Antistress potential of acetone extract of *Zingiber officinale* Roscoe on biochemical and oxidative stress parameters in *Labeo calbasu* (Hamilton 1822) fingerlings subjected to acid stress

THONGAM IBEMCHA CHANU1, S. DAM ROY1, ARUN SHARMA2, PRADYUT BISWAS3, G. M. SIDDHYA1, AND ARABINDA DAS4

1Department of Aquaculture, Central Institute of Fisheries Education, Versova, Mumbai - 400 061, Maharashtra, India
2Krishi Vigyan Kendra, Ri-Bhoi, ICAR Research Complex for NEH Region, Umiam - 793 103, Meghalaya, India
3Department of Fisheries, Government of Tripura, Lembucherra - 799 210, Tripura, India
4Department of Fisheries, Government of Tripura, Dalai - 799 210, Tripura, India

ABSTRACT

A 30 days feeding trial was conducted to study the antistress property of acetone extract of *Zingiber officinale* against acid stress in *Labeo calbasu* fingerlings. Fish fingerlings (7.34 ± 0.06 g; average weight ± SE) were randomly distributed into 4 treatment groups, each with 3 replicates and were fed with four diets containing different levels of *Z. officinale* acetone extract (0, 0.05, 0.5 or 5%). The potential antistress ability of *Z. officinale* acetone extract was assessed in terms of production of serum cortisol, serum glucose, serum cholesterol, serum triglycerides, triiodothyronine (T3), thyroxine (T4), alanine amino transferase (ALT), aspartate amino transferase (AST), alkaline phosphatase (ALP), catalase (CAT), superoxide dismutase (SOD) and glutathione S transferase (GST) while they are exposed to acidic water with pH 5.5 for 24 h. Acid stress significantly increased serum cortisol, glucose, cholesterol, serum triglycerides, triiodothyronine (T3), thyroxine (T4), alanine amino transferase (ALT), aspartate amino transferase (AST), alkaline phosphatase (ALP), catalase (CAT), superoxide dismutase (SOD) and glutathione S transferase (GST) while they are exposed to acidic water with pH 5.5 for 24 h. Acid stress significantly increased serum cortisol, glucose, cholesterol, serum triglycerides, triiodothyronine (T3), thyroxine (T4), alanine amino transferase (ALT), aspartate amino transferase (AST), alkaline phosphatase (ALP), catalase (CAT), superoxide dismutase (SOD) and glutathione S transferase (GST) while they are exposed to acidic water with pH 5.5 for 24 h. Acid stress significantly increased serum cortisol, glucose, cholesterol, serum triglycerides, triiodothyronine (T3), thyroxine (T4), alanine amino transferase (ALT), aspartate amino transferase (AST), alkaline phosphatase (ALP), catalase (CAT), superoxide dismutase (SOD) and glutathione S transferase (GST) while they are exposed to acidic water with pH 5.5 for 24 h. Acid stress significantly increased serum cortisol, glucose, cholesterol, serum triglycerides, triiodothyronine (T3), thyroxine (T4), alanine amino transferase (ALT), aspartate amino transferase (AST), alkaline phosphatase (ALP), catalase (CAT), superoxide dismutase (SOD) and glutathione S transferase (GST) while they are exposed to acidic water with pH 5.5 for 24 h. Acid stress significantly increased serum cortisol, glucose, cholesterol, serum triglycerides, triiodothyronine (T3), thyroxine (T4), alanine amino transferase (ALT), aspartate amino transferase (AST), alkaline phosphatase (ALP), catalase (CAT), superoxide dismutase (SOD) and glutathione S transferase (GST) while they are exposed to acidic water with pH 5.5 for 24 h. Acid stress significantly increased serum cortisol, glucose, cholesterol, serum triglycerides, triiodothyronine (T3), thyroxine (T4), alanine amino transferase (ALT), aspartate amino transferase (AST), alkaline phosphatase (ALP), catalase (CAT), superoxide dismutase (SOD) and glutathione S transferase (GST) while they are exposed to acidic water with pH 5.5 for 24 h. Acid stress significantly increased serum cortisol, glucose, cholesterol, serum triglycerides, triiodothyronine (T3), thyroxine (T4), alanine amino transferase (ALT), aspartate amino transferase (AST), alkaline phosphatase (ALP), catalase (CAT), superoxide dismutase (SOD) and glutathione S transferase (GST) while they are exposed to acidic water with pH 5.5 for 24 h. Acid stress significantly increased serum cortisol, glucose, cholesterol, serum triglycerides, triiodothyronine (T3), thyroxine (T4), alanine amino transferase (ALT), aspartate amino transferase (AST), alkaline phosphatase (ALP), catalase (CAT), superoxide dismutase (SOD) and glutathione S transferase (GST) while they are exposed to acidic water with pH 5.5 for 24 h. Acid stress significantly increased serum cortisol, glucose, cholesterol, serum triglycerides, triiodothyronine (T3), thyroxine (T4), alanine amino transferase (ALT), aspartate amino transferase (AST), alkaline phosphatase (ALP), catalase (CAT), superoxide dismutase (SOD) and glutathione S transferase (GST) while they are exposed to acidic water with pH 5.5 for 24 h. Acid stress significantly increased serum cortisol, glucose, cholesterol, serum triglycerides, triiodothyronine (T3), thyroxine (T4), alanine amino transferase (ALT), aspartate amino transferase (AST), alkaline phosphatase (ALP), catalase (CAT), superoxide dismutase (SOD) and glutathione S transferase (GST) while they are exposed to acidic water with pH 5.5 for 24 h. Acid stress significantly increased serum cortisol, glucose, cholesterol, serum triglycerides, triiodothyronine (T3), thyroxine (T4), alanine amino transferase (ALT), aspartate amino transferase (AST), alkaline phosphatase (ALP), catalase (CAT), superoxide dismutase (SOD) and glutathione S transferase (GST) while they are exposed to acidic water with pH 5.5 for 24 h. Acid stress significantly increased serum cortisol, glucose, cholesterol, serum triglycerides, triiodothyronine (T3), thyroxine (T4), alanine amino transferase (ALT), aspartate amino transferase (AST), alkaline phosphatase (ALP), catalase (CAT), superoxide dismutase (SOD) and glutathione S transferase (GST) while they are exposed to acidic water with pH 5.5 for 24 h. Acid stress significantly increased serum cortisol, glucose, cholesterol, serum triglycerides, triiodothyronine (T3), thyroxine (T4), alanine amino transferase (ALT), aspartate amino transferase (AST), alkaline phosphatase (ALP), catalase (CAT), superoxide dismutase (SOD) and glutathione S transferase (GST) while they are exposed to acidic water with pH 5.5 for 24 h. Acid stress significantly increased serum cortisol, glucose, cholesterol, serum triglycerides, triiodothyronine (T3), thyroxine (T4), alanine amino transferase (ALT), aspartate amino transferase (AST), alkaline phosphatase (ALP), catalase (CAT), superoxide dismutase (SOD) and glutathione S transferase (GST) while they are exposed to acidic water with pH 5.5 for 24 h. Acid stress significantly increased serum cortisol, glucose, cholesterol, serum triglycerides, triiodothyronine (T3), thyroxine (T4), alanine amino transferase (ALT), aspartate amino transferase (AST), alkaline phosphatase (ALP), catalase (CAT), superoxide dismutase (SOD) and glutathione S transferase (GST) while they are exposed to acidic water with pH 5.5 for 24 h.

Keywords: Acid stress, Biochemical parameters, *Labeo calbasu*, *Zingiber officinale*

Introduction

The cultivation of fish has improved significantly in India during past few decades and fishes are exposed to a wide variety of environmental stress factors during culture. Fish, like other vertebrates, respond to stressors by eliciting generalised physiological stress responses, characterised by an increase in secretion of stress hormones and consequent changes that help to maintain the animal’s normal or homeostatic state (Iwama et al., 1999; Barton, 2002). This generalised response has been considered to be adaptive and represents the natural capacity of the fish to respond to stress. This response includes, for example, increases in plasma cortisol, catecholamines and glucose levels (Barton and Iwama, 1991). Measurement of metabolic enzyme activity can also serve as a valuable stress indicator in organisms like marine invertebrate and fishes, where the accurate determination of metabolic rate is difficult (Dahlhoff, 2004).

pH of the water plays an important role in maintenance of homeostasis in aquatic animals and decreases in pH reported to cause disturbances in acid–base and ion regulation as well as ammonia excretion (Jensen and Brahm, 1995). Disturbances in gas exchange, nitrogenous waste excretion, acid-base and ionic balance due to changes in water pH cause stress in fish, affecting its body physiology and growth (Pickering, 1981; Jeney et al., 1992). Fishes can cope with chronic changes in pH within certain ranges; however, acute changes in pH can result in acidosis if it is below 5.5 (Roberts, 2012). Sudden drop of pH lead to severe distress in some species and the fish may try to escape by jumping out of the water which may lead to death. Changes in the pH or acidity of the environment can alter or totally inhibit the enzyme from catalysing a reaction. The carp culture industry is currently the most important sub-sector of fisheries in India and its rapid development has attracted considerable attention in recent years. In situations of high nutrient input, supplementary feed, manures and inorganic fertilizers into the ponds can cause variations in pH diurnally. During the night, carbon dioxide accumulates and pH declines (Boyd and Tucker, 1998) and a change in water pH, either to higher or lower levels, could cause stress in fish and affect its body physiology and growth (Das et al., 2006).

Natural plant products have been reported to promote various antistress responses, growth, appetite stimulation and immunostimulation. Antimicrobial properties are attributed to the active principles in the natural products such as alkaloids, flavanoids, pigments, phenolics, terpenoids, steroids and essential oils (Citarasu et al., 2002; Sivaram et al., 2004). Herbal compounds have the ability to inhibit the generation of oxygen anions and to scavenge free radicals. The herbal antioxidant effect has been shown to be similar to that of superoxide dismutase, metal-ion chelators and xanthine oxidase inhibitors.

Ginger (*Zingiber officinale* Roscoe) has been used as a spice for over 2000 years (Bartley and Jacobs, 2000). The
extracts from the rhizome of *Z. officinale* contain polyphenol compounds (6-gingerol and its derivatives), which have high antioxidant activity (Chen et al., 1986; Hermann, 1994). When ginger was included in animal diets, it was found that there was considerable increase in the pancreatic and intestinal lipase (Platel and Srinivasan, 2000). The present work was intended to investigate the antistress activity of acetone extract of *Z. officinale* in *Labeo calbasu* fingerlings exposed to acid stress by analysing the levels of stress hormones and selected enzyme activities of different biochemical pathways.

Materials and methods

Collection of plant and preparation of plant extracts

The rhizomes of *Z. officinale* were collected from Versova, Mumbai, India, and transported to Central Institute of Fisheries Education (CIFE), Mumbai. Dr. Rajendra D. Shinde, Associate professor, Department of Botany, St. Xavier’s College, Mumbai confirmed the species identity. Fresh rhizomes of *Z. officinale* were cleaned and shade dried. The dried rhizomes were pulverised in an electrical blender and passed through 20 µm mesh sieve. Sieved powder (500 g) was extracted using Soxhlet apparatus at 60 ºC by the method of Peach and Tracey (1956) using acetone as a solvent. The extract was concentrated in a water bath and after complete evaporation of the solvent, the residues of the extract was stored at 4 ºC for further use. The yield of the extract was 6% in terms of dried starting material.

Preparation of herbal diets

Four isocaloric artificial diets were formulated (Sahu et al., 2007) containing either 0%, 0.05%, 0.5% and 5% *Z. officinale* acetone extracts. Ingredient compositions of the experimental diets are presented in Table 1. All the ingredients except vitamin mineral mixture and *Z. officinale* acetone extracts. Ingredient compositions of the experimental diets are presented in Table 1. All the ingredients except vitamin mineral mixture and *Z. officinale* acetone extracts. Ingredient compositions of the experimental diets are presented in Table 1. All the ingredients except vitamin mineral mixture and *Z. officinale* acetone extract were mixed in a plastic bowl to get homogeneous ingredient mixture. The dough was then allowed for conditioning at room temperature for 1 h followed by steam cocking for 20 min in a pressure cooker. The vitamin mineral mixture and *Z. officinale* acetone extract were added after cooling and mixed thoroughly with other ingredients. Pellets were prepared by hand pelletizer having 2 mm die. Finally, the pellets were air dried for 24 h and kept in a hot air oven at 50 ºC till the desired moisture level (10%) was reached. After drying, the pellets were packed in airtight polythene bags, labelled and stored until use.

Proximate analysis of feed and fish tissue

The proximate composition of the experimental diets was determined following the standard methods of AOAC (2000) and is presented in Table 1. The moisture content was determined by drying at 105 ºC to a constant weight. Nitrogen content was estimated by Kjeldahl (2200 Kjeltec Auto distillation; Foss Tecator, Hoganas, Sweden) method and crude protein was calculated by multiplying nitrogen percentage by 6.25. Crude lipid (CL) was measured by solvent extraction method (1045 Soxtec extraction unit, Tecator, Sweden) using diethyl ether (boiling point, 40-60 ºC) as a solvent, and ash content was determined by incinerating the samples in a muffle furnace at 600 ºC for 6 h. Total carbohydrate was estimated by calculating difference, *i.e.*, total carbohydrate %=100-(CP%+ EE%+ Ash%).

Fish and experimental design

Fingerlings of *Labeo calbasu* were brought from Lembucherra fish farm of Tripura, (India) to the aquaculture wet laboratory, Central Institute of Fisheries Education, Mumbai and were acclimatised to the experimental rearing conditions for 15 days. Acid stress model was used for evaluating antistress activity (Zhou et al., 2004). Two hundred and twenty five *L. calbasu* fingerlings (7.34 ± 0.06 g; average weight ± SE) were randomly distributed into 4 treatment groups in triplicates each with 15 fishes (n=15 fish per group) in plastic tanks of 150 l capacity following a completely randomised design (CRD). The experiment lasted for 30 days. Round-the-clock aeration was provided to all the tanks from a compressed air pump and water was exchanged every alternate day. All the fish were fed manually twice a day (0800 and 1800 hrs) with one of the diets containing 0, 0.05, 0.5 or 5% level of acetone extract of *Z. officinale* at the rate of 3% body weight per day (Table 1). The water temperatures of all the treatments were within the range of 26-27 ºC throughout the experimental period. At the end of 30 days, six fish from each replicate (*i.e.*, 18 fish per treatment) were used for the estimation of cholesterol, glucose, triglycerides, cortisol and enzyme activities and the rest nine fish from each replicate (*i.e.*, 27 fish per treatment) were given acid stress by exposing to acidic water for 24 h and again, the same parameters were analysed. Water pH in tanks was reduced from 7.5 to 5.5 using adequate quantity of hydrochloric acid. Water quality parameters were checked every week following the methods of APHA (1998).

Sampling procedure

The fish were anaesthetised with CIFECALM (50 µl l–¹) (Verma et al., 2007), a herbal anaesthetic formulation containing natural alcoholic extracts of Eugenia caryophyllata and Mentha arvensis (developed by Central Institute of Fisheries Education, Mumbai, India) and blood was collected from the caudal vein within 2 min after capture using a 2-ml syringe with 26-G needle and immediately transferred to Eppendorf tubes. The tubes were allowed to stand in tilted position for 1 h to collect the serum, which was used subsequently for estimation of serum cortisol, glucose, cholesterol, triglycerides, triiodothyronine (T₃), thyroxine (T₄), alanine aminotransferase (ALT), aspartate aminotransferase (AST) and alkaline phosphatase (ALP).

Liver, muscle and gill samples were collected and 5% homogenate was prepared in chilled sucrose solution (0.25 M) in a mechanical tissue homogeniser. The homogenate was centrifuged at 5,000 rpm at 4 ºC for 10 min, supernatant collected and stored at -20 ºC for enzymatic studies.

The fresh tissue homogenate were used immediately for analysis of superoxide dismutase (SOD), catalase (CAT) and glutathion S transferase (GST) enzymes.

Serum biochemical parameters

Cortisol in fish serum was estimated using a validated cortisol ELISA (LDN) MS E-5000 kit (Diagnostic Systems Laboratories, Mumbai, India) and the serum cortisol was
Table 1. Feed formulation of the different experimental diets (kg⁻¹) and proximate composition of diets and animal tissues

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Control (0%)</th>
<th>T₁ (0.05%)</th>
<th>T₂ (0.5%)</th>
<th>T₃ (5%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ingredients (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Groundnut oil cake</td>
<td>400.0</td>
<td>400.0</td>
<td>400.0</td>
<td>400.0</td>
</tr>
<tr>
<td>Fish meal</td>
<td>250.0</td>
<td>250.0</td>
<td>250.0</td>
<td>250.0</td>
</tr>
<tr>
<td>Rice bran</td>
<td>200.0</td>
<td>199.5</td>
<td>195.0</td>
<td>150.0</td>
</tr>
<tr>
<td>Soybean meal</td>
<td>120.0</td>
<td>120.0</td>
<td>120.0</td>
<td>120.0</td>
</tr>
<tr>
<td>Vitamin and mineral mix⁺</td>
<td>20.0</td>
<td>20.0</td>
<td>20.0</td>
<td>20.0</td>
</tr>
<tr>
<td>Starch</td>
<td>10.0</td>
<td>10.0</td>
<td>10.0</td>
<td>10.0</td>
</tr>
<tr>
<td>Z. officinales extract</td>
<td>0.0</td>
<td>0.5</td>
<td>5.0</td>
<td>50.0</td>
</tr>
</tbody>
</table>

Proximate composition of diet (% Dry matter basis)

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Control</th>
<th>T₁</th>
<th>T₂</th>
<th>T₃</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crude protein (CP)</td>
<td>38.26±0.12</td>
<td>38.39±1.45</td>
<td>38.23±1.48</td>
<td>38.57±1.43</td>
</tr>
<tr>
<td>Ether extract (EE)</td>
<td>5.80±0.35</td>
<td>5.31±0.56</td>
<td>5.39±0.76</td>
<td>5.07±0.32</td>
</tr>
<tr>
<td>Total carbohydrate</td>
<td>45.14±0.76</td>
<td>45.87±0.94</td>
<td>45.99±1.53</td>
<td>46.55±2.02</td>
</tr>
<tr>
<td>Total ash</td>
<td>10.80±0.82</td>
<td>10.43±0.01</td>
<td>10.40±0.46</td>
<td>10.09±1.05</td>
</tr>
<tr>
<td>Organic matter</td>
<td>89.20±1.23</td>
<td>89.57±1.45</td>
<td>89.60±2.38</td>
<td>89.91±3.45</td>
</tr>
</tbody>
</table>

Biochemical composition of tissue (%)

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Moisture</th>
<th>Crude protein</th>
<th>Lipid</th>
<th>Ash</th>
<th>Total carbohydrates</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>74.67±0.067</td>
<td>51.86±0.013</td>
<td>16.23±0.001</td>
<td>14.99±0.13</td>
<td>16.92±0.001</td>
</tr>
<tr>
<td></td>
<td>73.62±0.001</td>
<td>52.73±0.002</td>
<td>16.67±0.004</td>
<td>14.36±0.003</td>
<td>16.24±0.021</td>
</tr>
<tr>
<td></td>
<td>73.36±0.004</td>
<td>53.65±0.003</td>
<td>17.41±0.041</td>
<td>15.16±0.013</td>
<td>13.78±0.003</td>
</tr>
<tr>
<td></td>
<td>73.24±0.002</td>
<td>53.30±0.051</td>
<td>17.64±0.022</td>
<td>15.66±0.032</td>
<td>13.40±0.101</td>
</tr>
</tbody>
</table>

⁺Vitamin–mineral mix (EmixTM plus) (quantity per 2.5 kg): Vitamin A - 55,00,000 IU; Vitamin D₃ - 11,00,000 IU; Vitamin B₂ - 2,000 mg; Vitamin E - 750 mg; Vitamin K - 1,000 mg; Vitamin B₆ - 6 mg; Calcium panthothenate - 2,500 mg; Niacinamide - 10 g; Choline chloride - 150 g; Iodine - 7,500 mg; Cu - 2,000 mg; Zn - 5,000 mg; Co - 450 mg; Ca - 500 g; P - 300 g; Se - 50 ppm; L-Lysine - 10 g.

Expressed as µg dl⁻¹. Serum glucose was estimated using glucose kit (Qualigens Fine Chemicals, Mumbai, India) and cholesterol levels using cholesterol kit (CHOD-POD; Liquid) (Merck, Mumbai, India). Serum cholesterol was expressed as mg dl⁻¹. Triglycerides in fish serum were estimated using triglycerides kit (GPO-POD enzymatic-colorometric) (Merck, Mumbai, India) and expressed as mg dl⁻¹. T₃ in fish serum was estimated using T₃ ELISA 2nd generation (LDN) TF E-2300 kit (Diagnostic Systems Laboratories, Mumbai, India), which was expressed in ng ml⁻¹. Serum T₄ analysed using T₄ ELISA 2nd generation (LDN) TF E-2400 kit, was expressed in µg dl⁻¹.

Alanine aminotransferase (ALT) in fish serum was estimated using GPT/ALT (LDH-NADH, Kinetic UV) kit (Merck, Mumbai, India), and was expressed as U l⁻¹. Aspartate aminotransferase (AST) formerly called glutamate oxaloacetate (GOT) was assayed by same procedure as for ALT except that the substrate used was L-aspartic acid instead of alanine. Serum alkaline phosphatase (ALP) in serum of fish was assayed using alkaline phosphatase (p-Nitrophenilphosphate, Kinetic) kit (Merck, Mumbai, India). ALP in the serum was expressed as U l⁻¹.

Oxidative stress parameters

The activity of superoxide dismutase (SOD) was assayed with the oxidation of epinephrine–adrenochrome transition and estimated at 480 nm (Misra and Fridovich, 1972). Catalase (CAT) activity was estimated by the method of Takahara et al. (1960), using phosphate buffer (50 mM, pH 7.0), the reaction was started by the addition of H₂O₂ solution, and the decrease in absorbance was measured at 240 nm. Glutathione S-transferase (GST) activity towards CDNB (1-chloro-2,4-dinitrobenzene), was determined spectrophotometrically at 340 nm using the method described by Habig et al. (1974). The assay was performed at 25 °C using 100 mM potassium phosphate buffer, pH 6.5, with GSH and CDNB (dissolved in ethanol) at a final concentration of 1 mM each. Activity was calculated from the changes in absorbance at 340 nm (ε 340 nm = 9.6 mM⁻¹ cm⁻¹).
Thongam Ihemcha Chanu et al.

One unit of GST activity was defined as the amount of enzyme catalysing the conjugation of 1 μmol of CDNB with GSH per min at 25 °C.

Total protein content was analysed from the supernatant (Lowry et al., 1951) for calculating enzyme activities. All the colorimetric assays were carried out using UV–VIS spectrophotometer (E-Merck, Germany).

Statistical analyses

All the parameters were analysed using one-way ANOVA with respect to different diets. Post-hoc test was carried out using Duncan’s multiple comparison procedures and Student’s t test was performed to compare the data on results recorded pre- and post- acid stress. All the statistical analyses were performed using SPSS 16.0 for Windows.

Results and discussion

Water quality parameters

All the physico-chemical parameters of water such as temperature, dissolved oxygen, nitrite-N and nitrate-N were observed to be within the optimum range of requirements for the fish as suggested by many authors. Optimum temperature required for fish growth is 31 °C (Das et al., 2004), which supports the range of temperature, 26-27 °C observed during the entire experimental period. The dissolved oxygen level in different experimental tubs was recorded to be within the range of 89.20-89.91 which is supported by Misra (2004).

Organic matter content (%) of different experimental diets estimated was within the range of 10.09-10.80 and 45.14- 46.55 which is supported by Sahu et al. (2007). The ash content (%) observed during the study. Data pertaining to the proximate composition of different experimental diets are given in Table 1. The crude protein (%) of the diets varied between 38.23-38.57 which is supported by Renukarthay and Varghese (1986), who suggested that optimum protein requirement of carp range between 30-45%.

Proximate composition of experimental diets

Balanced formulated practical diets containing all the required nutrients in the optimum level were used in the present study. Data pertaining to the proximate composition of different experimental diets are given in Table 1. The crude protein (%) of the diets varied between 38.23-38.57 which is supported by Renukarthay and Varghese (1986), who suggested that optimum protein requirement of carp range between 30-45%.

The lipid content (%) of the diets was between 5.07-5.8 and the total carbohydrate (%) of the diets was found to be between 45.14- 46.55 which is supported by Sahu et al. (2007). The ash content (%) estimated was within the range of 10.09-10.80 and the organic matter content (%) of different experimental diets varied between 89.20-89.91 which is supported by Misra (2004).

Biochemical composition of the animal tissue

The data on whole body biochemical composition of L. calbasu at the end of 30 days of experiment are also summarised in Table 1. Decreased moisture content was seen with increased in lipid in fish, confirming the inverse relationship of moisture and lipids. These results were supported by Ray and Das (1992). Increased accretion of lipid in tissues was evident with low carbohydrate which may be due to increase in concentration of extract in diets (Paparakarkeva-Papoutsoglou and Alexis, 1986). In the present study, although some variation was found in the crude protein content and ash, values did not vary significantly (p>0.05) among the treatments.

Serum biochemical parameters

Elevations of plasma cortisol and glucose levels were often used as indicators of stress (Barton and Iwama, 1991). Several studies have demonstrated the effects of stressors on concentrations of the corticosteroid cortisol n fish. Plasma concentration of cortisol is dependent on the duration and strength of the stressor (Barton and Iwama, 1991) for which this parameter has been used as an indicator of stress.

Acid stress enhances the plasma cortisol level in rainbow trout (Brown et al., 1990) and greenback flounder (Barnett and Pankhurst, 1998). Increased cortisol elicits compensatory physiological responses that help fish deal with stress (Mommsen et al., 1999). These alterations could be attributed to stimulation of the hypothalamo-pituitary axis and sympathetic nervous system resulting in liberation of catecholamines and glucocorticoids (Prabhakaran et al., 2003). Both catecholamines and corticosteroids have a lipolytic effect on the adipose tissue, stimulating fat mobilisation and increasing circulating free fatty acids (Mungantiwar et al., 1997) which probably results in an increase in plasma cholesterol in response to stress. In the present study, control group registered significantly higher (p<0.05) serum cortisol level than the other groups fed with Z. officinale acetone extract both before and after acid stress (Fig. 1a) indicating secretion of cortisol due to acid stress. Decreases in serum cortisol accompanied increased levels of Z. officinale acetone extract (before and after acid stress), showing that Z. officinale acetone extract has antistress potential in L. calbasu fingerlings. Serum glucose (Fig. 1b) and serum cholesterol (Fig. 1c) followed a similar trend before and after acid stress. These protective responses and biochemical changes indicate the antistress activity of Z. officinale acetone extract which may be attributed to the effect of the extract on the central nervous system or endocrines, or the generation of free radicals (Kumar et al., 2005).

In contrast to the above parameters, serum triglycerides level significantly decreased (p<0.05) after acid stress in all the treatments (Fig. 1d). However supplementation of 0.5% as well as 5% levels of Z. officinale acetone extract in fish diet showed significant enhancement (p<0.05) in the level of triglycerides. Triglycerides, unlike cholesterol, recorded a decrease because triglycerides act as a rapid source of energy during stress conditions. There appears to be a close relationship between catecholamines and triglycerides (Mungantiwar et al., 1997). Therefore, it could be suggested that the decrease in the level of serum triglycerides is mediated through adrenal medullary secretions and through activation of sympathetic nervous system.

Thyroid hormone levels are affected by both acute and chronic stress in fish. In the present study, T3,
Antistress ability of *Zingiber officinale* extract against acid stress in *Labeo calbasu* (Fig. 1e) and T₄ (Fig. 1f) concentrations in the serum were significantly (p<0.05) elevated in *L. calbasu* fed with control diet after exposure to pH 5.5, which could be due to the influence of cortisol on thyroid hormone. Gradual decrease in T₃ and T₄ concentrations were observed in all the treatment groups as *Z. officinale* acetone extract level increased, both pre- and post-acid stress, which may be attributed to the antistress property of *Z. officinale* extract. Present study showed parallel relationship between cortisol hormone and thyroid hormones as both hormone levels increased post-stress in control groups and which gradually decreased in all the treatment groups. Brown et al. (1991) reported that exposure to acid stress increased plasma cortisol and it has been documented that cortisol cause a decrease in T₃ to T₄ conversion (Eales and MacLatchy, 1989). Plasma T₃ levels are reduced in trout chronically exposed to low pH and aluminium (Brown et al., 1984).

Oxidative stress parameters

SOD catalyses the dismutation of the superoxide anion to molecular oxygen and hydrogen peroxide. Subsequently, catalase (CAT) activity decomposes this hydrogen peroxide into oxygen and water, and this constitutes a crucial part of the cellular antioxidant defence mechanism. In general, stress causes oxidative damage to cells, which overcomes that effect through the increased activity of antioxidative enzymes (SOD and CAT). In the present study, increase in SOD and CAT activity in liver, muscle and gill of *L. calbasu* fingerlings in response to acid stress was observed (Table 3). An increase in SOD and CAT activity in liver, muscle, and gill after exposure...
Table 2. Activity of alanine transaminase (ALT), aspartate transaminase (AST) and alkaline phosphatase (ALP) in serum of *L. calbasu* before and after acid stress fed with diets containing different levels of *Z. officinale* acetone extract at the end of experiment

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Acid stress</th>
<th>Treatments</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALT</td>
<td>Control (0%)</td>
<td>T₁ (0.05%)</td>
</tr>
<tr>
<td>Before stress</td>
<td>32.12 x±6.19</td>
<td>24.99 x±1.44</td>
</tr>
<tr>
<td>After stress</td>
<td>70.72 x±5.89</td>
<td>56.87 x±1.47</td>
</tr>
<tr>
<td>AST</td>
<td>Control (0%)</td>
<td>T₁ (0.05%)</td>
</tr>
<tr>
<td>Before stress</td>
<td>42.05 x±7.41</td>
<td>33.55 x±3.95</td>
</tr>
<tr>
<td>After stress</td>
<td>72.19 x±2.06</td>
<td>55.10 x±4.42</td>
</tr>
<tr>
<td>ALP</td>
<td>Control (0%)</td>
<td>T₁ (0.05%)</td>
</tr>
<tr>
<td>Before stress</td>
<td>303.14 x±16.78</td>
<td>266.96 x±10.38</td>
</tr>
<tr>
<td>After stress</td>
<td>589.00 x±16.46</td>
<td>313.84 x±5.49</td>
</tr>
</tbody>
</table>

Values represent mean ± SE
Mean values in a row under each parameter bearing different superscripts (a, b, c, d) differ significantly (p<0.05)
Mean values in a column (before and after heat shock) under each parameter bearing different superscripts (X and Y) differ significantly (p<0.05).

ALT (U/l) = ΔA/Min x 1768 (*= constant),
AST (U/l) = ΔA/Min x 1768 (*= constant),
ALP (U/l) = ΔA/min x 3300 (*= constant)

Table 3. Activity of superoxide dismutase (SOD), catalase (CAT) and glutathione S transferase (GST) in different tissues of *L. calbasu* before and after acid stress at the end of experiment

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Tissues</th>
<th>Acid stress</th>
<th>Treatments</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAT</td>
<td>Liver</td>
<td>Before stress</td>
<td>0.31 x±0.03</td>
</tr>
<tr>
<td></td>
<td>Muscle</td>
<td>Before stress</td>
<td>0.31 x±0.01</td>
</tr>
<tr>
<td></td>
<td>Gill</td>
<td>Before stress</td>
<td>0.27 x±0.01</td>
</tr>
<tr>
<td>SOD</td>
<td>Liver</td>
<td>Before stress</td>
<td>9.21 x±0.77</td>
</tr>
<tr>
<td></td>
<td>Muscle</td>
<td>Before stress</td>
<td>13.49 x±0.22</td>
</tr>
<tr>
<td></td>
<td>Gill</td>
<td>Before stress</td>
<td>24.06 x±0.85</td>
</tr>
<tr>
<td>GST</td>
<td>Liver</td>
<td>Before stress</td>
<td>0.41 x±0.02</td>
</tr>
<tr>
<td></td>
<td>Muscle</td>
<td>Before stress</td>
<td>0.90 x±0.06</td>
</tr>
<tr>
<td></td>
<td>Gill</td>
<td>Before stress</td>
<td>2.42 x±0.12</td>
</tr>
</tbody>
</table>

Values represent mean ± SE
Mean values in a row under each parameter bearing different superscripts (a, b, c, d) differ significantly (p<0.05)
Mean values in a column (before and after pH stress) under each parameter bearing different superscripts (X and Y) differ significantly (p<0.05).

Activities expressed as U min⁻¹ mg⁻¹ protein = inhibition %/50x sample vol x mg protein (inhibition % = OD blank-change in OD/ min/OD blank*100)

Activities expressed as µmol H₂O₂ decomposed min⁻¹ mg⁻¹ protein = OD diff/min x 1000/sample x 43.6 x mg protein

Micro moles of CDNB-GSH conjugate formed min⁻¹ mg⁻¹ protein = OD x reaction mix vol. x 1000/9.6 x total time x mg protein x sample volume
disturbed. By protecting deoxy ribose from aggressive OH radicals, ginger extract could prevent DNA damage (Valko et al., 2004).

In the present study, dietary Z. officinale acetone extract levels significantly affected (p<0.05) the activity of GST in liver, muscle and gill of L. calbasu fingerlings both before and after acid stress (Table 3). The acid stress increased the GST activity in liver, muscle and gill. The GST activity also decreased significantly (p<0.05) in the tissues like liver, muscle and gill of L. calbasu both before and after acid stress. However, upon treatment with Z. officinale acetone extract, GST activity increased significantly (p<0.05) compared with control groups. The increased activity of GST observed in the fish exposed to acid stress in liver, muscle and gill may be because of the inactivation caused by reactive oxygen species (ROS) (Andallu and Vardacharyulu, 2003). The significant recoveries in the activities of these enzymes (CAT, SOD and GST) in stressed fish with supplementation of Z. officinale extract reflect the antioxidant potential of this herbal preparation.

The results of the present study showed that Z. officinale acetone extract supplementation in the diets of L. calbasu at levels of 0.5% and 5%, contributed to reduction in levels of serum cortisol, serum glucose, serum cholesterol, triglycerides, T3 and T4 and a marked improvement in production of oxidative stress enzymes in experimental fish exposed to acid stress. The extract seems to have no toxicity as no mortality was reported up to 10 times the effective dose. From economic point of view, 0.5% is the optimum level for supplementation in feed. However, the application of Z. officinale extract in field condition requires detailed studies on the methods of administration and effective doses for different age groups of fish. Further work needs to be carried out to isolate and characterise the active principles of Z. officinale acetone extract as well as to delineate its specific properties.

Acknowledgements

The first author is thankful to the Director, Central Institute of Fisheries Education for providing financial assistance in the form of an institutional fellowship during the research period.

References

