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ABSTRACT

The pH of water directly affects growth of mitten crab (Eriocheir sinensis H. Milne-Edwards, 1853) in aquaculture.
A prediction model was set up to determine the changing trend of pH value during culture of mitten crabs. The model would
help the farmer to take measures in advance to maintain the safety of cultured crabs, when the predicted value of pH is
found to cross beyond safe levels. Prediction model of pH is based on the least squares support vector regression (LSSVR)
model with chaotic mutation to improve the estimation of the distribution algorithm (CMEDA) to find optimal parameters
(v and o) of LSSVR. Because these two parameters can significantly affect the performance of the LSSVR, the other three
parameter optimisation methods viz., the particle swarm optimisation (PSO) algorithm, the genetic algorithm (GA) and grid
search (GS) algorithm were used to compare with the CMEDA algorithm. The calculated mean absolute percentage errors
of the results of the four prediction models were 0.4059, 0.6332, 0.9385 and 1.2499%, respectively. The CMEDA-LSSVR
model has a higher prediction accuracy and more reliable performance than the other models. The prediction model was
used in Xinhua, Jiangsu Province, China and it performed well and helped farmers make decisions and reduce aquaculture

risks.
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Introduction

Freshwater shellfishes are sensitive to changes in pH
of water. The change in water pH can affect the survival
rate and growth of the animals as well as mineralisation of
shells (Cai et al., 2012). pH value is an important water
quality parameter in mitten crab culture (Ritvo et al., 2003)
and the suitable pH range is generally considered between
7.5 and 8.5 (Hong et al., 2013). pH value in aquatic
environment fluctuates during day and night. Due to
photosynthesis by phytoplankton, the pH value of culture
ponds can reach over 10.2 during the day, which can go
below 6 during the night because of the respiration of
aquatic plants and animals. Too low or too high pH values
can lead to large scale mortality of cultured mitten crabs
(Pageetal.,2014). Therefore, it was found quite necessary
to build a prediction model of pH of pond water (Xu and
Xu, 2016), which could provide a basis to the farmers’
for decision-making and thus optimise their operations as
well as reduce economic losses. Many factors could lead
to the change of pH value of rearing water in crab culture
and hence prediction model of pH value is an open,
dynamic and nonlinear system. Researchers have studied
many algorithms to establish the prediction model of pH
such as, nonlinear model (Ekici et al., 2014), adaptive
neuro-fuzzy inference system (ANFIS) model (Gaya et al.,
2014), adaptive genetic hybrid neural network (AG-HNN)

(Tang et al., 2013) and grey model (Li and Cai, 2013).
But these prediction models have various disadvantages,
such as over-fitting, poor generalisation capability, locally
optimal solutions, poor stability and so on.

Support vector machine (SVM) was first proposed
by Vapnik (Vapnik, 1995) and its excellent performance
in regression problems even for small samples has been
demonstrated. The least squares support vector machine
(LSSVM) (Stephen et al., 2014), a least squares version of
SVM, was proposed to overcome the shortcoming of high
computational cost. LSSVM can be divided into LSSVR
which is used for regression purposes and LSSVC for
classification purposes. Some researchers have established
pH prediction model using LSSVR (Goodarzi et al., 2010;
Dong et al., 2014). The performance of LSSVR is heavily
influenced by the two parameters (y and o), which are
defined as an optimisation problem. So far, there is no
accurate method to find the optimal parameters of LSSVR,
therefore, an optimisation algorithm must be applied to
find the optimal parameters.

Many algorithms were proposed to find the
optimal parameters of LSSVR, such as: particle swarm
optimisation (Lou et al., 2014, Zheng et al., 2014),
genetic algorithm (Wang and Wang, 2012), different
evolution (Stephen et al., 2014; Sun and Liang, 2014)
and gradient algorithm (Chen et al., 2014). All these
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methods can predict pH value, but the prediction
accuracy could be further improved by adopting different
parameter optimisation algorithm. Therefore, in this
study, we propose a prediction model based on LSSVR
using an improved distribution algorithm to estimate the
optimal parameters for more accurate prediction of pH
value in aquaculture of mitten crab Eriocheir sinensis
H. Milne-Edwards,1853.

Materials and methods
Data collection

The crab culture pond selected for the study
was located at Xinhua City, Jiangsu Province, China.
A monitoring system based on GPRS was designed to
monitor the water quality parameters real-time. The
structure diagram of the system is shown in Fig. 1. The
system was mainly composed of a water quality parameter
measuring instrument, GPRS communication module,
site monitoring and remote server monitoring. Measuring
instrument included several water quality parameter
sensors such as dissolved oxygen sensor, temperature
sensor, pH sensor, turbidity sensor, salinity sensor and
conditioning circuit.

Date recorded for a period of 30 days during 1* to
30" June 2015 was downloaded from the database of the
monitoring system. The sampling interval was 10 min,
and thus we obtained 4320 samples and the sampling data
were distributed into two parts: 3600 samples of water
quality data were used for the LSSVR model training and
720 samples were used as the test data to evaluate the
performance of the LSSVR model.

Least squares support vector regression

The goal of LSSVR model is to build a function
y = f(x) between the vector of observations x and the
desired y. In this study, the four input variables of the
LSSVR model were: dissolved oxygen (DO), water

Dissolved oxygen sensor
PH sensor

Temperature sensor
Turbidity sensor

Salmity sensor

Fig. 1. Structure diagram of the real-time monitoring system
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temperature (WT), turbidity (TB) and salinity (SAL). The
output of the LSSVR model was pH. Therefore, x=[DO,
WT, TB, SAL] and y=pH. In feature space, LSSVR model
take the form (Mahmoud, 2011):

fx) =w" o(x) + b (M

where w € RN and b e r, w denotes the adjustable weight
vector, b is the bias; ¢(.) is a nonlinear mapping function
which is used to map the input vectors into a higher
dimensional feature space. In the feature space, the
LSSVR can be transformed into the following optimisation
problem (Igne et al., 2010):

. 1 N
ming = 7|\w||2+ %Zizl eiz )

s.t. yi:wT(p(xi)+b+ei, i=1,2,..,N 3)

where v is the regularisation parameter and e, is the error
variable. In order to solve this optimisation problem, the
Lagrange function was formulated as follows (Alvarez
Meza et al., 2012):

L(w,b,e,0) = %llwll2 + %Z{ilef - I o ilwTex) + bl -1+ e} (4)

where 0. = (a,, a,, ...0 ) is the Lagrange multiplier vector.
The Karush-Kuhn-Tucker (KKT) conditions were used
for optimality by differentiating L in Eq. (4) with the
variable w, b, e, a. After eliminating the variables w and
€, the following linear set can be obtained.

b ol <00 o

where y = [y,y,,....y, [ 1 = [L,1,...,17, Qij = o(x;)"
o(x)" = K(x;,xj), K(xj, xj) is the kernel function on
the input vectors {(x,, xj), i=1,2,...,N;j=1,2,..., N}
The commonly used kernel function is the Radial Basis
Function (RBF) defined by (Lin ef al., 2013):

K(xi,yj) =exp (-Ix; - x; I7(26%) (6)
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where ¢ is the width of radial basis function. Finally, the
regression function can be represented in the following
equation:

v = YN o K, x)+b (7

where o and b can be solved by Eq. (5). So LSSVR has two
parameters: ¥ and o, and since these two parameters can
significantly affect LSSVR performance, the selection of
these two parameters is the most important aspect. Some
researchers adopted various methods to search for optimal
parameters (Qiao, ef al., 2011; Liu et al., 2014). In this study,
estimation of distribution algorithms (EDA) was applied to
find the optimal parameters y and o.

Estimation of Distribution Algorithm (EDA)

EDA has a good performance at solving complex
problems in many areas. Although the performance of
estimation of distribution algorithm is better than many
optimisation algorithm, the estimation of distribution
algorithm still has disadvantages. For instance, the individuals
of the population are easy to trend to the same solution in the
evolutionary process and the population diversity decreases
sharply. These disadvantages affect the performance of
the estimation of distribution algorithm. In order to keep
population diversity, we used chaotic mutation to improve
the estimation of distribution algorithm and obtained
the CMEDA (Chaotic Mutation Estimation Distribution
Algorithm) (Cheng et al., 2010) and the CMEDA was used to
optimise the two parameters of LSSVR.

Improved EDA

The chaotic motion can track any state in its scope
without repetition according to its regularity. CMEDA is
described in detail as follows:

CMEDA evolutionary process: Step 1. Since there were
two LSSVR parameters to be optimised, two initial
variables x, x, were generated randomly in the interval
(0, 1). Let X = (x,, X,) be the initial node of one dimension
logistic map model.

Step 1.1. One dimension logistic map was defined by:
X 1= M X(1-Xt) (3)

where A is control parameter. If given A a value, after
n times iteration, then generated » individuals X, X, ...,
X by Eq. (8), the n individuals is a chaotic sequence. Let

X ={X,, X,, ..., X } be a matrix with n rows and two
columns, representing the initial population:

Xl Xl] X]2

XZ X21 X22

X= =5 ®)
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Step 1. 2. The initial population X is expanded to the
solution space and the it variable of the j" individual can
be represented in the following equation:

X, = low + (high-low)xji (10)

where the low is lower limits of the solution space and the
high is upper limits.

Step 2. Fitness value for each individual of the current
population was calculated. For individual Xj, the fitness
value can be calculated as:

fit(X) =+ X} X7 (d;y,? (an

where d._ is the i" actual output value of the j*" individual,
y; is the i predicted output value of the j™ individual.

Step 3. The new individuals were selected based on the
mutation probability p =1 to execute chaotic mutation.
The mutation radius of i variable x. of the individual X
was calculated according to the following equation:

1- fit(j)
max ﬁt(j') (12)

(1<) " <n)

r;=S(0)

where S(i) = (2maxx, - minx,)/n is mutation step-size.
After chaotic mutating each new individual, the fitness
value of these new individuals were calculated. New
individuals are to be used to replace the old individuals
when the fitness value of new individual is less than
the fitness value of old individual and then obtain the
new population, and go to Step 4. Otherwise keep the
population without change and then go to Step 5.

Step 4. The output current is the best individual if it meets
the stop condition of the algorithm, otherwise go to Step 5.

Step 5. Generate next population.

Step 5.1. Select np individuals from the present population.
Then build a Gaussian model for all new individuals after
statistical analysis of all new individuals.

Step 5.2. Generate k*np (k>1) new individuals based on
the Gaussian model.

Step 5.3. Calculate fitness values of these k*np new
individuals, compare their fitness values and then choose
the best individuals which are used as the next generation
population.

Step 6. The output current is the best individual if it meets
the stop condition of the algorithm, otherwise go to Step 3.

CMEDA-LSSVR model

Through the CMEDA evolutionary process, the
two LSSVR parameters vy and ¢ were optimised, which
build optimised LSSVR model for predicting pH value
accurately. The procedure of CMEDA-LSSVR model is
illustrated in Fig. 2.
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Initialisation

Optimise LSSVR parameters by CMEDA

v

Training LSSVR model

v

Calculation error

Satisty stopping

Yes

Obtain optimisation parameters

v

Predict by CMEDA - LSSVR

Fig. 2. Framework of CMEDA-LSSVR prediction procedure
CMEDA: chaotic mutation to improve the estimation of the
distribution algorithm; LSSVR: least squares support vector
regression

To compare the performance among CMEDA,
particle swarm optimisation (PSO) algorithm, the
genetic algorithm (GA) and grid search (GS) algorithm
for optimising the parameters of the LSSVR model, the
absolute percentage error (APE) values of these four
models were calculated and the cures are shown in Fig. 5.

APE - ly;- 31
-y

x100% (13)

where y, is actual data value and ¥; is prediction data value.

We also adopted the root mean square error (RMSE),
the mean absolute error (MAE) and the mean absolute
percentage error (MAPE) to further evaluate the prediction
accuracy of each model.

1 !
RMSE =/ S2 0 (- 9) (14)

MAE:lNZ}il\yi-}”/i\ (15)

MAPE= L ¥~ L'yy“

SN x 100% (16)

where N is the number of the actual data set, y; is the actual
data value and ¥j is the value of the prediction result.
Software

All algorithms in this paper were implemented in
the MATLAB R2010a under Windows 7. The LSSVR
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MATLAB toolbox codes were downloaded from http:/
www.esat.kuleuven.be/sista/lssvmlab/, free of charge. Others
were custom developed which were the modification of the
algorithm LSSVR.

Results and discussion

After numerous experiments, the original
parameters of the CMEDA-LSSVR were given as follows:
the max iteration number G, =100, population size n=50
and the chaotic control parameter A=3.845, np=25, k=2.
The fitness curve value is shown in Fig. 3, the curve was
drawn by the best fitness of the training data and the best
fitness was the minimal fitness of the individuals of each
generation. It can be seen from the Fig. 3, that the fitness
curve of the CMEDA optimisation algorithm is declining
rapidly, converged after 45 iterations. PSO optimisation
algorithm to adapt to the degree of decline in the curve
is also faster, after about 40 iterations to converge,
but its convergence value is greater than the CMEDA
algorithm, that is, the prediction error is greater than the
CMEDA algorithm. The convergence rates of GA and
GS algorithms are relatively slower than the optimisation
algorithms of CMEDA and PSO, and among which GS
optimisation algorithm error is the biggest, followed by
GA optimisation algorithm. This shows that the CMEDA
algorithm is a good algorithm to find the two parameters
of the LSSVR model.

035
—— CMEDA-LSSVR
03 - —— PSO-LSSVR
’ —— GA-LSSVR
025 - —— GS-LSSVR
o
=
g 02
g 015 -
£
0.1 -
0.05 |-
0 (N T O O Y Y

0 10 20 30 40 50 60 70 80 90 100
No. of iterations

Fig. 3. Changing trend of the fitness function

The parameters of the LSSVR were optimised by the
CMEDA algorithm and then we obtained: y =147.8315
and 6 = 1.9876. To evaluate and compare the performance
of the CMEDA-LSSVR, the PSO-LSSVR, GA-LSSVR
and GS-LSSVR models were used for comparison. The
PSO, GA and GS algorithm were used to optimise the
two parameters of the LSSVR using the same training
and testing data and we obtained the optimal parameters
(137.263, 1.5412), (115.9864, 1.3672) and (126.295,
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Fig. 4. Prediction results of the four models

CMEDA: Chaotic mutation to improve the estimation of the distribution algorithm; LSSVR: Least squares support vector regression;
PSO: Particle swarm optimisation algorithm; GA: Genetic algorithm; GS: Grid search algorithm

1.7432), respectively. The prediction results of the four

Table 1. Precision statistic analysis results of four models

models and actual measured data are illustrated in Fig. 4. Model RMSE  MAE MAPE T(s)
As shown in Fig. 5, using the CMEDA-LSSVR CMEDA LSSVR 0.0381 0.0356 0.4059 9.8
model, the samples with the APE values less than 0.4% PSO_LSSVR 0.0586 0.0539  0.6332 8.9
were 95% and the maximum APE was 0.48%. Using the GA_LSSVR 0.0831 0.0777 " 0.9385 104
GS_LSSVR 0.1122 0.1038 1.2499 16.2

PSO-LSSVR model, the samples with the APE larger
than 0.4% were 81% and the APE values were mainly
distributed in the range between 0.6% and 1%, with the
maximum APE of 1.21%. With the GA-LSSVR model,
the samples with the APE larger than 1% accounted for
more than half and the maximum APE was 1.58%. With
respect to GS-LSSVR model, the APE values of 80%
samples were larger than 1% and the maximum APE was
2.43%. Obviously, the CMEDA-LSSVR model had the
highest prediction accuracy among the four models.

One can easily observe from Table 1 that the RMSE,
MAE and MAPE values of CMEDA-LSSVR model were
much smaller than these parameters of PSO-LSSVR,
GA_LSSVR and GS_LSSVR models. Compared with

CMEDA: Estimation of the distribution algorithm improved by
chaotic mutation; PSO: Particle swarm optimisation algorithm;
GA: Genetic algorithm; GS: Grid search algorithm

the results of the other three models, the RMSE of
CMEDA-LSSVR model was less by 34.9, 54.2 and 66%,
respectively; the MAE of CMEDA-LSSVR model was
less by 34, 54.1 and 65.7%, respectively and the MAE
of CMEDA-LSSVR model was less by 35.9, 56.9 and
67.5%, respectively. The experimental results indicated
that the prediction accuracy of CMEDA-LSSVR model
was highest among the four models. The run time T(s) of
CMEDA-LSSVR model was slightly longer than that of
PSO _LSSVR model but shorter than those of the other
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Fig. 5. Absolute percentage error (APE) values of four prediction models, calculated using the sampling data of 1 day
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two models. This also indicates that it is feasible to find
the optimal parameters with the use of the CMEDA
algorithm. Moreover, the CMEDA-LSSVR is preferable
to the other three predication models in performance.

In order to verify whether the different data sets
have an effect on the prediction result of the CMEDA-
LSSVR model, the measured data of 40 days were used as
training and test data to test the capacity of the model. The
experimental data of 40 days were divided into 5 groups:
7,14, 21, 30 and 40 days, for data in each group with 80%
of the data as training set and 20% of the data as test
set. The absolute percentage errors of prediction results
are: 0.63, 0.48, 0.34, 0.32 and 0.49%. It can be seen from
the results that the use of nearly 3 weeks to a month’s
data as a data set can obtain a higher prediction accuracy.
Because the pH value is influenced by dissolved oxygen,
temperature, salinity, turbidity and light conditions and
other factors, the use of fewer days data will make the pH
forecast to produce relatively large fluctuations while the
use of more days of data cannot reflect the recent weather
conditions.

We also verified whether the CMEDA-LSSVR
model was valid only for a particular set of data, or was
general. The 30 days water quality data collected by
the monitoring system was divided into 15 subsamples,
that is, every two days of data as one subsample. Using
15-fold cross-validation, 1 subsample was used as the
test data and the other 14 samples were used as training
data and the cross validation was repeated 15 times and
each subsample was verified once. The mean values of
RMSE and MAE of prediction results of 4 models are
shown in Fig. 6. As can be seen from Fig. 6, for a large
sample, 4 prediction models using different training
and test subsamples to predict pH value, the result of
CMEDA-LSSVR model had the smallest error and
GS-LSSVR had the biggest error. So it can be seen that

0.12

0.1~

0.08

0.06

0.04 -

0.02 ll

0

CMEDA PSO GA GS
LSSVR LSSVR LSSVR LSSVR

I RMSE, [l MAE

Fig. 6. Cross validation results of pH value prediction
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CMEDA-LSSVR is suitable for the prediction of pH
value and the classification of subsamples does not affect
the prediction results. We downloaded the water quality
data of the whole year in 2015 from the monitoring
system database and repeated the above cross validation
experiment with the remaining 11 months of water quality
data. The average RMSE and MAE of prediction results
were calculated and the results showed the same rule.
Comparing with the other three models, the RMSE of
CMEDA-LSSVR model were reduced by 32, 49 and 58%,
respectively and MAE were reduced by 34, 51 and 59%,
respectively, which indicated that the CMEDA-LSSVR
model was suitable for crab pond pH value forecast.

To make it convenient for farmers to use the
prediction model, we designed a graphical user
interfaces (GUI) based on MATLAB which is shown in
Fig. 7. Farmers could use a web browser to download the
history data from the remote monitoring system for use
as training data and testing data. To use this, the farmer
has to open the GUI of the pH prediction model, press
the “Load Data” button, load the training and testing data
and press the “CMEDA_LSSVR” button, then the GUI
will run the callback function and execute the CMEDA-
LSSVR program. The prediction results of different time
would be calculated and would be displayed on the GUI.
Farmers could make a decision according to the prediction
results, if the prediction results show that the pH value
is lower than the lower limit of safety value/higher than
the upper limit of safety value in the future, farmers could
adopt appropriate control measures ahead of time. In our
research, the safety interval of pH value was [7, 10] and
from Fig. 7, it can be seen that the pH value of the pond
was within safe levels up to next 10 h.

To improve the accuracy of the pH prediction model,
we proposed the CMEDA-LSSVR model for pH value
prediction in mitten crab culture. The RMSE, MAE and

Prediction CUI

pH value prediction system

Load data Current value 9.02

Prediction result

2 hour later 8.83
CMEDA-LSSVR
4 hour later 8.51
6 hour later 8.19
8 hour later 7.92
Save 10 hour later 7.59

Fig. 7. GUI of pH prediction system
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MAPE of the CMEDA-LSSVR model were 0.0181,
0.0156 and 0.4059%, respectively and overall results
sufficiently demonstrated that the CMEDA-LSSVR
model had a higher potential to predict the trend of pH
than the other three models. We noted the sensitivity
of the LSSVR parameters and in the future we plan to
research other advanced optimal algorithms. Although
many questions remain open, our research shows that the
CMEDA-LSSVR model could be considered a suitable
experimental model for future study on pH prediction.
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