на зна

Note

Antimicrobial activities of thiazole, imidazolidine, tetrahydropyrimidine derivatives and silver/polyvinyl alcohol nanocomposites against selected zoonotic fish bacterial pathogens

B. GHASEMI¹, H. BEYZAEI², S. H. HASHEMI³, M. GHAFFARI-MOGHADDAM² AND M. MIRZAEI⁴

- Young Researchers and Elite Club, Neyshabur Branch, Islamic Azad University, Neyshabur, Iran
- ²Department of Chemistry, Faculty of Science, University of Zabol, Zabol, Iran
- ³Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Zabol, Zabol, Iran
- ⁴Young Researchers and Elite Club, Quchan Branch, Islamic Azad University, Quchan, Iran e-mail: hbeyzaei@yahoo.com

ABSTRACT

One of the serious problems faced by health and food security is the spread of drug-resistant zoonotic aquatic bacterial pathogens. For this reason, identification and application of new antibacterial agents are required. In this study, inhibitory effects of thiazole, imidazolidine and tetrahydropyrimidine derivatives and silver/polyvinyl alcohol (Ag/PVA) nanocomposites were evaluated against three important zoonotic fish bacterial pathogens namely *Streptococcus iniae*, *Edwardsiella tarda* and *Aeromonas hydrophila*. Ag/PVA nanocomposite was found to inhibit growth of all tested bacteria, the highest activity was observed against *S. iniae* with minimum inhibitory concentration (MIC) of 256 µg ml⁻¹ and inhibition zone diameter (IZD) of 10.2 mm. No inhibitory effects were observed with imidazolidines 10a-c, tetrahydropyrimidines 10d-e and thiazoles 6a-c. Among heterocyclic compounds, only thiazole derivatives 6d and 8 had inhibitory effects on *S. iniae* and *E. tarda* with MIC values of 32-256 µg ml⁻¹ but lacked antibacterial activity against *A. hydrophila*.

Keywords: Antimicrobial effects, Ag/PVA nanocomposites, Fish bacterial pathogens, Heterocyclic compounds, Zoonotic

Bacterial infections appears to be one of the most important problems faced by the aquaculture sector. A wide range of antibiotics are being used to control the spread of aquatic pathogens (Santos and Ramos, 2016). Indiscriminate and irrational use of antibiotics has led to the emergence of drug resistant strains of several fish bacterial pathogens such as Streptococcus iniae, Edwardsiella tarda and Aeromonas hydrophila (Vivekanandhan et al., 2002; Park et al., 2009; Wei et al., 2011). These bacterial pathogens cause disease outbreak and mortality in farmed fishes which adversely affects profitability of aquaculture as well as public health (Vivekanandhan et al., 2002; Park et al., 2009; Wei et al., 2011). These three bacterial pathogens have been reported to be zoonotic and can cause diarrhea, gastroenteritis and skin lesions in human. The spread of antibiotic-resistant bacterial strains persuaded researchers to identify and synthesise new efficient antimicrobial agents such as metal nanoparticles and heterocyclic derivatives (Santos and Ramos, 2016).

Thiazole derivatives have been applied in the treatment of cancer, blood pressure and AIDS in human beings (Bakavoli *et al.*, 2011). Antioxidant and anti-inflammatory effects of thiazoles have already been

proven (Helul et al., 2013; Jaishree et al., 2013). They can be used to kill anopheles mosquitoes (Venugopla et al., 2013) and their inhibitory effects on Trypanosoma brucei and Candida spp. have been proved (Chementi et al., 2011; Zelisko et al., 2013). Furthermore, these compounds can inhibit the growth of a variety of Gram-positive and Gram-negative bacteria including Escherichia coli. Staphylococcus epidermidis, Enterococcus faecalis, Staphylococcus aureus, Streptococcus pyogenes and Pseudomonas fluorescens (Khalil et al., 2009; Bondock et al., 2010).

Imidazolidine derivatives have been shown to inhibit tumor cells; protozoan parasites such as *Leishmania mexicana* and *Leishmania infantum* as well as fungi lilke *Rhizopus oryzae* and *Chrysosporium tropicum* (Robert *et al.*, 2003; Brahmayya *et al.*, 2013). Various researchers have also shown their antibacterial effects on bacterial pathogens, including *E. faecalis*, *E. coli* and *S. aureus* (Wittine *et al.*, 2012).

Tetrahydropyrimidine derivatives were found able to inhibit the bacterium *Mycobacterium tuberculosis* as well as fungi *Aspergillus niger* and *Candida albicans* (Akhaja *et al.*, 2012). Some of their derivatives are efficient in the

B. Ghasemi et al. 130

treatment of Alzheimer's and infectious diseases (Messer et al., 2000; Elumalaia et al., 2013). In vitro antimicrobial activities of these compounds have been studied against Klebsiella pneumoniae, Pseudomonas aeruginosa (Hussein et al., 2012) and S. aureus (Wittine et al., 2012).

A variety of therapeutic properties have been observed using silver nanoparticles. They can prevent the growth of liver and lung cancer cell lines, genus Leishmania and Rift Valley fever virus (Ahmad et al., 2016; Borrego et al., 2016; Rajeshkumar et al., 2016). Their antimicrobial activities have been studied on many bacterial pathogens such as K. pneumoniae, Bacillus. subtilis and Streptococcus spp. (Rajeshkumar et al., 2016). In similar research, silver and gold nanoparticles were synthesised in the range size of 5-20 nm and their antimicrobial activities evaluated against A. hydrophila, Aeromonas bestiarum, P. fluorescens and E. tarda (Velmurugan et al., 2014).

In this study, inhibitory effects of some thiazole, recently synthesised imidazolidine tetrahydropyrimidine derivatives as well as Ag/PVA nanocomposites were evaluated against three important zoonotic fish bacterial pathogens viz., S. iniae, E. tarda and A. hydrophila (Bakavoli et al., 2009; Bakavoli et al., 2011; Mohmedi-Kartalie et al., 2014; Beyzaei et al., 2015).

Thiazole derivatives 6a-d were synthesised in a three-step process (Bakavoli et al., 2009). A mixture of dinitrile 1 (1 mmol) and cysteamine (2) (1 mmol) in ethanol (2 ml) was stirred at room temprature for 4 h to give thiazolidine 3. This compound (1 mmol) was treated with NaSH (2 mmol) in water (1 ml) at 50°C for 22 h to afford thioamide 4. Finally, thiazoles 6a-d were prepared from reaction of compond 4 (1 mmol), α -bromocarbonyls 5a-d (1 mmol) and NaHCO, (1 mmol) at room temprature for 2-8 h (Scheme 1).

Table 1. Details of the derivatives of heterocyclic compounds

NC SMe
$$+ H_2N$$
 SH EtOH $+ H_2O$, NaSH NC 1 SMe $+ H_2O$, NaSH $+$

6a: $R^1 = H$, $R^2 = CO_2Et$; 6b: $R^1 = COCH_2$, $R^2 = CH_2$; 6c: $R^1 = CO_2Et$, $R^2 = CH_2$ Scheme 1. Total synthesis of thiazoles 6a-d

Thiazole derivative 8 was synthesised from thionation of benzothiazole 7 (1 mmol) by P₂S₅ (2 mmol) in absolute ethanol (2 ml) (Scheme 2) (Bakavoli et al., 2011).

$$\begin{array}{c|c} & & & \\ &$$

Scheme 2. Total synthesis of benzothiazole derivative 8

Imidazolidine derivative 10a-c and tetrahydropyrimidines 10d-e were produced *via* reaction of dinitrile 1 (1 mmol) and diaminoalkanes 9a-e (1 mmol) in ethanol (1 ml) at room temperature for 25-30 min (Scheme 3) (Beyzaei et al., 2015).

Scheme 3. Total synthesis of imidazolidine and tetrahydropyrimidine derivatives 10a-e

Details of the heterocyclic derivatives are presented in Table 1. The chemical structure of all synthesised compounds was characterised by elemental analysis, single crystal X-ray diffraction, ¹H NMR, ¹³C NMR and IR spectrometry. Afterwards, these derivatives were dissolved in dimethyl sulfoxide (DMSO) at an initial concentration of $8192~\mu g~ml^{-1}$.

The Ag/PVA nanocomposites were synthesised according to the procedure described by Mohmedi-Kartalie *et al.* (2014) as follows: Polyvinyl alcohol (0.4 g) was added to a solution comprising distilled water (20 ml) and acetic acid (0.3 ml). Subsequently, silver nitrate (0.001 g), benzoin (0.002 g) and *N, N*-dimethylformamide (5 ml) were added. The mixture was illuminated by a 1200 W UV lamp, as ultraviolet light source, for 1 min at 60-80°C. Finally, the nanocomposites were oven-dried at 40°C for 72 h. The FESEM image exhibited spherical shape of Ag nanoparticles in the average size of 20-30 nm (Fig. 1). A suspension of nanocomposites was prepared in double distilled water with initial concentration of 8192 μg ml⁻¹.

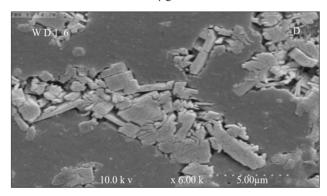


Fig. 1. FESEM image of Ag/PVA nanocomposite

Solutions of antibiotics *viz.*, gentamicin and penicillin were also prepared (as positive controls) by dissolving in double distilled water with initial concentration of $256 \,\mu g \, ml^{-1}$.

S. iniae (ATCC 29178), E. tarda (ATCC 15947) and A. hydrophila (ATCC 7966) were provided from the Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran. All bacteria were cultured in Mueller-Hinton agar medium (Merck®, Germany) at 37°C for 24 h except S. iniae which was grown at 25°C. Bacterial suspensions, at a concentration of 0.5 McFarland units (1.5 × 108 cfu ml-1), were prepared by measuring OD in a spectrophotometer at a wave length of 625 nm (Venkatesan et al., 2014). All biological tests were repeated three times, and the results were reported as an average of the three independent experiments.

Minimum inhibitory concentration (MIC) was estimated in sterile 96-well plate according to broth microdilution method. Mueller-Hinton broth medium (90 μ l) and 10 μ l of bacterial suspension (5 \times 10⁵ cfu ml⁻¹) was added to each well in a row. One hundred microliter each of various solutions of thiazole derivatives and antibiotics were added to the wells, so that their final concentrations were in the range of 32-4096 and 0.063-128 μ g ml⁻¹ respectively.

As negative control, DMSO was added to a separate well containing culture medium and bacterial suspension. Finally, the results were recorded after incubation for 24 h at 37°C (*S. iniae* at 25°C). The lucidity and turbidity in each well indicated lack or existence of bacterial growth, respectively. The lowest concentration that didn't show any turbidity, was reported as MIC (Khalil *et al.*, 2009).

The inhibition zone diameters (IZD) was measured according to disk diffusion method. Ten microlitre of bacterial suspension (1.5 × 10⁸ cfu ml⁻¹) was spread uniformly over the surface of Mueller-Hinton agar plate (Merck[®], Germany). Ten microlitre each of initial concentrations of all compounds were poured on blank sterile discs (6.4 mm dia, 1 mm thickness, Padtan, Iran) and were placed on surface of the plates inoculated with bacterial suspension. Subsequently the plates were incubated for 24 h at 37°C (*S. iniae*at 25°C). Finally, IZD values were measured with a caliper (Khalil *et al.*, 2009).

Antimicrobial properties of three different classes of heterocyclic compounds and Ag/PVA nanocomposites were studied against three aquatic pathogenic bacteria. The results of MIC and IZD values in Table 2. Inhibitory effects against all bacteria (S. iniae, E. tarda and A. hydrophila) were observed for Ag/PVA nanocomposites. The IZD and MIC values were recorded in the range of 9.4-12.7 mm and 256-1024 μg ml⁻¹ respectively. The results were more evident on Gram-positive bacterium S. Iniae. Swain et al. (2014) also found more inhibitory power of silver nanoparticles on S. aureus in comparison with E. tarda and A. hydrophila. This was predictable because the cell wall of Gram-negative bacteria limits penetration of nanoparticles (Lemire et al., 2013). Mechanism of action of silver nanoparticles has not been known exactly, but damage to the cell membrane proteins and DNA are important factors reported in studies (Lemire et al., 2013).

Thiazoles 6a-c, imidazolidine derivatives 10a-c and tetrahydropyrimidins 10d-e could not prevent the growth of bacterial strains tested during the present study. In a similar research, antibacterial properties of tetrahydropyrimidine derivatives were evaluated on *E. coli*, *S. aureus*, *S. epidermidis*, *B. subtilis* and *Bacillus mycoides* and the results showed no effect of some derivatives (Prachayasittikul *et al.*, 2010). This indicates the lack of broad-spectrum activity of these heterocyclic compounds. The ability of some imidazole derivatives to inhibit bacteria like *S. aureus*, *E. coli*, *Micrococcus luteus*, and *P. aeruginosa* is probably due to the presence of chlorine (Cl) and nitro (NO₂) substituents in their structure (Jamal abdul-Nasser *et al.*, 2010; Shahid *et al.*, 2014).

B. Ghasemi *et al*. 132

Table 2. The inhibition zone diameter (IZD, mm) and minimum inhibitory concentration (MIC, µg ml⁻¹) values of compounds

Compounds/Antibiotics	S. iniae		E. tarda		A. hydrophila	
	IZD	MIC	IZD	MIC	IZD	MIC
6a*	-	-	-	-	-	-
6b*	-	-	-	-	-	-
6c*	-	-	-	-	-	-
6d*	23.1	64	24.5	32	-	-
8*	14.3	256	22.5	32	-	-
10a*	-	-	-	-	-	-
10b*	-	-	-	-	-	-
10c*	-	-	-	-	-	-
10d*	-	-	-	-	-	-
10e*	-	-	-	-	-	-
Ag/PVA NC*	12.7	256	9.4	1024	10.3	512
Gentamicin**	16.3	4	17.1	8	19.1	2
Penicillin**	25.1	0.5	27.1	1	22.1	4

^{-:} indicates no inhibitory effects at maximum concentration, *at initial concentration of 8192 µg ml⁻¹, **at initial concentration of 256 µg ml⁻¹

Thiazole derivatives 6d and 8 were the only heterocyclic compounds which were found effective during the study but, of course they had no effect on A. hydrophila. The maximum inhibitory effects of these compounds were recorded for E. tarda with MIC of 32 µg ml-1 and found more significant in comparison with some equivalent thiazoles (Pandeya et al., 1999). The structural study of thiazole 6d shows that it includes 4-thiazolone ring with a wide variety of antimicrobial activities (Zaky and Yousef, 2011). Also, the derivative 8 contains a thioamide substituent. This functional group is present in prothinoamide antimycobacterial drug (Bartels and Bartels, 1998). Thiazole ring itself is a biologically active component and recently synthesised 2, 4-disubstituted hydrazinyl-thiazoles have been introduced as antibacterial, antioxidant and anticancer agents (Ghanbari Pirbasti and Mahmoodi, 2016). The best result in antibiogram test was observed with penicillin antibiotic against S. *İniae* with MIC value of 0.5 µg ml⁻¹. Although the observed in vitro antibacterial activities of heterocyclic compounds 6d and 8 were less than that of the antibiotics penicillin and gentamycin, more effective antibacterial agents can easily be synthesised via change in the substituents and functional groups on the starting materials, as structural skeletons of derivatives are preserved. In addition, antimicrobial activities of various transition metal complexes containing thiazoles 6d and 8 can also be evaluated.

Acknowledgements

The authors would like to thank members of the University of Zabol for their support and assistance at various stages of this project.

References

Ahmad, A., Wei, Y., Syed, F., Khan, S., Khan, G. M., Tahir, K., Khan, A. U., Raza, M., Khan, F. U. and Yuan, Q. 2016. Isatis tinctoria mediated synthesis of amphotericin B-bound silver nanoparticles with enhanced photo induced antileishmanial activity: A novel green approach. *J. Photochem. Photobiol. B, Biol.*, 161: 17-24.

Akhaja, T. N. and Raval, J. P. 2012. Design, synthesis, *in vitro* evaluation of tetrahydropyrimidine-isatin hybrids as potential antibacterial, antifungal and anti-tubercular agents. *Chin. Chem. Lett.*, 23(4): 446-449.

Bakavoli, M., Beyzaei, H., Rahimizadeh, M. and Eshghi, H. 2011. Regioselective synthesis of 2[(E)(benzo[d]thiazol2(3H) ylidene)(cyano) methyl]thiazoles. *Heterocycl. Comm.*, 17(3-4): 151-154.

Bakavoli, M., Beyzaei, H., Rahimizadeh, M., Eshghi, H. and Takjoo, R. 2009. Regioselective synthesis of new 2-(*E*)-cyano (thiazolidin-2-ylidene)thiazoles. *Molecules*, 14: 4849-4857.

Bartels, H. and Bartels, R. 1998. Simple, rapid and sensitive determination of protionamide in human serum by high-performance liquid chromatography. *J. Chromatogr. B*, 707: 338-341.

Beyzaei, H., Aryan, R. and Gomroki, M. 2015. Synthesis of novel heterocyclic 2-(2-ylidene) malononitrile derivatives. *Org. Chem. Indian J.*, 11(1): 3-10.

Bondock, S., Fadaly, W. and Metwally, M. A. 2010. Synthesis and antimicrobial activity of some new thiazole, thiophene and pyrazole derivatives containing benzothiazole moiety. *Eur. J. Med. Chem.*, 45(9): 3692-3701.

Borrego, B., Lorenzo, G., Mota-Morales, J. D., Almanza-Reyes, H., Mateos, F., Almanza-Reyes, H., Mateos, F., Lopez-Gil, E., de la Losa, N., Burmistrov, V. A., Pestryakov, A. N., Brun, A.

- and Bogdanchikova, N. 2016. Potential application of silver nanoparticles to control the infectivity of Rift Valley fever virus *in vitro* and *in vivo*. *Nanomedicine*,12(5): 1185-1192.
- Brahmayya, M., Venkateswara Rao, B., Krishna Rao, D., Durga Rao, S., Viplava Prasad, C. and Damodharam, T. 2013. Synthesis and fungicidal activity of novel 5-aryl-4-methyl-3yl (imidazolidin-1yl methyl, 2-ylidene nitro imine) isoxazoles. *J. Pharm. Res.*, 7(6): 516-519.
- Chementi, F., Bizzarri, B., Bolasco, A., Secci, D., Chimenti, P. and Granese, A. 2011. Synthesis and biological evaluation of novel 2, 4-disubstituted-1, 3-thiazoles anti *Candida* ssp. agents. *Eur. J. Med. Chem.*, 46(1): 378-382.
- Elumalaia, K., Alia, M. A., Elumalai, M., Elurib, K. and Srinivasan, S. 2013. Novel isoniazid cyclocondensed 1, 2, 3, 4-tetrahydropyrimidine derivatives for treating infectious disease: a synthesis and *in vitro* biological evaluation. *J. Acute Dis.*, 2(4): 316-321.
- Ghanbari Pirbasti, F. and Mahmoodi, N. O. 2016. Facile synthesis and biological assays of novel 2, 4-disubstituted hydrazinylthiazoles analogs. *Mol. Divers.*, 20(2): 497-506.
- Helul, M. H. M., Salem, M. A., El-Gaby, M. S. A. and Aljahdali, M. 2013. Synthesis and biological evaluation of some novel thiazole compounds as potential anti-inflammatory agents. *Eur. J. Med. Chem.*, 65: 517-526.
- Hussein, W. M., Fatahala, S. S., Mohamed, Z. M., McGeary, R. P., Schenk, G. and Ollis, D. L. 2012. Synthesis and kinetic testing of tetrahydropyrimidine-2-thione and pyrrole derivatives as inhibitors of the metallo-β-lactamase from Klebsiella pneumonia and Pseudomonas aeruginosa. Chem. Biol. Drug Des., 80(4): 500-515.
- Jaishree, V., Ramdas, N., Sachin, J. and Ramesh, B. 2013. *In vitro* antioxidant properties of new thiazole derivatives. *J. Saudi Chem. Soc.*, 16(4): 371-376.
- Jamal abdul-Nasser, A., Idhayadhulla, A. and Surendra-Kumar, R. 2010. Synthesis and biological activities of new series of imidazolidin-2, 4-dione derivatives. *Asian J. Chem.*, 22(8): 5853-5858.
- Khalil, A., Berghot, M. and Gouda, M. 2009. Synthesis and antibacterial activity of some new thiazole and thiophene derivatives. Eur. J. Med. Chem., 44(11): 4434-4440.
- Lemire, J. A., Harrison, J. J. and Turner, R. J. 2013. Antimicrobial activity of metals: mechanisms, molecular targets and applications. *Nature Rev. Microbiol.*, 11: 371-384.
- Messer, W. S., Rajeswaran, W. G., Cao, Y., Zhang, H. J., El-Assadi, A. A. and Dockery, C. 2000. Design and development of selective muscarinic agonists for the treatment of Alzheimer's disease: characterisation of tetrahydropyrimidine derivatives and development of new approaches for improved affinity and selectivity for M₁ receptors. *Pharm. Acta Helv.*, 74(2-3): 135-140.
- Mohmedi-Kartalai, A., Ghaffari-Moghaddam, M., Samzadeh-Kermani, A., Zand Karimi, M., Sharifmoghadam, M. R.,

- Khajeh, M., Eslahi, H., Keshavarzi, A., Mohammadi, M. and Bohlooli, M. 2014. A rapid synthesis of silver nanoparticles using a radical initiator under UV light and evaluation of their antibacterial activities. *Russ. J. Gen. Chem.*, 84(11): 2257-2261.
- Pandeya, S. N., Sriram, D., Nath, G. and Declercq, E. 1999. Synthesis, antibacterial, antifungal and anti-HIV activities of Schiff and Mannich bases derived from isatin derivatives and N-[4-(49-chlorophenyl)thiazol-2-yl] thiosemicarbazide. Eur. J. Pharm. Sci., 9(1): 25-31.
- Park, Y. K., Nho, S. W., Shin, G. W., Park, S. B., Jang, H. B. and Cha, I. S. 2009. Antibiotic susceptibility and resistance of *Streptococcus iniae* and *Streptococcus parauberis* isolated from olive flounder (*Paralichthys olivaceus*). *Vet. Microbiol.*, 136(1-2): 76-81.
- Prachayasittikul, S., Pingaew, R. and Worachartcheewan, A. 2010. A new sulfoxide analog of 1, 2, 3, 6-tetrahyarophenylpyridine and antimicrobial activity. EXCLI J., 9: 102-107.
- Rajeshkumar, S., Malarkodi, C., Vanaja, M. and Annadurai, G. 2016. Anticancer and enhanced antimicrobial activity of biosynthesised silver nanoparticles against clinical pathogens. *J. Mol. Struct.*, 1116: 165-173.
- Robert, J. M., Sabourin, C., Alvarez, N., Robert-Piessard, S., Le Baut, G. and Lepape, P. 2003. Synthesis and anti leishmanial activity of new imidazolidin-2-one derivatives. *Eur. J. Med. Chem.*, 38(7-8): 711-718.
- Santos, L. and Ramos, F. 2016. Analytical strategies for the detection and quantification of antibiotic residues in aquaculture fishes: A review. *Trends Food Sci. Tech.*, 52: 16-30.
- Shahid, H. A., Jahangir, S., Yousuf, S., Hanife, M. and Sherwani, S. K. 2016. Synthesis, crystal structure, structural characterisation and *in vitro* antimicrobial activities of 1-methyl-4-nitro-1*H*-imidazole. *Arab. J. Chem.*, 9(5): 668-675.
- Swain, P., Nayak, S. K., Sasmal, A., Behera, T., Barik, S. K., Swain, S. K., Mishra, S. S., Sen, A. K., Das, J. K. and Jayasankar, P. 2014. Antimicrobial activity of metal based nanoparticles against microbes associated with diseases in aquaculture. World J. Microbiol. Biotechnol., 30(9): 2491-2502.
- Velmurugan, P., Iydroose, M., Lee, S. M., Cho, M., Park, J. H., Balachandar, V. and Oh, B. T. 2014. Synthesis of silver and gold nanoparticles using cashew nut shell liquid and its antibacterial activity against fish pathogens. *Indian J. Microbiol.*, 54(2): 196-202.
- Venkatesan, V., Saravanan, R., Meenakshi, S., Umayaparvathi, S. and Umakalaiselvl, T. 2014. Antibacterial activity in the extracts of accessory nidamental gland of the Palk Bay squid Sepioteuthis lessoniana (Lesson, 1830) (Cephalopoda: Decapoda). Indian J. Fish., 61(4): 145-147.
- Venugopal, K. N., Krishnappa, M., Nayak, S. K., Subruhmany, B. K., Vaderapura, J. P., Chalannavar, R. K., Gleisere, R. M., and Odhav, B. 2013. Synthesis and antimosquito properties of

B. Ghasemi *et al*. 134

- 2, 6-substituted benzo[d]thiazole and 2, 4-substituted benzo[d] thiazole analogues against *Anopheles arabiensis*. *Eur. J. Med. Chem.*, 65: 295-303.
- Vivekanandhan, G., Savithamani, K., Hatha, A. M. and Lakshmanaperumalsamy, P. 2002. Antibiotic resistance of *Aeromonas hydrophila* isolated from marketed fish and prawn of South India. *Int. J. Food Microbiol.*, 76(1-2): 165-168.
- Wei, L. S., Musa, N., Seng, C. T., Shazili, N. A. M., Wee, W., Musa, N. and Abdul Wahid, M. E. 2011. Antibiogram and plasmid profiling from *Edwardsiella tarda* isolated from freshwater fish in east coast Malaysia. *J. Sustainability Sci. Manage.*, 6(1): 19-27.
- Wittine, K., Stipkovic Babic, M., Makuc, D., Plavec, J., Kraljevic Pavelic, S., Sedic, M., Pavelic, K., Leyssen, P., Neyts, J.,

- Balzarini, J. and Mintas, M. 2012. Novel 1, 2, 4-triazole and imidazole derivatives of L-ascorbic and imino-ascorbic acid: Synthesis, anti-HCV and antitumor activity evaluations. *Bioorg. Med. Chem.*, 20(11): 3675-3685.
- Zaky, R. R. and Yousef, T. A. 2011. Spectral, magnetic, thermal, molecular modelling, ESR studies and antimicrobial activity of (E)-3-(2-(2-hydroxybenzylidene)hydrazinyl)-3-oxo-n(thiazole-2-yl) propanamide complexes. *J. Mol. Struct.*, 1002(1-3): 76-85.
- Zelisko, N., Atamanyuk, D., Vasylenko, O., Grellier, P. and Lesyk, R. 2013. Synthesis and antitrypanosoma activity of new 6, 6, 7-trisubstituted thiopyrano[2,3-d][1,3]thiazoles. *Bioorg. Med. Chem. Lett.*, 22(23): 7071-7074.

Date of Receipt : 11.11.2016 Date of Acceptance : 07.08.2017