Length-weight relationship and condition factor of *Gudusia chapra* (Hamilton, 1822) from Panchet Reservoir, Jharkhand, India

SUMAN KUMARI¹, K. M. SANDHYA², GUNJAN KARNATAK¹, LIANTHUAMLUAIA¹, U. K. SARKAR¹, D. PANDA³ AND P. MISHAL¹

¹ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata -700 120, West Bengal, India
²ICAR-Central Institute of Fisheries Technology, Kochi - 682 029, Kerala, India
³ICAR-Central Institute of Freshwater Aquaculture, Kausalyaganga, Bhubaneswar - 751 002, Odisha, India
e-mail: sumankumari.icar11@gmail.com

ABSTRACT

This study provides length-weight relationship and condition factor (K) of Indian river shad *Gudusia chapra* (Hamilton, 1822) collected from Panchet Reservoir, Jharkhand, India during October 2014 to September 2015 using gillnets and drag nets. About 342 specimens (153 male and 189 female) of length range 4.7 to 15.1cm were collected. Length-weight relationship for male and female were calculated separately. The difference between the sexes was insignificant (independent t-test, p>0.05). The pooled length-weight regression equation was estimated as log \(W = -1.863+2.855 \log L \) (\(r^2 =0.983 \)) which indicated negative allometric growth. The value of condition factor (Kn value) was observed to be nearer to or greater than one in both sexes, indicative of the general wellbeing of the fish in the Panchet Reservoir. This is the first report on length-weight relationship parameters of *G. chapra* from an Indian reservoir.

Keywords: Allometric growth, Condition factor, *Gudusia chapra*, Length-weight relationship, Panchet Reservoir

Introduction

Reservoir fisheries contributes significantly to fish production from Inland open waters (Lianthuamluaia et al., 2019) and caters to nutritional and livelihood security of rural populace in India (Sarkar et al., 2017). Length-weight relationships are important and fundamental components of fisheries management tools (Jobling, 2002; Froese, 2006; Kumari et al., 2018). These can be used to assess the well-being of individuals and to determine possible differences between separate unit stocks of the same species in an ecosystem (King, 2007; Zolkhiflee et al., 2017). The condition factor (Kn) or ponderal index of a fish is widely used to compare the 'condition', 'fatness' or well being of fish (Ahmed et al., 2007). Fulton’s condition factor (K) is the most significant biological parameter that provides information on growth, sexual maturity, the degree of food source availability, age and sex of species (Okgerman, 2005).

The Indian river shad, *Gudusia chapra* (Hamilton, 1822) of family Clupeidae and order Clupeiformes, grows very well in the low land, slow flowing rivers as well as stagnant waters. *G. chapra* is a commercially important clupeid resource of India and Bangladesh (Vinci et al., 2005, Ahmed et al., 2007) and also reported from Pakistan and Nepal (Froese and Pauly, 2015). According to Jhingran (1972) and Jhingran and Verma (1973), the species was abundant during seventies in Ganga river system. Fish composition structure, length-weight relationships of selected species and diversity of planktivorous fish of Panchet Reservoir was reported by Sandhya et al. (2017; 2019). Most of the studies have been conducted in rivers and wetlands on abundance but there is no previous report on LWRs of this species from an Indian reservoir (Froese and Pauly, 2015).

Fish samples were collected from Panchet (23°68'88˝ N; 86°75'69˝ E), a large tropical reservoir (Area: 12181 ha) in Damodar basin, situated in Dhanbad District of Jharkhand and Purulia District of West Bengal, India (DVC, 2010). Fish specimens were collected using gillnets and drag nets during October 2014 to September 2015 on monthly basis. Fishes were identified following Hamilton (1822) and for each sample, total length was measured with 0.1cm accuracy and weighed to the nearest 0.01g. The LWR of pooled data (male and female) was calculated as \(W = aL^b \), where \(W \) is total weight (g), \(L \) is total length (cm) (from the tip of the snout to the tip of caudal fin), \(a \) is constant proportionality (intercept value) and \(b \) is allometry coefficient (slope). The log-log plots of length and weight of male, female and pooled data were prepared before regression analysis and outliers were removed following the recommendations of Froese (2006). Fulton’s condition factor (K) was calculated following
the equation: $K = \frac{100W}{L^3}$ for both male and female in different length group of fishes.

A total of 342 (female - 189 and male - 153) specimens of *G. chapra* were studied. Sample size, length range, length-weight regression parameters, coefficient of determination (r^2) are given in Table 1.

The calculated values of a and b were 0.0158, 2.734 for male and 0.0114, 2.918 for female respectively (Table 1). No significant difference was observed in regression coefficient values ($a=0.05$) of males and females. Therefore, a pooled regression equation was calculated (Fig. 1). The calculated ‘b’ value for combined data was comparable with the value obtained by Vinci et al. (2005). Conversely, Quddus (1993) reported values of regression coefficient $b = 3.40$ in *G. chapra* from a lake in Bangladesh, probably due to different habitat characteristics. Narejo et al. (2006) reported lower b values for *G. chapra* from fish ponds. The estimate for b values obtained in the present work is in conformity with those of earlier researchers, e.g. Vinci et al. (2005), Sani et al. (2010) and Ahamed et al. (2014) from wetlands and rivers (Table 2).

The condition factor (K) for males and females of different length group were determined. The K values ranged from 0.7113 - 1.479 with mean $K = 1.0285$ for males while, it ranged from 0.7759-1.3558 with mean $K=1.0016$ for females. The K_n (mean K) value corresponding to different length groups is depicted in Fig. 2. There were inflexions on the curve showing K_n of *G. chapra* against the length of 5.5 to 6.5 cm and 13.5 to 14.5 cm for females and 7 to 8 cm and 10 to 11 cm for males (Fig. 2). The present study also corroborated with the study of the different species of freshwater ecosystem (Hossain et al., 2009, 2010: Ahamed et al., 2014). In contrast to present finding, Mondal and Kaviraj (2010) observed single peak for both sexes (male and female) in floodplain wetlands of West Bengal.

G. chapra was observed in the catches throughout the year in the reservoir. The availability of different size groups throughout the year indicates its continuous recruitment round the year. The estimated ‘b’ value reported for the species was around 3 from the rivers and reservoirs but much lower in fish ponds indicating growth of the species is not isometric in pond, which may be attributed to habitat variability. The basic information reported in the present study will be helpful in conservation and management of natural stock of this species in reservoirs of eastern India.

Table 1. Descriptive statistics and estimated parameters of LWRs for *G. chapra* of Panchet Reservoir

<table>
<thead>
<tr>
<th>Sex</th>
<th>n</th>
<th>Total length (cm)</th>
<th>a</th>
<th>b</th>
<th>95% CL of b</th>
<th>SE(b)</th>
<th>r^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Female</td>
<td>189</td>
<td>4.9</td>
<td>15.1</td>
<td>0.0114</td>
<td>2.91</td>
<td>2.867-2.969</td>
<td>0.0355</td>
</tr>
<tr>
<td>Male</td>
<td>153</td>
<td>4.7</td>
<td>11.6</td>
<td>0.0158</td>
<td>2.73</td>
<td>2.634-2.835</td>
<td>0.0680</td>
</tr>
<tr>
<td>Pooled</td>
<td>342</td>
<td>4.7</td>
<td>15.1</td>
<td>0.13002</td>
<td>2.85</td>
<td>2.815-2.898</td>
<td>0.045</td>
</tr>
</tbody>
</table>

n - Sample size; a and b - Parameters of LWRs, CL - confidence limit; r^2 - Coefficient of determination

Fig. 1. Length-weight relationship of *G. Chapra* (sexes pooled)

Fig. 2. Mean condition factor (K) of *G. chapra* in different length groups
Length-weight relationship and condition factor of *Gudusia chapra*

Table 2. Comparison of length-weight relationship of *G. chapra* from different aquatic systems

<table>
<thead>
<tr>
<th>Sample size</th>
<th>Sex</th>
<th>Intercept (a)</th>
<th>Slope (b)</th>
<th>Correlation coefficient (r²)</th>
<th>Aquatic system</th>
<th>Location</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>Combined</td>
<td>0.0079</td>
<td>2.98</td>
<td>0.950</td>
<td>Betwa and Gomti rivers, Uttar Pradesh, India</td>
<td>Sani et al. (2010)</td>
<td></td>
</tr>
<tr>
<td>200</td>
<td>Combined</td>
<td>_</td>
<td>2.85</td>
<td>0.918</td>
<td>Floodplain wetland, West Bengal</td>
<td>Vinci et al. (2005)</td>
<td></td>
</tr>
<tr>
<td>138</td>
<td>Combined</td>
<td>_</td>
<td>2.11</td>
<td>0.342</td>
<td>Fishponds, Sindh, Pakistan</td>
<td>Narejo et al. (2006)</td>
<td></td>
</tr>
<tr>
<td>1091</td>
<td>Male</td>
<td>0.0236</td>
<td>2.92</td>
<td>0.980</td>
<td>Brahmaputra River, North-eastern Bangladesh</td>
<td>Ahamed et al. (2014)</td>
<td></td>
</tr>
<tr>
<td>941</td>
<td>Female</td>
<td>0.0289</td>
<td>2.83</td>
<td>0.989</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Acknowledgements

Authors are grateful to the Director ICAR-CIFRI, Barrackpore for providing guidance and facilities to carry out the study. We thank Mr. Bablu Naskar and Mr. Y. Ali, technical personnel, ICAR-CIFRI, Barrackpore for their unflinching help and support in sample collection.

References

