 2. Effect of sublethal concentrations of mercury on chlorophyll content of *Eichhornia crassipes* (each value represents the mean of 3 observations)

<table>
<thead>
<tr>
<th>Mercury concentration (ppm)</th>
<th>Chlorophyll content (mg/g wet tissue)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.34 ± 0.09</td>
</tr>
<tr>
<td>0.01</td>
<td>0.22 ± 0.05 NS</td>
</tr>
<tr>
<td>0.02</td>
<td>$0.16 \pm 0.06^*$</td>
</tr>
<tr>
<td>0.03</td>
<td>$0.08 \pm 0.01^{**}$</td>
</tr>
</tbody>
</table>

$^{*}P < 0.01$; $^{**}P < 0.05$; NS, Not significant

Mercury alone than those exposed to mercury + plant. Qayyam and Shaffi (1977) found reduction in stored tissue glycogen in *H. fossilis* exposed to mercuric nitrate. Mayes (1977) suggested that glycogen reserve may be utilized for countering the toxicant stress.

Suppression of SDH activity in tissues of fish exposed to mercury alone and mercury + plant indicated the impairment of oxidative metabolic cycle. However, elevation in GDH activity was an evidence of a shift in energy metabolism of fish from aerobiosis to anaerobiosis under mercury stress. It is likely that mitochondrial disruption (Vasllos et al. 1976) lead to a decrease in the activity of oxidative enzymes (Brierley 1977, Deung et al. 1978) and an increase in glycolytic enzymes (Swami et al. 1983). Elevation of GDH activity also indicated the activation of compensatory mechanism for adequate energy supply.

Liver, being the organ for interconversion and storage of foodstuffs and a centre for all detoxification mechanisms, demands more energy. Drastic shifts in SDH and GDH activities of liver in *H. fossilis* indicated a high energy demand for metabolic coordination and continuous detoxification mechanisms. Another vital organ, gill, experienced drastic changes in energy cycles as it was in direct contact with polluted water and performed respiratory and osmo-and ionic-regulatory functions. Similar observations were also made on *Tilapia mossambica* by Koundinya and Ramamurthy (1978) and on *Channa striatus* by Natarajan (1981).

Animals exposed to mercury alone showed more reduction in glycogen and suppression in SDH activity than those exposed to mercury + plant. It was hence, inferred that *E. crassipes* removed mercury from the medium and thereby indirectly reduced the toxicity on animals. Earlier studies also proved water hyacinth, *E. crassipes*, as an efficient absorber of mercury and lead (Wol- verton and McDonald 1975), and also arsenic and cadmium (Chigbo et al. 1982) from polluted water bodies. The decline in chlorophyll content and colour changes in leaves of *E. crassipes* in metal contaminated water indicated the absorption of mercury from the medium. This also indicated that mercury has adverse effects on water hyacinth at sublethal levels. Control plant, however, did not show any change in colour and chlorophyll content. Presence of water hyacinth, *E. crassipes*, in polluted water would thus help in reducing the toxicity of mercury on organisms.

REFERENCES

251

Natarajan G M. 1981. Effect of lethal (LC0 50/48 hrs) concentrations of metamiton on selected oxidative enzymes, tissue respiration and histology of gills of the freshwater air-breathing fish, Channa striatus (Bleeker). Current Science 50 : 985–89.

ARTICLE CERTIFICATE

1. The article has been seen by all the authors (signatures given below) who are satisfied with its form and contents.
2. Due credit of authorship has been given to every scientist who has made a notable contribution to the paper, and we are satisfied with the sequence in which the authors' names appear in the by-line (authors' names).
3. The by-line of the article does not include any name of a scientist who has not made a notable contribution to the paper.
4. The address of the institute appearing below the by-line is that of the institute where the research was conducted and not that of the institute where the first author (or the authors who have sent paper) is presently employed.
5. A no-objection certificate from the Head of the Department/Head of the Institute is attached (optional).
6. Two copies of the article have been sent.
7. Two copies of all the illustrations have been sent.
8. The results reported in the article have not been simultaneously sent for publication in any other journal.
9. The article has not been rejected for publication in any other journal. Rejection elsewhere does not necessarily disqualify the paper for publication in The Indian Journal of Fisheries. Please attach a copy of the reasons given for rejection.
10. If published in The Indian Journal of Fisheries, the copyright of this article would vest in the Indian Council of Agricultural Research which has the right to enter into any agreement with any organization in India or abroad engaged in reprography, photo-copying, storing and dissemination of information contained in it, and neither we nor our legal heirs will have any claims on any royalty.

Signatures of all authors, their names, designations and present correspondence addresses:

<table>
<thead>
<tr>
<th>Signatures with date</th>
<th>Name in full and designation</th>
<th>Present Address</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Optional

The above certificate is correct to the best of my knowledge and I have no objection to the publication of the article cited above in The Indian Journal of Fisheries.

Signature and Address of the Head of the Department/Head of the Institute
A well planned and presented article has greater chance of approval by the referee, acceptance for the journal and early publication. Therefore, please note the following points very carefully.

1. **Suitability for the journal:** Consult our Guidelines to Authors, and submit good articles, preferably based on novel concept, new technique or extensive research, with important finding or opening new frontiers of knowledge.

2. **Appropriate presentation:** Submit as short communication only (not as full article):
 - (i) Each part of a thesis or study conducted during a specified period or based on related aspects.
 - (ii) Preliminary or routine finding, or data of 1 year.

3. **Style of the journal:** Write, revise and orient according to the style of the journal. Pay special attention to the following:
 - (i) For art work (line and photograph), do avoid additional expenditure (and time) on revision, attentively go through all our suggestions (Guidelines to Authors) before assigning the work to the artist or photographer. The photograph should be 12.5 cm in width or in its proportion but not exceeding 25 cm in width.
 - (ii) Do instruct the typist never to type in single space anywhere. Typing in single space does not reduce the number of words; beside, it does not leave space for editorial correction or marking and hence is not acceptable. Type the by-line, addresses, abstract, references, table, caption of figure etc in double space.
 - (iii) If only a fraction of the time spent on conducting the experiment is devoted to its writing, revision and checking, the article may stand good chance of publication and effective communication. Write concisely and clearly, checking the accuracy, use and utility of each word and figure. Present the article in a form that its each letter deserve to be printed without any change.

THE INDIAN JOURNAL OF FISHERIES

REFEREES, PLEASE

Send your critical comments promptly, without waiting for a reminder. We will send you the next article for comments as per your convenience at the specified interval. If you are busy, please return the paper immediately. Your co-operation is valuable in early publication of a piece of research and invaluable for the cause of science.
GUIDELINES TO AUTHORS

1. The Indian Journal of Fisheries is published quarterly. The following types of material will be considered for publication in the journal.

2.1. Papers on original research completed, not exceeding 3 500 words (approximately 10-12 typed pages), should be exclusive for the journal. They should present a connected picture of the investigations and should not be split up into parts.

2.2. Short Research Notes not more than 1 500 words (about 4-5 typed pages), which deal with (a) research results which are complete but do not warrant comprehensive treatment, and (b) description of new material or improved techniques or equipment, with supporting data. Such notes require no headed sections.

2.3. Critical Research Reviews pointing out lacunae in research and suggesting possible lines of future work.

2.4. Contributors are requested to ensure that the research papers or notes submitted for publication have a direct bearing on fish or open up new grounds for productive research. Basic type of papers and notes which relate to investigations in a narrow specialized branch of discipline, may not form an appropriate material for this journal.

3.1. The Title should be short, specific and informative. It should be phrased to identify the content of the article and include the nature of the study and the technical approach, which is essential for key-word indexing and information retrieval.

3.2. In addition, a Short Title not exceeding 30 letters should be provided separately for running head lines.

3.3. The Byline should contain, in addition to the names and initials of the authors, the place where research was conducted. Change of address should be given as a footnote and correspondence address separately.

4. The Abstract, written in complete sentences, should not have more than 150 words. It should contain a very brief account of the materials, methods, results, discussion and conclusions, so that the reader need not refer to the article except for details. It should not have references to literature, illustrations and tables.

5.1. The Introductory part should be brief and limited to the statement of the problem or the aim of the experiment. The review of literature should be pertinent to problem.

5.2. Relevant details should be given of Materials and Methods, including experimental design and the techniques employed. Where the methods are well known, the citation of a standard work is sufficient. Mean results with relevant standard errors should be presented rather than detailed data. The statistical methods used should be clearly stated.

5.3. The Results and Discussion should preferably be combined to avoid repetition.

5.4. The result should be supported by brief but adequate tables, or graphic or pictorial materials, wherever necessary. Self-explanatory table should be typed on separate sheets and carry appropriate titles, the tabular matter should not exceed 20% of the text.

5.5. The Data should be so arranged that the tables would fit in the normal lay-out of the page. All weights and measurements should be in metric units.

5.6. The Discussion should relate to the limitations or advantages of the author’s experiments in comparison with the work of others.

5.7. Line Drawings should be clearly drawn in black waterproof ink on smooth, tough paper. Photographs should be large, unmounted, glossy prints of good quality. They should be clear and relevant to the subject. Line-drawings and photographs should have legends, which should also be supplied on a separate sheet. Table and illustrations should not reproduce the same data.

6. The Bibliography should have the names of the authors, initials, year of publication, full title of the paper, name of the journal (spelt out in full), volume, preferably the issue within parentheses and complete page range (not merely the first page). Authors should ensure that all references in the text appear at the end of the paper and vice versa, and that names and dates at the two places correspond.

7. All articles are sent to referees for scrutiny and authors should meet criticism by improving the article.

8. Papers should be Typewritten, and double-spaced throughout (including references and tables) on white, durable bond paper of size 22 cm x 28 cm, with a 5-cm margin at the top, bottom and left-hand side. Articles (including illustrations) should be sent in duplicate, after a careful check-up of typographical errors.

9. Though no rigid rules are recommended for writing, authors are requested to consult The Style Manual for Biological Journals, 4th edn, American Institute of Biological Sciences, Washington DC.

10. Proof-correction should be in ink, in the margin. All queries marked in the article should be answered. Proofs are supplied for a check-up of the correctness of type-setting and facts. Excessive alterations may be charged from the authors. The proofs should be returned within 10 days.

11. Contributors will receive 50 copies of Offprints free (to be shared with the co-authors).