Wheat diseases and their management in Karnataka - An overview

Ishwar Kenchappa Kalappanavar

Dr. Sanjaya Rajaram Wheat Laboratory
University of Agricultural Sciences, Dharwad- 580 005, India

Abstract
Wheat crop in India, owing to its diverse climatic conditions prevailing throughout the country, suffers more or less due to all three rusts. Among the major constraints of limiting the wheat production in Karnataka is leaf rust followed by leaf blight and foot rot in the rain fed ecosystems. In Karnataka several workers have made an attempt to study the wheat diseases and their spread, mechanism of infection, loss due to individual diseases, and mechanism of resistance, epidemiological factors and management aspects. In the present work it has been tried to compile the work which has been done in Karnataka till date so that people can very easily trace the track at one look.

Key words: Wheat disease, Karnataka, rusts, leaf blight, management

Introduction
Wheat, the second most important food crops of the India, contributes nearly one-third of the total food grain production. In Karnataka, wheat is grown on an area of 0.248 mha with a production and productivity of 0.190 million tons and 766 kg ha⁻¹ respectively during rabi 1998-99 (Anonymous, 1999). It has already been proved to be the best component under multiple cropping system of the state. Wheat like any other crop, suffers from many diseases caused by fungi, bacteria, viruses, nematodes and other abiotic disorders. However, the diseases caused by fungi are posing severe constraint on wheat productivity. The major diseases noticed in Karnataka include stem rust or black stem rust (Puccinia graminis f.sp. tritici), leaf rust or brown rust (Puccinia triticina), spot blotch (Helminthosporium sativum) and foot rot (Sclerotium rolfsii). If diseases alone are managed it is possible to harvest 6 to 8 tons per hectare. Identification of resistance sources and gene pyramiding is supportive step in management of these diseases. Hence, constant efforts were made to screen large number of germplasm and breeding materials for resistance to rusts and leaf blight. The efforts have been made to compile the information on epidemiology, race evolution and management of these diseases in Karnataka.

Rusts
Dynamics of rust disease in Karnataka: It has been demonstrated by Joshi et al. (1974) that first build up of leaf rust take place in plains of Karnataka in South India, generally in the last week of December. Normally, the leaf rust appears first during the last week of December or first week of January followed by stem rust (Patil and Kalappanavar, 1994). The first infection of rust comes from the uredospores received from Nilgiri and Palani hills of Tamil Nadu. In 1983, studies conducted on rust incidence dynamics proved that off season wheat grown during kharif season in Chikkamagalur district served as secondary foci of infection (Kulkarni, 1984). Due to the intervention of the government, farmers now have stopped cultivation of wheat during off season in Chikkamagalur and Chitradurga districts.

More number of uredospores per microscopic field was observed by glass rod method compared to glass slid method and developed first order auto-regression, logistic, linear, environmental prediction models for leaf rust of wheat in Karnataka (Naragund, 1989). Navi et al. (1991) showed considerable daily fluctuation in leaf rust uredospore with weather factors viz., wind velocity, temperature and relative humidity. The marked difference in the leaf rust severity was more related to the type of variety grown in different localities. The wheat varieties viz., DWR-162 and MACS-2496 having vertical resistance were severely affected. Higher frequency of 121R63-1 (77-5) was due to more cultivated area under matching resistance genes conditioning vertical resistance in DWR-162 and MACS 2496 (Hasabnis, 1998).

Loss due to rusts: Several workers have reported that rust of wheat caused significant reduction in 1000-grain weight and in grain number per ear head. A direct relation between yield and infection of leaf rust was established...
Sources of resistance: Kulkarni (1979) tested Bijaga Red variety against 15 Indian races of leaf rust and it was found resistant to all except 77B and it was found that Lr 9 and Lr 19 as resistant source in seedling stage against leaf rust isolates. Gundappa (1983) screened wheat varieties against stem rust of wheat viz., HD 2009, HD 2320, HD 2329, P 2712, Raj 2132, HD 1102, HP 1209, HP 1487, BW 71, BW 75, BW 78, DL 1778, HD 2189, HD 2323, HW 919, HW 888, HW 741, HW 504 and HD 2327 were remained free from infection whereas, terminal severity was 60S on Kalyana Sona and N 59. Jalinder (1983) studied slow rusting mechanism in 16 varieties of wheat.

Up 301, DWR 16, HD 2189 and DWR 26 remained free from infection throughout and varieties WH 147, WL 71, Sonalika, C 306 and HD 4502 were identified as slow rusters whereas Agra local, Kalyanaasona, Narmada, NI 5439 and Lal bahadur were identified as fast rusters.

Navi (1986) while working with slow rusting of leaf rust in bread and durum wheat varieties observed that HD 2278 remained tolerant and C 464, DWR 39, HD 2189 and DWR 16 were identified as slow rusters. Durum varieties (Raj 1555, DWR 137, HD 4502 and DWL 5023) infected later in the season indicating the slow rusting mechanism. Wheat varieties viz., NI 5439, Lal bahadur, Kalyanaasona and Sonalika of Triticum aestivum and Local red, Agra local, N 59, A-9-30-1 and MACS 1967 of Triticum durum were identified as fast rusters. Navi et al. (1989) studied slow leaf rusting mechanism in wheat varieties considering parameters viz, long latent period, smaller pustule size, reduced pustule density/cm² of leaf and low ACI. Naragund (1989) identified DWR 39, HD 2189, HI 977, Keerthi, Sonalika, WH 147 and WH 416 of Triticum aestivum and Bijaga Yellow, Kiran, MACS 1967 and Raj 1555 of Triticum durum as slow leaf rusters on the basis of values of AUDPC. Navi et al. (1991) screened 151 promising wheat varieties against P. recondita f.sp. tritici. Only 10 varieties (HD 2428, PBW 175, HUW 269, NDW 374, HS 207, VL 639, DL 230 7, HD 2402, DL-230-6 and HI 1156) remained free from infection. The slowest leaf rust HD 2189 had long latent period (15 days), smaller pustule size with lower pustule density (6 and 8 number of pustules cm² on 20 and 30 days after inoculation). The leaf rust resistance genes viz., Lr 9, Lr 19 and Lr 24 were found to be effective against virulent race 121R63-1 (Hasabnis, 1998).

Kalappanavar and Hegde (2001) screened 100 genotypes out of which genotypes HS 365, WH 542 and HW 2045 were having less than 5 ACI values to both stem and leaf rusts over years. Kalappanavar and Julie Nicol (2003) screened 140 wheat genotypes received from the CIMMYT, Turkey. They reported that 25 genotypes were resistant to stem rust, leaf rust and leaf blight. Hasabnis and Srikant Kulkarni (2002) evaluated 17 wheat genotypes for slow leaf rusting characteristics. The genotype HD 2189 had lowest (96.35) value of AUDPC as compared to
Wheat diseases management in Karnataka

...about new black rust \textit{Puccinia} stresses. Further, fast evolving \textit{spp.} continues to showed slow leaf rusting. Of \textit{DWR 241, DWR 39, DWR 16, HD 2278 and NIAW 34, HD 2189, DWR 236}, of infection. The genotypes effects were highly significant for average co-efficient \textit{DDK 1001 / Amrut and NP 200/ Amurt}, the estimates \textit{VL 829} showed resistant reaction. (Kalappanavar et al. 2003, Kalappanavar et al. 2006). Hasabnis et al. (2004) evaluated 55 wheat varieties to leaf rust and observed that 34 wheat cultivars expressed hypersensitive type of resistance against the pathogen. Considering lower terminal disease score, (Bijaga Yellow, C 306, GW 173, HD 2189, HD 2502, HD 2687, K 8962, PBW 396, Sujatha and WH 542) smaller values of AUDPC and slow rate of infection, these 10 wheat cultivars have been recommended for future wheat improvement programme as good donors of desirable and durable leaf rust resistance. Hasabnis et al. (2004) reported that genotypes DWR 162 and MACS 2496 showed susceptible reaction to leaf rust with the severity of 50 and 40 per cent respectively. The genotypes NIAW 34 and HD 2189 showed moderately susceptible reaction to leaf rust of wheat. Hasabnis and Srikanth Kulkarni (2004) reported that in intra specific cross HD 4502 / Amrut, the estimated additive gene effects and dominance gene effects were highly significant. The magnitude of additive x additive gene effects was higher and positive whereas dominance x dominance was negative. In interspecific crosses \textit{viz.}, DDK 1001 / Amrut and NP 200/ Amrut, the estimates of additive and dominance effects were highly significant in the cross NP 200 / Local red. Only additive gene effects were highly significant for average co-efficient of infection. The genotypes \textit{viz.}, HD 2189, DWR 236, DWR 241, DWR 39, DWR 16, HD 2278 and NIAW 34 of \textit{T. aestivum} and MACS 2486 and DWR-137 of \textit{T. durum} showed slow leaf rusting.

\textbf{Prevalence of rust races in Karnataka:} The poor productivity of wheat has been attributed to biotic and abiotic stresses. Further, fast evolving \textit{Puccinia} \textit{spp.} continues to be problematic. Good amount of debate is being made about new black rust \textit{Ug 99} in the country. Further, it is alarming to note that some wheat lines available in India are susceptible to \textit{Ug 99} race due to presence of \textit{Sr 31} gene. Leaf rust race analysis report indicated that leaf race 2IR55 was most prominent followed by race 121R63-1. However, races 17R23, 29R23 and 21R63 & 121R55-1 were also prevalent during 2001-02 and 2002-03 respectively. Race 121R55-1 was new pathotype detected in few samples during 2002-03. In the year 2003-04 and 2004-05 the race 121R63-1 was reported to be most predominant and has combined virulence on \textit{Lr 23} and \textit{Lr 26}. Therefore, popular wheat varieties like DWR 162 and MACS 2496 became highly susceptible. In the year 2004-05 a new pathotype (253R31) was reported from few samples. The other leaf rust races reported during 2004-05 were 21R55, 109R63 and 5R37. During 2005-06, as high as seven leaf rust races were recorded. However, race 253R31 was most predominant followed by 121R63-1. Race 253R31 has the virulence on \textit{Lr 19}. A new pathotype 5R45 was identified on one sample. During 2003-04 the stem rust race 7G11 was isolated where in 2005-06 two stem rust races were isolated i.e. 58G13 and 62G29. A new pathotype 58G13 was observed on more number of samples collected and it is virulent on \textit{Sr 5, Sr 7b, Sr 8a, Sr 9b, Sr 9e} and \textit{Sr 28} (Kalappanavar et al. 2006).

\textbf{Management stratégies}

Navi et al. (1986) in a comparative trial with five different sowing dates reported that early sown crop (beginning of November) had less leaf rust. Hunshal et al. (1990) compared four different levels of NPK applications, wherein, incidence of leaf rust increased with increase in fertilizer level. Yield also differed significantly among seven wheat cultivars. Optimum dose of nitrogenous fertilizer and seed rate, flat bed method and early planting were found ideal for quantitative resistance. These practices showed lower final disease score (FDS) and lesser value of AUDPC. Gene combination such as \textit{Lr 13 + Lr 23 + Lr 24} is most appropriate at the strategic area where inoculation buildup and dissemination takes place. Isolines \textit{viz.}, \textit{Lr 13 and Lr 24} help in delaying the epidemics, whereas, \textit{Lr 34} in combination with the above genes will slow down the epidemics (Hasabnis, 1998). Kalappanavar and Patil (1998) investigated the ability of fungicides to control \textit{P. recondita} f. sp. \textit{triticci} on wheat. The most effective fungicide was cyproconazole (San 619) whereas, Mencozeb least effective. The highest yield was observed on the plot treated with Cyproconazole. The fungicide Propiconazole performed best followed by Triadimefon and Hexaconazole. However, neem leaf extract, \textit{Trichoderma harzianum} and \textit{Panchgavya} were the succeeding treatments effective against leaf rust of wheat. The yield of Propiconazole, Triadimefon and Hexaconazole sprayed plots were significantly superior over control indicating marked influence of the leaf rust on yield. The 1000-grain weight was also significant in the above said treated plots compared to other treatments.

\textbf{Leaf blight}

After the impressive progress in managing leaf and stem rust in modern varieties, leaf blight caused by \textit{Helminthosporium sativum} has emerged as the most important disease of second – generation wheat genotypes. Meli (1993) conducted a survey during \textit{rabi} 1992-93 in transitional belt of Karnataka \textit{viz.}, Belgaum, Dharwad and Gadag districts. He recorded maximum disease severity of 47.95 per cent form Saundatti taluk in Belgaum district and 53.46 per cent from Gadag district. Recently leaf blight appeared in severe form in Gokak taluk followed by Belgaum, Raibag, Athani and Dharwad. Over all effects of the disease resulted in reduction in thousand
grain weight (18%), grain yield (31%), and plant height (7%) and biomass (19%) (Patil, 2000).

Morphology: Bidari and Govindu (1980) showed that both unipolar and bipolar germination of conidia of *H. sativum* occurred after two hours of incubation on host leaf surface. Appressorial formation was observed six hours after incubation on host surface. They further, observed that, germ tube may and in a single round to oval brownish appressorium which was on or near the stomata. The penetration peg from appressorium was through stomata or directly through epidermis or between two cells. Kulkarni *et al.* (1985) described *Exerohilum hawaiiensis* on wheat as conidiophores solitary, geniculate, septate measuring 120 x 2.7 µm. The conidia were straight, ellipsoidal, oblong or oval shaped round at the ends, brownish in colour and symmetrical in shape, pale to slight brownish in appearance. The size of conidia varied from 16.18 µm – 80.08 µm x 13.2 µm – 30.2 µm and average size of spore being 39.09 µm x 18.13 µm with pseudo septations five to eleven. Hiremath (1985) examined *E. hawaiiensis* on wheat and found that variation in spore size as well as number of pseudo septa. Conidia were straight, ellipsoidal, and oblong or oval shaped round at the ends brownish in colour conidiophores solitary, geniculate and pale to light brown in colour.

Nagaraj (1980) observed maximum mycelial growth at 25°C and the least growth at 10°C in case of *Drechslera sorokiniana*. Meli (1993) studied the effect of different temperature levels on the growth of isolates of *E. hawaiiensis* and reported that the temperature of 30°C was found to support significant growth over temperature levels tested. Patil (2000) observed better growth of mycelium of all isolates of *E. hawaiiensis* at 30°C followed by 25°C. An attempt was made to study the germination of conidia and germination was seen on slide and also in resistant and susceptible genotypes. Temperature of 25°C and pH 7 was found optimum for maximum germination of *H. sativum* (Chandrashekara, 2003). Nagaraj (1980) reported that best growth of *D. sorokiniana* at pH 5.8. However, Patil *et al.* (1964) reported that minimum growth of the *D. sorokiniana* was obtained at pH 6.2 followed by 6.0 which were superior to other pH levels. Raguchandra *et al.* (1988) concluded that, growth was best at pH 6.6 for *Bipolaris sorokiniana*. Hiremath *et al.* (1989) recorded the maximum growth of *D. hawaiiensis* was at pH 6.0 which differed significantly from the other pH levels in supporting the growth of the fungus. Meli (1993) observed maximum growth of different isolates of *E. hawaiiensis* at pH 6.0 and no significant difference in growth at pH levels 5.5, 6.5 and 9.0. Patil (2000) recorded maximum weight of *E. hawaiiensis* at pH levels between 6.0 and 6.5 for all the eight isolates tested.

Epidemiology: In Karnataka, wheat is usually sown during mid October to early December. The leaf blight symptoms appear during the crown root initiation stage of the plant. The severity of the disease is judged by the age of the seedling. Bidari and Govindu (1975) reported *H. sativum* on wheat was able to infect 16, 32 and 48 days old plants. Later stages of growth were found to be more susceptible than earlier stages. Ten days old seedlings were found most susceptible and maximum infection was noticed at 60 days old plants. Studies on survivability of pathogen indicated short span of few weeks in the soil. Kulkarni *et al.* (1985) for the first time reported its occurrence on wheat in severe form in Karnataka. The pathogen was found to survive under laboratory conditions for 21 months, under natural conditions for 15 months and under refrigerated conditions for 27 months and remains viable in seed for 28 months. Bidari (1973) studied the survival of three isolates of *H. sativum* in wheat seed, plant debris and soil and it was found that all the three isolates survived for more than nine months. The blotter test method conducted on wheat seeds confirmed that black point was due to *H. sativum* and the pathogen was found deeply seated under the seed coat resulting in seed rotting, seedling infection and pre and post emergence death of seedlings. Bidari and Govindu (1975) studied the three isolates of *H. sativum* and compared. The leaf isolates were more virulent than the neck and ear head isolates. The leaf, neck and ear head isolates were grouped as virulent forms respectively. The perfect stage of the pathogen could not be detected although very old infected straw material was carefully observed for perithecia. Much variation in leaf blight pathogen (*H. sativum*) was observed in Karnataka and was designated into eight isolates as A, B, C, D, E, F, G and H. These isolates were grouped into three pathotypes as highly virulent - A, B, E & G from Arambavi, Kittur, Raichur and Gangavati, moderately virulent - C, D & F from Bagalkot Bijapur and Siraguppa and least virulent - H from Navalagund (Meli, 1993). Subramanyam *et al.* (1990) reported that spores of *E. hawaiiensis* germinated on inoculated leaf pieces of a susceptible cultivar by producing several germ tubes. These germ tubes formed appressoria on the epidermis and over the stomata indicating both direct and indirect penetration

Collateral hosts: The pathogen could infect *Chloris barbata*, *Chloris gayana*, *Dactyloctenium aegypticum*, *Eleusine coracana*, *Oryza sativa*, *Sorghum bicolor*, *Hordium vulgare*, *Sorghum bicolor*, *Zea mays* under artificial inoculations (Hiremath *et al.*, 1984, Raguchander *et al.*, 1988; Subramanyam, *et al.*, 1990, Ramachandra, 2000). The cross inoculation on wheat was also successful, hence they may act as alternative to the pathogen.

Mechanism of infection: The seed borne nature of the disease was confirmed by disease transmission study at this center and the pathogen is transmitted from seed to plant systemically. The histo-pathological studies of the infected leaf revealed that the mode of entry of this pathogen was
practical approach to disease management. Wheat diseases management in Karnataka

Subramanyam et al., 1990; Sasalatti and Kalappanavar, 2003). After penetration the mycelial mat was profusely distributed within the host tissue. Due to this, mesophyll cells become disorganized and cause damage to epidermal cells. During severe infection the vascular bundles with bundle sheath were found to be destroyed, causing severe damage to the leaf tissues (Chandrashekhar, 2003; Ramachandra and Kalappanavar, 2004).

Mechanism of resistance: Subramanyam et al. (1990) studied the influence of inoculation of D. hawaiiensis (Bugnicourt) Subram and Hain on biochemical parameters of wheat resistant cultivars than in susceptible ones and further they observed that both the shoot increment and number of stomata were responsible for resistance in wheat genotypes resistant to infection by E. hawaiiensis compared to susceptible genotypes. D. hawaiiensis was found to be more resistant than H. sativum and H. vulgare in both laboratory and field situations. In infected leaves the penetration of the fungus took place through the stomatal opening and directed through the vascular bundles. The mycelium was ramified profusely in the host tissue, ultimately destroying the epidermal and mesophyll cells. Under the severe infection the bundle sheath and the vascular bundles were disrupted. In the recently concluded study, it was observed that higher epicuticular wax, phenolics, soluble proteins, sugars, cuticular and epidermal cell layer thickness and lesser length, breadth and number of stomata were responsible for resistance to H. sativum infection (Sasalatti and Kalappanavar, 2003; Pradeep Kumar, 2005).

Sources of resistance: Hiremath (1985) screened 140 wheat varieties against H. sativum and found that majority of varieties showed immune reaction. Forty varieties were found to be moderately resistant 30 and were moderately susceptible and six showed susceptible reaction. Chattannavar et al. (1987) evaluated 527 wheat genotypes under artificial epiphytotic conditions against E. hawaiiensis. Forty genotypes were found to be highly resistant to the pathogen. Subramanyam (1989) screened 172 wheat genotypes against E. hawaiiensis and revealed that none of the varieties had immune reaction. Eight varieties showed resistant reaction, 83 varieties were moderately resistant, 81 varieties were moderately susceptible while 30 showed susceptible reaction. Disease incidence survey conducted over years revealed that leaf blight incidence was more prominent in dicoccum and durum wheats as compared to bread wheats.

Disease management: Ramachandra (2000) assayed cold aqueous extracts of 16 plant species against E. hawaiiensis. Duranta repens at 5 and 10 per cent concentration showed significant inhibition of mycelial growth of E. hawaiiensis in both laboratory and at field level (62.40 and 68.11%). Spraying 20 per cent aqueous extract of Duranta repens, Azadiracta indica and Ocimum sanctum exhibited significant inhibition of mycelial growth of H. sativum to the maximum extent. Chattannavar et al. (1983) reported that, RH-2161 was the best followed by Tridemorph / Dithane-M-45. In the management of blight caused by D. hawaiiensis obtained best control of the disease was with Fenapanil at 0.1% and Mancozeb at 0.2% (Subramanyam et al., 1990). Seed treatments with Capton or Mancozeb @ 2.5 g/kg of seed or combination of either of them with T. viride (4 g/kg seed) provided complete control of the primary seed borne inoculum. The seed treatment also had better impact on seed germination and seedling vigour. Among the different priming agents tested for seed treatment, Poly Ethylene Glycol (40%) with Quintal (Iprodione + Carbendazim) exhibited maximum germination and vigour index with least infection (Manjunatha et. al., 2001). Application of Propiconazole, Hexaconazole, Prochloraz and Quintal @ 0.1 percent gave good control of leaf blight in the field (Chandrashekhar, 2003, Ramachandra and Kalappanavar, 2004). Under laboratory conditions, biological agents’ viz., Pseudomonas fluorescens, T. viride and T. harzianum were found to have antagonistic property to leaf blight pathogen (Ramachandra, 2000).

Foot rot

Foot rot of wheat caused by Sclerotium rolfsii is serious problem mainly in the rainfed eco-system. Survey indicated that foot rot caused by S. rolfsii present in rainfed wheat areas of Karnataka (Kulkarni S., 1979; Naragund, 1981; Reddy et al., 1971). The loss due to this disease is in the range of 10-30 per cent. It has been observed that S. rolfsii from wheat showed marked increase in population in sterilized sandy loam at all pH levels tested (Chattopadyay and Mustafee, 1979). Naragund et al. (1982) studied the inoculum level of S. rolfsii and minimum of two percent inoculum of S. rolfsii was necessary to cause the disease. The disease intensity increased with the increase in inoculum.

Resistant sources: Reddy et al. (1971) found that Lerma Roja 64A was most resistant and Napo-63 the least against S. rolfsii. Kulkarni et al. (1978) screened thirty five wheat cultivars against S. rolfsii. They found that CC 464 LPP 301 and HD 2189 showed maximum resistance to the
foot rot disease. Nargund et al. (1982) screened twenty-five wheat genotypes including varieties and multilines, Lerma Roja showed maximum disease resistance while Agra local was highly susceptible. Among the several varieties tested only few varieties viz., WL 711, HI 977, K 8705, HP 1660, HUW 342, HD 2189, HS 240, NP 200, UP 2565, HS 420, PBW 343, RAJ 3765, and PBW 373 were found to have marked tolerance to foot rot incidence (Kalappanavar et al., 2001).

Biological control: Hegde et al. (1980) reported effective control of S. rolfsii with Bacillus subtilis in vitro. Manjappa (1979) reported that T. viride and Penicillium sp. were found to be antagonistic to S. rolfsii. Wheat bran, paddy hulls, farm yard manure, safflower, oil cake, and groundnut oil cakes were tested in artificially infested soil for control of foot rot of wheat. Groundnut and safflower oil cakes were more effective in reducing the mortality of wheat seedling and thus helped in increasing the yield. This was followed by FYM, paddy husk and wheat bran. Among the organisms isolated from amended field T. viride, Penicillium sp., B. subtilis and Streptomycetes sp. were antagonistic to S. rolfsii (Nargund et al., 1982). Harlapur and Kulkarni (1995) and Kalappanavar and Patil (2000) reported that seed treatment with T. harzianum @ 4g per kg seed was found effective in controlling the foot rot infection under rainfed situation. Glomus fasciculatum a mycorrhiza has also been found to be effective in controlling the disease. The biological agent is cheaper, eco-friendly and no side effect on beneficial soil micro flora unlike inorganic chemicals. Kalappanavar et al., (2001) reported that plant extracts of Parthenium hysterophorus and Polyalthia pentula inhibited the mycelial growth of S. rolfsii effectively.

Chemical control: Several workers reported the effect of fungicides on foot rot organisms (Kulkarni, 1980, Kulkarni and Hegde, 1978). Plantvax (Oxycarboxin) and vitavax (Carboxin) as seed treatment of 2g/kg gave effective control of S. rolfsii up to 35 days after seeding ([Reddy et al., 1971]. Brassoil, Panoram, Panocidine-35, Vitavax and Plantvax were highly effective and Bavistan, Bayleton, RH-124 and Calixin were less effective against S. rolfsii (Nargund, et al., 1982). Bayton, Vitavax and Brassoil have been found to be effective as soil drenching and seed dressing fungicides (Kulkarni, 1980). In general, seed treatment with Carboxin or Thairam or Captan @ 2.5 g/kg of seed is effective in controlling the disease.

References

29. Kalappanavar IK, Yashoda RH, Desai SA and Math KK (2001). Effect of wheat rusts on seed germination and vigour. In the Proceeding of the National Seminar on “Seed science and technology in the new millennium: vistas and vision” held at Department of studies on applied botany, Seed pathology and biotechnology, Manasagangotri, Mysore on August 6-8, 2001, pp. 84.

41. Manjunatha G, Rao MSL, Kalappanavar IK and Patil MS (2001). Efficacy of organi solvent as priming agents for seed dressing against leaf blight of barley. In the Proceeding of the National Seminar on “Seed science and technology in the new millennium: vistas and vision” held at Department of Studies on Applied Botany, Seed Pathology and Biotechnology, Manasagangotri, Mysore on August 6-8, 2001, pp. 246

60. Ramachandra CG and Kalappanavar IK (2004). Evaluation of fungicides against *Exserohilum hawaiiensis* both under laboratory and field conditions. *Indian Phytopathology* 57: 343

64. Sasalatti MB and Kalappanavar IK (2003). Mode of infection of pathogens on wheat genotypes. In the annual meeting and symposium on “Recent developments in the diagnosis and management of plant diseases for meeting global challenges” held at Department of Plant Pathology, UAS, Dharwad from December 18-20, 2003 pp-13

65. Sasalatti MB and Kalappanavar IK (2003). Physiological parameters in resistant and susceptible wheat varieties. In the annual meeting and symposium on “Recent developments in the diagnosis and management of plant diseases for meeting global challenges” held at Department of Plant Pathology, UAS, Dharwad from December 18-20, 2003 pp-13

