

Effect of Diel Rhythms of Feeding on the Growth Performance of the Walking Catfish, *Clarias batrachus* Fingerlings

Meenakshi Jindal*

Laboratory of Fisheries, Department of Zoology and Aquaculture, CCS Haryana Agricultural University, Hisar - 125 004, India

Abstract

Clarias batrachus fingerlings were maintained under laboratory conditions and fed on a 40% soybean based protein diet on a circadian pattern selecting six different time intervals, viz., 0800h, 1200h, 1600h, 2000h, 2400h and 0400h O'clock. The results indicated that body weight gain (live weight gain and specific growth rate) in C. batrachus on a time restricted meal is optimal when the food is made available at midnight viz., 2400h. Better accumulation of protein with less excretion of ammonia in fish body was also reported at this time of feeding. The results concluded that the growth rates of fish fed during night time (mid-night) follow their feed demand significantly higher with lowest food conversion ratios and food wastage. Therefore, it is beneficial to feed C. batrachus at mid-night.

Key Words: *Clarias batrachus*, circadian pattern, live weight gain, mid-night, time restricted meal

Received 09 March 2012; Revised 19 December 2012; Accepted

Introduction

The circadian rhythm of activity in fish has been widely studied. It is known to be synchronized by daily oscillations of environmental cues and light is generally thought to be the main factor (Muller, 1978). The different intensity of light between the light and dark phases being more important than the intensity or the wavelength of the light (Molina et al., 1990).

Unlike numerous studies devoted to the feeding periodicities of fish (Jacob & Nair, 1983 and Walsh et al., 1988), only a few reports describe diel rhythms of feeding activity in fish held under controlled environments. However, the latter only can give substantive information about feeding rhythms as the food availability is controlled and influence of ecological factors such as interspecific relations (competition and predation) is avoided. From ecological studies, fish feeding pattern can be classified into three categories, viz., nocturnal (night feeding), diurnal (day feeding) and crepuscular (twilight feeding) and similar patterns are evident in captive fish.

A lot of work has been done on Indian major carp species but much less work on catfishes. Therefore, in the present study, an attempt was made to study the circadian rhythms of feeding activity in the catfish *Clarias batrachus* under controlled conditions. Since water pollution is an important limiting factor, which affects growth and survival of a species, the effects of different timings of feeding on post-prandial excretory levels of ammonical nitrogen (NH₄-N) and ortho-phosphate (o-PO₄)in the treated water was also studied.

Materials and Methods

Specimens of *C. batrachus* were procured from Sultan Singh Fish Farm, Nilokheri, and Haryana, India. Specimens with mean body weight 6.56 ± 0.13 g were used in the studies. Fish/fingerlings were placed in the transparent glass aquaria ($60 \times 30 \times 30$ cm) kept in laboratory where the temperature was maintained at $25\pm1^{\circ}$ C and the lighting scheduled at 12 h of light alternating with 12 h of darkness. The fingerlings were acclimatized for a minimum of 15 days prior to the initiation of experimental treatments. The water was renewed daily with chlorine free water. After acclimatization, three replicates for each treatment

^{*} E-mail: meenjind@gmail.com

containing 10 fingerlings each were maintained in glass aquaria. The fingerlings were fed on processed soybean (PS) based diet (plant protein diet) containing 40% protein already prepared and tested by our laboratory on *Heteropneustes fossilis* and *C. batrachus* fingerlings while studying their optimum protein requirement. The ingredient and proximate composition of the feed is presented in Table 1.

Table 1. Ingredient composition and proximate analysis (% dry weight basis) of the processed soybean based experimental diet

Ingredients (%)			
Groundnut oil Cake (GNOC)	59.0		
Rice bran (RB)	5.6		
Processed soybean (PS)	28.4		
Binder ^a	5		
Chromic oxide ^b (Cr ₂ O ₃)	1		
Mineral premix ^c and amino acids (MPA)	1		
Proximate analysis (%)			
Crude protein	40.25		
Crude fat	9.50		
Crude fibre	7.25		
Ash	6.50		
Nitrogen free extract (NFE)	36.50		
Gross energy KJ g ⁻¹	19.53		

- a used is carboxyl methyl cellulose to make the diets water stable
- b used as an external indigestible marker for estimating apparent digestibility.
- c added to supplement the diets with minerals and amino acids. Each kg contains copper 312 mg; cobalt 45 mg; magnesium 2.114 g; iron -979 mg; zinc 2.13 g; iodine 156 mg; DL-Methionine 1.92 g; L-lysine mono hydrochloride 4.4 g; calcium 30% and phosphorous 8.25%

The fingerlings in a group of 10 fish were fed on seven treatments (Table 2) viz., three replicates for each treatment, as mentioned @ 5% body weight (BW) daily for the whole experimental duration of 120 days. This period was considered enough to study the best time of feeding catfish to produce the best growth of the fish without polluting the water.

Initial weight of the test fish for each treatment was recorded at the start of the experiment. Fish were weighed together on every 20th day and the feeding rates were adjusted accordingly. Faeces were siphoned from culture aquaria after two hours of feeding according to the schedule, as mentioned

Table 2. Treatment groups

Sl. No.	Treatment / Feeding Time					
	, 8					
Group 1	Control (feeding ad libitum)					
Group 2	Feeding at 0800h					
Group 3	Feeding at 12 ⁰⁰ h					
Group 4	Feeding at 16 ⁰⁰ h					
Group 5	Feeding at 20 ⁰⁰ h					
Group 6	Feeding at 24 ⁰⁰ h					
Group 7	Feeding at 0400h					

above. In addition, approx. 40-50% of culture water was replaced daily with new, fresh, dechlorinated water. The pooled faecal samples were dried in an oven maintained at 60°C for subsequent analysis. At the termination of experiment, fish from all the treatments were weighed and processed for carcass composition.

The feed ingredients, experimental diets, faecal samples and fish carcass were analyzed according to AOAC (2000). Chromide oxide levels in the diets as well as in the faecal samples were estimated spectrophotometrically (Spyridakes et al., 1989). Live weight gain (g), growth percent gain, specific growth rate (SGR, % d⁻¹), protein efficiency ratio (PER) and gross conversion efficiency (GCE) were calculated using standard methods (Steffens, 1989). Apparent nutrient digestibility (APD) of the diets were calculated (Cho et al., 1982).

The various water quality parameters like dissolved oxygen, pH, temperature, conductivity, free carbon dioxide, total alkalinity, total hardness, ammonical nitrogen (NH₄-N) excretion and ortho-phosphate (o-PO₄) production were analyzed according to APHA, (1998) to see the influence of compounded feeds on pollution of rearing water in the aquaria.

Duncan's multiple range test and multivariate analysis was applied to find out the significant differences between different treatments.

Results and Discussion

Highest value of DO was reported in the fish group fed at mid-night (24⁰⁰h). This indicated that when catfishes were fed at mid-night, feed was better utilized with less deterioration of the water quality. These results are in agreement with those of Jindal et al. (2007a, b). pH remained alkaline. Water temperature fluctuated between 25.2 to 25.6°C while

all other parameters remained in the optimal range (Table 3).

Significantly (p< 0.05) lowest values of $\mathrm{NH_4}$ -N and o-PO₄ were observed in the fish fed at mid night (2400h) as shown in the Table 3. After mid-night, these values started increasing. This showed that fishes are active at mid-night and utilized feed better at this time with lesser excretion of ammonia and phosphorous (Jindal et al., 2007b; 2009). This is in agreement with field studies in which diel rhythms appear to be directly related to the day/night alteration (Boujard & Leatherland, 1992).

Fish survival in different dietary treatments was observed high and varied between 93 to 98% (Table 4). This revealed that processed soybean have no negative effect on the survival of fish. A significantly (p< 0.05) high live weight gain, length gain and SGR were observed in fingerlings fed at mid-night with lowest FCR and food wastage. The results showed clearly negative correlation between FCR values and live weight gain.

The results should be viewed in the light of data documenting the fact that food offered at different

times in the circadian cycle encounters temporally different biologic systems. It has been reported that if food availability is restricted daily to one or another fraction (e.g.1 or 4 h) of daily routine, then better growth of fish wasobserved. If food availability is restricted to evening time for a nocturnally active fish species like the Indian catfish, H. fossilis, then better growth of the fish was reported. Similarly, if food availability is restricted for morning time for diurnally active animals such as carps among fishes or human beings, then again best results were observed. This showed that best consumption of food occurs if food is given at the right time according to the nocturnal or diurnal habitat of species. (Noeske et al., 1985, Sundararaj et al., 1982, Hossain et al., 2001 and Jindal et al., 2009).

The data on carcass composition (Table 5) indicates that the fish fed at mid-night had high retention of protein and fat. Further, accumulation of carcass protein paralleled with that of weight gain, indicated that growth was mainly due to the accumulation of protein. These results are supported by Kalla (2001) and Jindal et al. (2007 a,b).

Table 3. Water quality parameters of different treatments when *Clarias batrachus* fingerlings were fed with 40% PS based diets

Parameters	Treatments						
	Control	08 ⁰⁰ h	12 ⁰⁰ h	16 ⁰⁰ h	20 ⁰⁰ h	24 ⁰⁰ h	04º0 h
Dissolved oxygen (DO) mg l ⁻¹	5.4	5.2	5.4	5.6	5.4	6.0	5.8
	±0.000	±0.200	±0.200	±0.200	±0.000	±0.200	±0.200
рН	7.75	7.60	7.85	7.40	7.55	7.70	7.70
	±0.005	±0.100	±0.005	±0.000	±0.000	±0.100	±0.005
Water temperature (°C)	25.5	25.2	25.6	25.5	25.4	25.5	25.5
	±0.100	±0.150	±0.100	±0.000	±0.100	±0.100	±0.005
Conductivity micro (µ) mhos cm ⁻¹	0.53	0.53	0.54	0.49	0.47	0.54	0.51
	±0.001	±0.015	±0.055	±0.002	±0.005	±0.005	±0.005
Free Carbon dioxide	16.6	16.3	16.2	16.2	16.1	16.4	16.2
(Free CO ₂) mg l ⁻¹	±0.200	±0.100	±0.200	±0.000	±0.100	±0.000	±0.200
Total alkalinity	218	214	211	215	210	212	217
(mg l ⁻¹)	±2.000	±2.000	±1.000	±1.000	±2.000	±0.000	±1.000
Total hardness	222	218	216	218	213	217	219
(mg l ⁻¹)	±2.000	±2.000	±0.000	±0.200	±1.000	±1.000	±1.000
NH ₄ -Nexcretion	2.147	2.040	1.841	1.504	1.369	1.211	1.578
(mg100/ g ⁻¹ BW of fish)	±0.055	±0.010	±0.045	±0.030	±0.015	±0.040	±0.015
o-PO ₄ excretion	1.158	1.023	0.979	0.815	0.650	0.535	0.758
(mg100/ g ⁻¹ BW of fish)	±0.050	±0.025	±0.075	±0.055	±0.030	±0.040	±0.045

^{*} All values are mean \pm S.E. of mean of 3 observations

^{*} BW = Body Weight

Jindal 14

Table 4. Effect of feeding 40% PS based diets on growth performance, digestibility and nutrient retention in *Clarias batrachus* fingerlings

Parameters	Treatments						
	Control	08 ⁰⁰ h	12 ⁰⁰ h	16 ⁰⁰ h	20 ⁰⁰ h	24 ⁰⁰ h	04º0 h
Survival (%)	93	95	96	95	98	98	95
Live Weight gain (g)	7.37 ^A ±0.003	8.95 ^B ±0.016	9.11 ^B ±0.004	10.54 ^C ±0.003	14.33 ^D ±0.041	16.21 ^E ±0.012	9.78^{B} ± 0.021
Fish length gain (cm)	$3.10^{AB} \pm 0.000$	3.35 ^{ABC} ±0.005	$3.50^{BC} \pm 0.000$	3.85 ^C ±0.005	4.09 ^D ±0.001	$4.30^{\rm E}$ ± 0.010	3.90 ^C ±0.002
Growth (% gain in BW)	158.94 ^{AB} ±3.800	177.32 ^{ABC} ±2.020	188.88 ^{BC} ±5.590	218.98 ^D ±3.360	283.41 ^E ±7.360	333.93 ^F ±2.685	167.09 ^{ABC} ±6.875
Growth day ⁻¹ (% BW)	0.885 ^A ±0.001	0.940 ^B ±0.003	0.971 ^B ±0.002	1.045 ^C ±0.005	1.172 ^D ±0.003	1.251 ^E ±0.003	0.978^{B} ± 0.001
Specific growth rate SGR (% d-1)	0.413 ^{AB} ±0.060	0.443 ^{ABC} ±0.025	0.467 ^{BC} ±0.085	0.504 ^D ±0.050	0.584 ^E ±0.016	0.637 ^F ±0.030	$0.426^{\mathrm{AB}} \\ \pm 0.024$
Food Consumption day ⁻¹ (% BW)	4.730 ^A ±0.001	4.745 ^A ±0.050	4.765 ^B ±0.001	4.765^{B} ± 0.050	4.775 ^c ±0.050	4.795 ^D ±0.002	4.780 ^c ±0.003
Feed Conversion ratio (FCR)	5.345 ^A ±0.006	5.050 ^B ±0.002	4.915 ^B ±0.009	4.565 ^C ±0.002	4.075 ^D ±0.009	3.840 ^E ±0.002	4.560 ^c ±0.125
Protein efficiency ratio (PER)	0.184 ^A ±0.000	0.223 ^B ±0.002	$0.227^{\rm B} \pm 0.001$	0.263 ^C ±0.002	0.357 ^D ±0.001	0.405 ^E ±0.003	0.270 ^c ±0.002
Gross conversion ratio (GCE)	0.187 ^A ±0.002	0.197 ^A ±0.000	0.203 ^B ±0.004	0.219 ^C ±0.002	0.245 ^D ±0.004	0.261 ^E ±0.015	0.215 ^{CC} ±0.004
Apparent protein digestibility (APD) %	82.72 ^A ±0.000	85.78 ^B ±0.001	85.96 ^B ±0.000	86.80 ^c ±0.002	87.05 ^D ±0.000	88.15 ^E ±0.000	85.81 ^B ±0.002

^{*} BW = Body Weight;

Table 5: Effect of feeding 40% PS based diets under different treatments on proximate carcass composition (% wet weight) in *C. batrachus* fingerlings

Carcass composition (%)	Treatment						
	Control	08 ⁰⁰ h	12 ⁰⁰ h	16 ⁰⁰ h	20 ⁰⁰ h	24 ⁰⁰ h	04 ⁰⁰ h
Moisture	66.78 ^A	65.96 ^B	64.86 ^C	64.41 ^C	63.86 ^D	63.13 ^D	64.88 ^c
	±0.0135	±0.575	±0.150	±0.250	±0.290	±0.518	±0.321
Crude protein	19.53 ^A	21.51 ^B	21.52 ^B	22.16 ^C	23.06 ^D	24.51 ^E	21.41 ^B
	±0.315	±0.150	±0.210	±0.075	±0.075	±0.045	±0.175
Crude Fat	3.69 ^A	4.02 ^B	4.22 ^c	4.32 ^c	4.75 ^D	5.02 ^E	4.34 ^C
	±0.145	±0.006	±0.003	±0.004	±0.195	±0.003	±0.005
Total Ash	3.34 ^A	3.59^{B}	3.58 ^B	3.63 ^B	3.80 ^c	3.85 ^c	3.62^{B}
	±0.002	± 0.008	±0.005	±0.005	±0.001	±0.006	± 0.005
Nitrogen Free extract (NFE)	6.65 ^A	4.91 ^B	5.82 ^c	5.47 ^D	4.52 ^E	3.56 ^F	5.76 ^c
	±0.515	±0.165	±0.445	±0.135	±0.190	±0.120	±0.125
Gross Energy	7.218 ^A	7.517 ^B	7.753 ^c	7.887 ^D	8.108 ^E	8.378 ^F	7.763 ^c
(KJg ⁻¹)	±0.128	±0.483	±0.150	±0.570	±0.620	±0.190	±0.240

^{*} Mean with the same letter in the same row are not significantly (P>0.05) different

^{*} Duration of experiment = 120 days

^{*} Mean with the same letter in the same row are not significantly (P>0.05) different

^{*} All values are Mean ± S.E. of mean of three observations

^{*} All values are Mean ± S.E. of mean of three observations

^{*} Data was analyzed by Duncan Multiple Range test

The growth and digestibility parameters, protein accumulation and fat deposition in the fish carcass were found to be negatively correlated with $\rm NH_4$ -N excretion and o-PO₄ production. These results are in agreement with those of Mazid et al. (1994), Jindal et al. (2007 a, b; 2009).

The results clearly indicate that meal timings play an important role in food utilization and growth in *C. batrachus*. When feed was given at different timings of light/dark cycle, the group of fish which was fed at mid-night shows better growth performance paralleled with better accumulation of carcass protein in fish body. These results concluded that the growth rates of fish fed during night time (mid-night) follow their feed demand significantly higher with the lowest food conversion ratios and food wastage with better accumulation of carcass protein in fish body. Therefore, it is beneficial to feed *C. batrachus* at mid-night.

Acknowledgements

The author acknowledges funding received under the scheme "Women Scientist Scholarship Scheme for Societal Programmes (WOS-B), Department of Science and Technology, Government of India" for carrying out this research. Mr. Sultan Singh, owner Sultan Fish Seed Farm, Nilokheri, Haryana, India is fully acknowledged for providing *C. batrachus* fingerlings, free of cost, for carrying out the research work.

References

- AOAC (2000) Official Methods of Analysis. Association of Official Analytical Chemists. Washington, Sc, USA
- APHA (1998).Standard Methods for the Examination of Water and Waste Water. APHA, AWWA, EPFC, 20th edn., New York
- Boujard, T. and Leatherland, J.F. (1992) Demand feeding behaviour and diel patterns of feeding activity in *Oncorhynchus mykiss* held under different photoperiod regimes. Fish Biology, 38: 130-142
- Cho, C.Y., Slonger, S.J. and Bayley, H.S. (1982) Bioenergetics of salmonid fishes. Energy intake, expenditure and productivity. Comp. Biochem. Physiol. 73B: 25-41
- Hossain Mostafa, A.R., Haylor Graham, S. and Beveridge Malcolm, C.M. (2001) Effect of feeding time and frequency on the growth and feed utilization of african catfish, *Clarias gariepinus* (Burchell 1822) fingerlings. Aquaculture Res, 32 (12): 999
- Jacob, S.S. and Nair, N.B. (1983) Periodicity in feeding activity in the larvivorous fish *Aplocheilus lineatus*

- (Cuv. And Val.) and *Macropodus cupanus* (Cuv. and Val.). Proc. Ind. Nat. Sci. Acad. 49b: 1-8
- Jindal M., Garg, S.K., Yadava, N.K. and Gupta, R.K. (2007a) Effect of replacement of fishmeal with processed soybean on growth performance and nutrient retention in *Channa punctatus* (Bloch.) fingerlings. http://www.Irrd.org./lrrd19/11/jind19165.htm
- Jindal, M., Garg, S.K. and Yadava, N.K. (2007b) Effect of replacement of fishmeal with dietary protein sources of plant origin on the growth performance and nutrient retention in the fingerlings of *Channa punctatus* (Bloch.) for sustainable aquaculture. Punjab. Univ. Res. J. Sci. 57: 133-138
- Jindal, M., Garg, S.K. and Yadava, N.K. (2009) Effect of feeding defatted canola on daily excretion of ammonical nitrogen (NH₄-N) and ortho-phosphate (o-PO₄) in *Channa punctatus* (Bloch). http://www.Irrd.org./lrrd21/3/jind21035.htm
- Kalla, A. (2001) Effect of Supplementary Feeding in Some Teleosts on Growth, Digestibility and Water Quality Parameters in Intensive Fish Culture System. 97p, Ph.D. Thesis. Guru Jambheshwar university, Hisar, India
- Mazid, M.A., Sultan, S., Kamal, M., Hossain, M.A. and Gheyasuddin, S. (1994) Preparation of feed from indigenous sources for the optimum growth of tilapia (*Oreochromis niloticus*). The Third Asian Fisheries Forum Asian Fisheries Society, Manila, Philippines
- Molina B, M., Perez, E., Pupier, R. and Buisson, B. (1990) Entrainment of the circadian activity rhythem in the juvenile trout, *Salmo trutta* L., by red light. J. Interdisc. Cycle Res. 21: 81-89
- Muller, K. (1978) Locomotor activity of fish and envionmental ossilations. In: Rhythmic Activity of Fishes (J.E. Thorpe., Ed), pp 1-20, Academic Press, London
- Noeske-Hallin, T.A., Spieler, R.E., Parker, N.C. and Suttle, M.A. (1985) Feeding time differencially affects fattening and growth of channel catfish J. Nutr. 115: 1228-1232
- Spyridakes P., Metailler, R., Gabandan, J. and Riaza, A. (1989) Studies on nutrient digestibility in European sea bass *Dicentrarchus labrax* I. Methodical aspects concerning faeces collection. Aquaculture, 77: 61-70
- Steffens, W. (1989) Principles of Fish Nutrition, 384 p, Ellis Horwood, Chichester
- Sundararaj, B.I., Nath, P. and Halberg, F. (1982) Circadian meal timing in relation to lighting schedule optimizes catfish body weight gain. J. Nutr. 112: 1085-1097
- Walsh,G., Morin, R. and Naiman, R.J. (1988) Daily rations, diel feeding activity and distribution of age-0 brook charr, *Salvelinus fontinalis*, in two subarctic streams. Env. Biol. Fish. 21: 195-205