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Prediction model of pH value in mitten crab culture
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ABSTRACT
The pH of water directly affects growth of mitten crab (Eriocheir sinensis H. Milne-Edwards, 1853) in aquaculture. 
A prediction model was set up to determine the changing trend of pH value during culture of mitten crabs. The model would 
help the farmer  to take measures in advance to maintain the safety of  cultured crabs, when the predicted value of pH is 
found to cross beyond safe levels. Prediction model of pH is based on the least squares support vector regression (LSSVR) 
model with chaotic mutation to improve the estimation of the distribution algorithm (CMEDA) to find optimal parameters 
(γ and σ) of LSSVR. Because these two parameters can significantly affect the performance of the LSSVR, the other three 
parameter optimisation methods viz., the particle swarm optimisation (PSO) algorithm, the genetic algorithm (GA) and grid 
search (GS) algorithm were used to compare with the CMEDA algorithm. The calculated mean absolute percentage errors 
of the results of the four prediction models were 0.4059, 0.6332, 0.9385 and 1.2499%, respectively. The CMEDA-LSSVR 
model has a higher prediction accuracy and more reliable performance than the other models. The prediction model was 
used in Xinhua, Jiangsu Province, China and it performed well and helped farmers make decisions and reduce aquaculture 
risks.
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Introduction
Freshwater shellfishes are sensitive to changes in pH 

of water. The change in water pH can affect the survival 
rate and growth of the animals as well as mineralisation of 
shells  (Cai et al., 2012).  pH value is an important water 
quality parameter in mitten crab culture (Ritvo et al., 2003) 
and the suitable pH range is generally considered between 
7.5 and 8.5 (Hong et al., 2013). pH value in aquatic 
environment fluctuates during day and night. Due to 
photosynthesis by phytoplankton, the pH value of culture 
ponds can reach over 10.2 during the day, which can go 
below 6 during the night because of the respiration of 
aquatic plants and animals. Too low or too high pH values 
can lead to large scale mortality of cultured mitten crabs 
(Page et al., 2014). Therefore, it  was found quite necessary 
to build a prediction model of pH  of pond water (Xu and 
Xu, 2016), which could provide a basis  to the farmers’ 
for decision-making and thus optimise their operations as 
well as reduce economic losses. Many factors could lead 
to the change of pH value of rearing water in crab culture 
and hence prediction model of pH value is an open, 
dynamic and nonlinear system. Researchers have studied 
many algorithms to establish the prediction model of pH 
such as, nonlinear model (Ekici et al., 2014), adaptive 
neuro-fuzzy inference system (ANFIS) model (Gaya et al., 
2014), adaptive genetic hybrid neural network (AG-HNN) 

(Tang et al., 2013) and  grey model (Li and Cai, 2013). 
But these prediction models have various disadvantages, 
such as over-fitting, poor generalisation capability, locally 
optimal solutions, poor stability and so on.

Support vector machine (SVM) was first proposed 
by Vapnik (Vapnik, 1995) and its excellent performance 
in regression problems even for small samples has been 
demonstrated. The least squares support vector machine 
(LSSVM) (Stephen et al., 2014), a least squares version of 
SVM, was proposed to overcome the shortcoming of high 
computational cost. LSSVM can be divided into LSSVR 
which is used for regression purposes and LSSVC for 
classification purposes. Some researchers have established 
pH prediction model using LSSVR (Goodarzi et al., 2010; 
Dong et al., 2014). The performance of LSSVR is heavily 
influenced by the two parameters (γ and σ), which are 
defined as an optimisation problem. So far, there is no 
accurate method to find the optimal parameters of LSSVR, 
therefore, an optimisation algorithm must be applied to 
find the optimal parameters.

Many algorithms were proposed to find the 
optimal parameters of LSSVR, such as: particle swarm 
optimisation (Lou et al., 2014, Zheng et al., 2014), 
genetic algorithm (Wang and Wang, 2012), different 
evolution (Stephen et al., 2014; Sun and Liang, 2014) 
and gradient algorithm (Chen et al., 2014). All these 
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methods can predict pH value, but the prediction 
accuracy could be further improved by adopting different 
parameter optimisation algorithm. Therefore, in this 
study, we propose a prediction model based on LSSVR 
using an improved distribution algorithm to estimate the 
optimal parameters for more accurate prediction of pH 
value in aquaculture of mitten crab Eriocheir sinensis 
H. Milne-Edwards,1853. 

Materials and methods
Data collection

The  crab culture pond selected for the study  
was located at Xinhua City, Jiangsu Province, China. 
A monitoring system based on GPRS was designed to 
monitor the water quality parameters real-time. The 
structure diagram of the system is shown in Fig. 1. The 
system was mainly composed of a water quality parameter 
measuring instrument, GPRS communication module, 
site monitoring and remote server monitoring. Measuring 
instrument included several water quality parameter 
sensors such as dissolved oxygen sensor, temperature 
sensor, pH sensor, turbidity sensor, salinity sensor and 
conditioning circuit.

Date recorded for a period of 30 days during 1st to 
30th June 2015 was downloaded from the database of the 
monitoring system. The sampling interval was 10 min, 
and thus we obtained 4320 samples and the sampling data 
were distributed into two parts: 3600 samples of water 
quality data were used for the LSSVR model training and 
720 samples were used as the test data to evaluate the 
performance of the LSSVR model.

Least squares support vector regression

The goal of LSSVR model is to build a function 
y = f(x) between the vector of observations x and the 
desired y. In this study, the four input variables of the 
LSSVR model were: dissolved oxygen (DO), water 
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Fig. 1. Structure diagram of the real-time monitoring system
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temperature (WT), turbidity (TB) and salinity (SAL). The 
output of the LSSVR model was pH. Therefore, x=[DO, 
WT, TB, SAL] and y=pH. In feature space, LSSVR model 
take the form (Mahmoud, 2011):

f(x) = wT φ(x) + b                                                       (1)

where w ϵ RN  and  b ϵ r, w denotes the adjustable weight 
vector, b is the bias; φ(.) is a nonlinear mapping function 
which is used to map the input vectors into a higher 
dimensional feature space. In the feature space, the 
LSSVR can be transformed into the following optimisation 
problem (Igne et al., 2010):

                                                                                  (2)

s.t. yi = wT φ(xi) + b + ei,    i=1, 2, …, N 	            (3)

where γ is the regularisation parameter and ei is the error 
variable. In order to solve this optimisation problem, the 
Lagrange function was formulated as follows (Alvarez 
Meza et al., 2012):

                                                                                       (4)

where α = (α1, α2, …αN ) is the Lagrange multiplier vector. 
The Karush-Kuhn-Tucker (KKT) conditions were used 
for optimality by differentiating L in Eq. (4) with the 
variable w, b, e, α. After eliminating the variables w and 
ei, the following linear set can be obtained.

                                                                            (5)

where  y = [y1,y2,…,yN]T, 1 = [1,1,…,1]T,  Ωij = φ(xi)T 
φ(xj)T = K(xi,xj), K(xi, xj) is the kernel function on 
the input vectors {(xi, xj), i =1, 2,…, N; j=1, 2,…, N}. 
The commonly used kernel function is the Radial Basis 
Function (RBF) defined by (Lin et al., 2013):

K(xi,yj) = exp (-‖xi - xj ‖2⁄ (2σ2 )	                          (6)
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where σ is the width of radial basis function. Finally, the 
regression function can be represented in the following 
equation:

                                                                                      (7)

Step 1. 2. The initial population X is expanded to the 
solution space and the ith variable of the jth individual can 
be represented in the following equation:

xji = low + (high-low)xji                                      (10)

where the low is lower limits of the solution space and the 
high is upper limits.

Step 2. Fitness value for each individual of the current 
population was calculated. For individual Xj, the fitness 
value can be calculated as:

                                                                                (11)

where dji is the ith actual output value of the jth individual, 
yji is the ith predicted output value of the jth individual.

Step 3. The new individuals were selected based on the 
mutation probability pm=1 to execute chaotic mutation. 
The mutation radius of ith variable xji of the individual Xj 
was calculated according to the following equation:

	
                                                                                   (12)

where S(i) = (2maxx*i- minx*i) ⁄ n  is mutation step-size. 
After chaotic mutating each new individual, the fitness 
value of these new individuals were calculated. New 
individuals are to be used to replace the old individuals 
when the fitness value of new individual is less than 
the fitness value of old individual and then  obtain the 
new population, and  go to Step 4. Otherwise keep the 
population without change and then go to Step 5.

Step 4. The output current is the best individual if it meets 
the stop condition of the algorithm, otherwise go to Step 5.

Step 5. Generate next population.

Step 5.1. Select np individuals from the present population. 
Then build a Gaussian model for all new individuals after 
statistical analysis of all new individuals.

Step 5.2. Generate k*np (k>1) new individuals based on 
the Gaussian model.

Step 5.3. Calculate fitness values of these k*np new 
individuals, compare their fitness values and then choose  
the best individuals which are used as the next generation 
population.

Step 6. The output current is the best individual if it meets 
the stop condition of the algorithm, otherwise go to Step 3.

CMEDA-LSSVR model

Through the CMEDA evolutionary process, the 
two LSSVR parameters γ and σ were optimised, which 
build optimised LSSVR model for predicting pH value 
accurately. The procedure of CMEDA-LSSVR model is 
illustrated in Fig. 2.

y(x) = ∑i=1
N αi K(x, xi)+b

where α and b can be solved by Eq. (5). So LSSVR has two 
parameters: γ and σ, and since these two parameters can 
significantly affect LSSVR performance, the selection of 
these two parameters is the most important aspect. Some 
researchers adopted various methods to search for optimal 
parameters (Qiao, et al., 2011; Liu et al., 2014). In this study, 
estimation of distribution algorithms (EDA) was applied to 
find the optimal parameters γ and σ.

Estimation of Distribution Algorithm (EDA)

EDA has a good performance at solving complex 
problems in many areas. Although the performance of 
estimation of distribution algorithm is better than many 
optimisation algorithm, the estimation of distribution 
algorithm still has disadvantages. For instance, the individuals 
of the population are easy to trend to the same solution in the 
evolutionary process and the population diversity decreases 
sharply. These disadvantages affect the performance of 
the estimation of distribution algorithm. In order to keep 
population diversity, we used chaotic mutation to improve 
the estimation of distribution algorithm and obtained 
the CMEDA (Chaotic Mutation Estimation Distribution 
Algorithm) (Cheng et al., 2010) and the CMEDA was used to 
optimise the two parameters of LSSVR.

Improved EDA

The chaotic motion can track any state in its scope 
without repetition according to its regularity. CMEDA is 
described in detail as follows:

CMEDA evolutionary process: Step 1. Since there were 
two LSSVR parameters to be optimised, two initial 
variables x1, x2 were generated randomly in the interval 
(0, 1). Let X0= (x1, x2) be the initial node of one dimension 
logistic map model.

Step 1.1. One dimension logistic map was defined by:

Xt+1= λ∙ Xt(1-Xt)                                                 (8)

where λ is control parameter. If given λ a value, after 
n times iteration, then generated n individuals X1, X2, …, 
Xn by Eq. (8), the n individuals is a chaotic sequence. Let 
X = {X1, X2, …, Xn} be a matrix with n rows and two 
columns, representing the initial population:

                                                                               (9)

	 X1		  X11	 X12
	 X2		  X21	 X22
X =	 :	 =	 :	 :
	 :		  :	 :
	 Xn		  Xn1	 Xn2

fit(Xj) = _           (dji-yji)
21

n ∑ ∑n 2
j i

rji = S(i)
1- fit(j)

max     
'
	 fit(j')

      (1≤j    ≤n)
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Initialisation

Optimise LSSVR parameters by CMEDA

Training LSSVR model

Calculation error

Satisfy stopping

Obtain optimisation parameters

Predict by CMEDA - LSSVR

Predict result

No

Yes

Fig. 2.	 Framework of CMEDA-LSSVR prediction procedure 
	 CMEDA: chaotic mutation to improve the estimation of the 
	 distribution algorithm; LSSVR: least squares support vector 
	 regression

To compare the performance among CMEDA, 
particle swarm optimisation (PSO) algorithm, the 
genetic algorithm (GA) and grid search (GS) algorithm 
for optimising the parameters of the LSSVR model, the 
absolute percentage error (APE) values of these four 
models were calculated and the cures are shown in Fig. 5.

                                                                        (13)

where yi is actual data value and ŷi is prediction data value.

We also adopted the root mean square error (RMSE), 
the mean absolute error (MAE) and the mean absolute 
percentage error (MAPE) to further evaluate the prediction 
accuracy of each model. 

                                                                                 (14)
	
                                                                                           (15)

                                                                                           (16)

where N is the number of the actual data set, yi is the actual 
data value and ŷi is the value of the prediction result.

Software

All algorithms in this paper were implemented in 
the MATLAB R2010a under Windows 7. The LSSVR 

APE =                 ×100%
|yi - ŷi|

yi

1
NRMSE =  _ ∑ N

1 (yi - ŷi)
2

1
NMAE = _ ∑ N

i=1 | yi - ŷi |

1
NMAPE =  _                      x 100%∑ N

i=1

|yi - ŷi|
yi

MATLAB toolbox codes were downloaded from http://
www.esat.kuleuven.be/sista/lssvmlab/, free of charge. Others 
were custom developed which were the modification of the 
algorithm LSSVR.

Results and discussion

After numerous experiments，the original 
parameters of the CMEDA-LSSVR were given as follows: 
the max iteration number Gmax=100, population size n=50 
and the chaotic control parameter λ=3.845, np=25, k=2. 
The fitness curve value is shown in Fig. 3, the curve was 
drawn by the best fitness of the training data and the best 
fitness was the minimal fitness of the individuals of each 
generation. It can be seen from the Fig. 3, that the fitness 
curve of the CMEDA optimisation algorithm is declining 
rapidly, converged after 45 iterations. PSO optimisation 
algorithm to adapt to the degree of decline in the curve 
is also faster, after about 40 iterations to converge, 
but its convergence value is greater than the CMEDA 
algorithm, that is, the prediction error is greater than the 
CMEDA algorithm. The convergence rates of GA and 
GS algorithms are relatively slower than the optimisation 
algorithms of CMEDA and PSO, and among which GS 
optimisation algorithm error is the biggest, followed by 
GA optimisation algorithm. This shows that the CMEDA 
algorithm is a good algorithm to find the two parameters 
of the LSSVR model.
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Fig. 3. Changing trend of the fitness function

The parameters of the LSSVR were optimised by the 
CMEDA algorithm and then we obtained: γ =147.8315 
and σ = 1.9876. To evaluate and compare the performance 
of the CMEDA-LSSVR, the PSO-LSSVR, GA-LSSVR 
and GS-LSSVR models were used for comparison. The 
PSO, GA and GS algorithm were used to optimise the 
two parameters of the LSSVR using the same training 
and testing data and we obtained the optimal parameters  
(137.263, 1.5412), (115.9864, 1.3672) and (126.295, 
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Fig. 4.	 Prediction results of the four models
		  CMEDA: Chaotic mutation to improve the estimation of the distribution algorithm; LSSVR: Least squares support vector regression; 

	 PSO: Particle swarm optimisation algorithm; GA: Genetic algorithm; GS: Grid search algorithm

1.7432), respectively. The prediction results of the four 
models and actual measured data are illustrated in Fig. 4.

As shown in Fig. 5, using the CMEDA-LSSVR 
model, the samples with the APE values less than 0.4% 
were 95% and the maximum APE was 0.48%. Using the 
PSO-LSSVR model, the samples with the APE larger 
than 0.4% were 81% and the APE values were mainly 
distributed in the range between 0.6% and 1%, with the 
maximum APE of 1.21%. With the GA-LSSVR model, 
the samples with the APE larger than 1% accounted for 
more than half and the maximum APE was 1.58%. With 
respect to GS-LSSVR model, the APE values of 80% 
samples were larger than 1% and the maximum APE was 
2.43%. Obviously, the CMEDA-LSSVR model had the 
highest prediction accuracy among the four models.

One can easily observe from Table 1 that the RMSE, 
MAE and MAPE values of CMEDA-LSSVR model were 
much smaller than these parameters of PSO-LSSVR, 
GA_LSSVR and GS_LSSVR models. Compared with 

0.5

0.4

0.3

0.2

0.1

0

1.4
1.2

1
0.8
0.6
0.4
0.2

0

1.6
1.4
1.2

1
0.8
0.6
0.4
0.2

0

2.5

2

1.5

0.5

0
0.00    4.00    8.00   12.00  16.00  20.00  0.00

Time
0.00    4.00    8.00   12.00  16.00  20.00  0.00

Time
0.00    4.00    8.00   12.00  16.00  20.00  0.00

Time
0.00    4.00    8.00   12.00  16.00  20.00  0.00

Time

AP
E 

of
 C

M
ED

A-
LS

SV
R

AP
E 

of
 P

SO
-L

SS
VR

AP
E 

of
 G

A-
LS

SV
R

AP
E 

of
 G

S-
LS

SV
R

Fig. 5. Absolute percentage error (APE) values of four prediction models, calculated using the sampling data of 1 day

Prediction model of pH value in mitten crab culture

Table 1.	 Precision statistic analysis results of four models 
Model RMSE MAE MAPE T(s)
CMEDA_LSSVR 0.0381 0.0356 0.4059 9.8
PSO_LSSVR 0.0586 0.0539 0.6332 8.9
GA_LSSVR 0.0831 0.0777 0.9385 10.4
GS_LSSVR 0.1122 0.1038 1.2499 16.2

CMEDA: Estimation of the distribution algorithm improved by 
chaotic mutation; PSO: Particle swarm optimisation algorithm; 
GA: Genetic algorithm; GS: Grid search algorithm

the results of the other three models, the RMSE of 
CMEDA-LSSVR model was less by 34.9, 54.2 and 66%, 
respectively; the MAE of CMEDA-LSSVR model was 
less by 34, 54.1 and 65.7%, respectively and the MAE 
of CMEDA-LSSVR model was less by 35.9, 56.9 and 
67.5%, respectively. The experimental results indicated 
that the prediction accuracy of CMEDA-LSSVR model 
was highest among the four models. The run time T(s) of 
CMEDA-LSSVR model was slightly longer than that of 
PSO_LSSVR model but shorter than those of the other 
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two models. This also indicates that it is feasible to find 
the optimal parameters with the use of the CMEDA 
algorithm. Moreover, the CMEDA-LSSVR is preferable 
to the other three predication models in performance.

In order to verify whether the different data sets 
have an effect on the prediction result of the CMEDA-
LSSVR model, the measured data of 40 days were used as 
training and test data to test the capacity of the model. The 
experimental data of 40 days were divided into 5 groups: 
7, 14, 21, 30 and 40 days, for data in each group with 80% 
of the data as  training set and 20% of the data as  test 
set. The absolute percentage errors of prediction results 
are: 0.63, 0.48, 0.34, 0.32 and 0.49%. It can be seen from 
the results that the use of nearly 3 weeks to a month’s 
data as a data set can obtain a higher prediction accuracy. 
Because the pH value is influenced by dissolved oxygen, 
temperature, salinity, turbidity and light conditions and 
other factors, the use of fewer days  data will make the pH 
forecast to produce relatively large fluctuations while the 
use of  more days of data cannot reflect the recent weather 
conditions.

We also verified whether the CMEDA-LSSVR 
model was valid only for a particular set of data, or was 
general. The 30 days water quality data collected by 
the monitoring system was divided into 15 subsamples, 
that is, every two days of data as one subsample. Using 
15-fold cross-validation, 1 subsample was used as the 
test data and the other 14 samples were used as training 
data and the cross validation was repeated 15 times and 
each subsample was verified once. The mean values of 
RMSE and MAE of prediction results of 4 models are 
shown in Fig. 6. As can be seen from Fig. 6, for a large 
sample, 4 prediction models using different training 
and test subsamples to predict pH value, the result of 
CMEDA-LSSVR model had the smallest error and 
GS-LSSVR had the biggest error. So it can be seen that 
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LSSVR               LSSVR           LSSVR            LSSVR
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Fig. 6. Cross validation results of pH value prediction

CMEDA-LSSVR is suitable for the prediction of pH 
value and the classification of subsamples does not affect 
the prediction results. We downloaded the water quality 
data of the whole year in 2015 from the monitoring 
system database and repeated the above cross validation 
experiment with the remaining 11 months of water quality 
data. The average RMSE and MAE of prediction results 
were calculated and the results showed the same rule. 
Comparing with the other three models, the RMSE of 
CMEDA-LSSVR model were reduced by 32, 49 and 58%, 
respectively and MAE were reduced by 34, 51 and 59%, 
respectively, which indicated that the CMEDA-LSSVR 
model was suitable for crab pond pH value forecast.

To make it convenient for farmers to use the 
prediction model, we designed a graphical user 
interfaces (GUI) based on MATLAB  which is shown in 
Fig. 7. Farmers could use a web browser to download the 
history data from the remote monitoring system for use 
as training data and testing data. To use this, the farmer 
has to open the GUI of the pH prediction model, press 
the “Load Data” button, load the training and testing data 
and press the “CMEDA_LSSVR” button, then the GUI 
will run the callback function and execute the CMEDA-
LSSVR program. The prediction results of different time 
would be calculated and would be displayed on the GUI. 
Farmers could make a decision according to the prediction 
results, if the prediction results show that the pH value 
is  lower than the lower limit of safety value/higher than 
the upper limit of safety value in the future, farmers could 
adopt appropriate control measures ahead of time. In our 
research, the safety interval of pH value was [7, 10] and 
from Fig. 7, it can be seen that the pH value of the pond 
was within safe levels up to next 10 h.

To improve the accuracy of the pH prediction model, 
we proposed the CMEDA-LSSVR model for pH value 
prediction in mitten crab culture. The RMSE, MAE and 
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pH value prediction system

Load data
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Prediction result

Current value               9.02

2 hour later                8.83

4 hour later                8.51

6 hour later                8.19

8 hour later                7.92

10 hour later              7.59

Fig. 7. GUI of pH prediction system
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MAPE of the CMEDA-LSSVR model were 0.0181, 
0.0156 and 0.4059%, respectively and overall results 
sufficiently demonstrated that the CMEDA-LSSVR 
model had a higher potential to predict the trend of pH 
than the other three models. We noted the sensitivity 
of the LSSVR parameters and in the future we plan to 
research other advanced optimal algorithms. Although 
many questions remain open, our research shows that the 
CMEDA-LSSVR model could be considered a suitable 
experimental model for future study on pH prediction.
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