Distribution of pathotypes of *Escherichia coli* in seafood from retail markets of Kerala, India

V. MURUGADAS, TOMS C. JOSEPH, AND K. V. LALITHA
ICAR-Central Institute of Fisheries Technology, Matsyapuri post, Willingdon Island, Kochi - 682 029
e-mail: murugadascift81@gmail.com

ABSTRACT

*Escherichia coli* is an indicator species of bacteria to determine faecal/sewage contamination in food and water. Some strains of *E. coli* have the potential to be pathogenic to humans. The food and its environment should regularly be monitored for the prevalence of pathogenic *E. coli*. A study was conducted to determine the prevalence of pathogenic *E. coli* from different fish markets and landing centres in three districts of Kerala, India. Isolated *E. coli* were pathotyped as enterotoxigenic *E. coli* (ETEC), enteropathogenic *E. coli* (EPEC) and Shiga toxin producing *E. coli* (STEC) by PCR, targeting the genes viz., bfpA, eaeA, stx1 stx2, Lt1, Lt2, ST, phoA and rfbeO157. Pathogenic *E. coli* was found in 23.4% of the 123 seafood samples screened and ETEC, EPEC, and STEC were prevalent in 18.6, 4.0 and 0.8% of the samples respectively.

Keywords: *Escherichia coli*, Multiplex PCR, Pathotypes, Prevalence, Seafood

The coliform bacteria, *Escherichia coli* is used as the best faecal indicator (USEPA, 2011) of sewage contamination and have potential to cause a wide variety of diseases in human beings including infants. *E. coli* colonises and resides in the intestinal tract of almost all warm blooded animals including human beings (Katouli, 2010) with the predominant groups being harmless in healthy human intestinal tract. Transmission of *E. coli* occurs mostly by feco-oral route through ingestion of contaminated water or food. There are nearly about thousand serotypes prevailing in the environment which are categorised into different serogroups (Cui *et al*., 2013). *E. coli* causing disease in human beings especially diarrhoea are commonly called as pathogenic *E. coli* or diarrheagenic *E. coli*. Pathogenic *E. coli* are categorised in to six pathotypes viz., enterotoxigenic *E. coli* (ETEC), enteropathogenic *E. coli* (EPEC), enteroaggregative *E. coli* (EAggEC), Shiga toxin producing *E. coli* (STEC) and diffusively aggregated *E. coli* (DAEC), based on presence of virulence determinants or markers (Feng *et al*., 2011). ETEC produces secretory toxins (enterotoxins); EPEC adhere intimately to epithelial cells and induce host cell transmembrane signaling; EIEC invade eukaryotic cells; and STEC produce Shiga toxins (Nataro and Kaper, 1988). Some strains of STEC attach to the intestinal wall of the host because of the protein intimin coded by *eae* gene. *E.coli* carrying both *stx* and *eae* genes are known as enterohemorrhagic *E. coli* (EHEC) and is responsible for uremic and haemolytic syndrome (UHS). Among the pathogenic *E. coli*, only ETEC, EPEC, EIEC and STEC including EHEC have been implicated in major food or water borne outbreaks (Feng *et al*., 2011).

Ever increasing human population in the country has resulted in increased release of sewage from different sources into the water bodies. Use of sewage contaminated water in the food production chain can lead to emergence of water borne diseases particularly by pathogens of public health importance (Jung *et al*., 2014).

Detection of pathogenic *E. coli* by conventional methods is often expensive; require special expertise and various detection systems. Application of such assays for enteric microbiological diagnosis is cumbersome (Lopez-Saucedo *et al*., 2003). Polymerase chain reaction (PCR) has increasingly been used to improve the rapidity in detection. Since there are different pathotypes of *E. coli*, multiplex PCR targeting more number of genes in a single PCR reaction is being used to categorise them in single attempt. The present study focused on screening of seafood samples and associated environments for presence of pathogenic *E. coli* employing PCR method targeting virulence associated genes.

One hundred twenty three seafood samples comprising of fish and shellfish were collected from various fish markets and landing centres in three districts of coastal Kerala viz., Ernakulam, Kottayam and Alappuzha. The samples were brought to the laboratory in chilled condition and processed within 4 h of collection. Isolation and identification of pathogenic *E. coli* was performed as per BAM (2011) employing two different protocols viz., protocol 1 for pathogenic *E. coli* except EHEC of...
serotype O157 also called as O157 STEC and protocol 2 for EHEC of serotype O157 *i.e.*, O157 STEC serotype. In protocol 1, seafood samples were enriched in Brain Heart Infusion broth and subsequently in *E. coli* broth, serially diluted and 100 µl each was plated onto Levine-Eosin Methylene Blue agar and MacConkey agar. Typical lactose fermenting pink colonies on MacConkey agar and dark centered purple colonies with or without green metallic sheen on Levine-Eosin Methylene Blue agar were taken for further confirmation using biochemical tests such as triple sugar iron agar (TSI); urease; indole - methyl red - Voges - proskauer - citrate (IMViC) tests. In protocol 2, homogenised samples were enriched in EHEC enrichment broth (EEB) and 100 µl was selectively plated onto CT-Sorbitol MacConkey agar. Non-sorbitol fermenting yellow colonies on CT-SMAC agar were picked and checked in EMB agar for dark purple centered colonies with or without green metallic sheen.

Two hundred and twenty five strains of *E. coli* obtained in this study were confirmed as *E. coli* by PCR and then characterised into different pathotypes by single and multiplex PCR using nine pairs of primers targeting virulence and housekeeping genes. Primers, cycling conditions and product size are presented in Table 1. Crude DNA extract was prepared by boiling the culture in 1X TE buffer (pH.8.0) and stored at -20°C until analysis.

<table>
<thead>
<tr>
<th>Genes targeted in PCR/Multiplex PCR</th>
<th>Primer sequence</th>
<th>Product length</th>
<th>Cycling condition</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>bfpA</td>
<td>bfpAF-AATGGTGCTTGCGTTGCTGC bfpAR-GCCGCTTTATCCAACCTGTTGA</td>
<td>326 bp</td>
<td>50°C/2 m Initial denaturation 94°C/5 m followed by 40 cycles of Denaturation, Annealing and Extension 94°C/45 sec 52°C/45 sec 68°C/45 sec Final extension 68°C/ 74°C/a</td>
<td>Gunzburg et al. (1995)</td>
</tr>
<tr>
<td>rfbO157</td>
<td>rfbO157F-CGAGTACATGAGCGTTGCTGA rfbO157R-ATTGCGCTGAACTGCTTG</td>
<td>500 bp</td>
<td>93°C/3 m Initial denaturation followed by 35 cycles of Denaturation, Annealing and Extension 93°C/15 sec 60°C/15 sec 72°C/30 sec Final extension 72°C/5 4°C/a</td>
<td>Abdulmawjood et al. (2003)</td>
</tr>
<tr>
<td>phoA</td>
<td>PhoF GTGACAAAAAGCCCGGACACCATATAATCGCT PhoR TACACTGTCATTACGTTGCGGAGCCCGTT</td>
<td>903 bp</td>
<td>50°C/2 m Initial denaturation 94°C/2 m Followed by 40 cycles of Denaturation, Annealing and Extension</td>
<td>Kong et al. (1999)</td>
</tr>
<tr>
<td>St1</td>
<td>St1F CTTTCCCCCTTTTTTAGTCAG St1R TAACATGTCGACACCGACGGCAGG</td>
<td>175 bp</td>
<td>94°C/1 m 55°C/1 m</td>
<td></td>
</tr>
<tr>
<td>Lt1</td>
<td>Lt1F TTACGCGGTCTATCTCTCTCTA Lt1R GTGTCGCTGCTAGATGTGATTC</td>
<td>275 bp</td>
<td>94°C/1 m 55°C/1 m</td>
<td></td>
</tr>
<tr>
<td>Lt2</td>
<td>Lt2F ATATCATTTTCTCTTCTAGCATAC</td>
<td>720 bp</td>
<td>94°C/1 m 55°C/1 m</td>
<td></td>
</tr>
<tr>
<td>eaeA</td>
<td>eaeAF- AGGCCCTGCTACAGTTG eaeAR- CCATCGTCACCGAGGA</td>
<td>570 bp</td>
<td>Initial denaturation 94°C/5 m</td>
<td>China et al. (1996)</td>
</tr>
<tr>
<td>stx1</td>
<td>stx1F- AGACCGATGATCAGCGTGTG stx1R- TTGCCCCAGCTGATGATG</td>
<td>388 bp</td>
<td>Followed by 30 cycles of Denaturation, Annealing and Extension</td>
<td></td>
</tr>
<tr>
<td>stx2</td>
<td>stx2F- TGGGTTTTTCTCTTGATC stx2R - GACATCTGTAGACTCTT</td>
<td>807 bp</td>
<td>94°C/30 sec 50°C/30 sec 72°C/30 sec Final extension 72°C/5 4°C/a</td>
<td></td>
</tr>
</tbody>
</table>
Distribution of pathotypes of Escherichia coli in seafood were confirmed by amplification of bfpA gene specific for EPEC. Two multiplex PCR (one targeting phoA, Lt1, Lt2, st1 genes specific for ETEC and another targeting stx1, stx2, eaeA genes specific for STEC including EHEC and rfbO157 genes specific for E. coli O157 serotype of STEC/ EHEC.

Fifty five percent of the seafood samples analysed were found to harbour E. coli out of which 23.4% was found to carry pathogenic E. coli. PCR analyses of the pathogenic E. coli revealed that 18.6, 4.0 and 0.8% of the pathogenic E. coli were ETEC, EPEC and STEC respectively (Table 1; Fig.1, 2 and 3). ETEC was present in seafood from all the 3 districts while EPEC was detected in Alappuzha and Ernakulam and STEC in Alappuzha only. Forty strains (from 18 samples) were found to possess genes specific for ETEC (St1 genes), 6 strains (5 samples) were found to possess gene specific for EPEC (bfpA genes) and one strain (1 sample) was found to harbour gene stx1 specific for STEC and the rest of the strains were not harbouring any of the virulence genes (non-pathogenic E. coli). Even though STEC was present, none of the isolates were found to harbour genes specific for EHEC of O157 serotype i.e., O157 STEC.

Although Surendraraj et al. (2010) reported the prevalence of EHEC strain from Cochin market in an earlier study, EHEC especially E. coli O157 was not detected from the samples screened in this study. Higher incidence of STEC has been reported in seafood as compared to ETEC (Singh and Kulshrestha, 1994; Theophilo et al., 2002). However, in our study ETEC incidence was highest, followed by EPEC and STEC. This study is in agreement with the findings of Kumar et al. (2001) who reported only prevalence of STEC and not EHEC in fish and fishery products. The presence of STEC in food samples were insignificant in comparison to that of EHEC strains (Paton and Paton, 1998). Although prevalence of STEC was very low in this study, modifying the method of isolation by including immuno magnetic separation for concentrating the organism may improve the chances of detection of this pathotypes in seafood.

The study revealed prevalence of ETEC and EPEC pathotypes of E. coli in seafood from three districts of Kerala which clearly revealed the entry of this sewage indicator bacteria at any point starting from harvest onboard fishing vessel or aquaculture farms to the point of sale in retail markets for human consumption. Presence of pathogenic E. coli is usually linked with the use of
V. Murugadas et al.

contaminated water in food production chain. Hence, there is a need for source tracking of these pathogens to identify the source of contamination and to implement control measures to reduce its incidence in seafood.

Acknowledgements

The authors are immensely thankful to the Director, ICAR-CIFT, Kochi for the facilities provided, Indian Council of Agricultural Research, New Delhi for funding and to the staff of ICAR-CIFT for kind support.

References


USEPA 2011. Using microbial source tracking to support TMDL development and implementation. Prepared for U. S. Environmental Protection Agency, Region 10, Watersheds Unit, Tetra Tech, Inc. and Herrera Environmental Consultants, Seattle, WA.