Effect of glucoamylase enzyme extract on in vitro gas production and degradability of two diets with 25% of corn or sorghum grains

Abstract views: 263 / PDF downloads: 9


  • A Z M SALEM Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma del Estado de México, Toluca 50200 México
  • H AMMAR Universidad Autónoma del Estado de México, Toluca 50200 México
  • A E KHOLIF Universidad Autónoma del Estado de México, Toluca 50200 México
  • M M Y ELGHANDOUR Universidad Autónoma del Estado de México, Toluca 50200 México
  • L B ORTIZ Universidad Autónoma del Estado de México, Toluca 50200 México



Corn, Glucoamylase, In vitro fermentation, Sorghum


The objective of this study was to evaluate the effect of glucoamylase enzyme (GEZ) extract on the in vitro ruminal gas production (GP) and degradability of 2 total mixed rations (TMR) of 25% of corn and other of 25% of sorghum grains. The 2 diets were treated with 0, 1.5 and 3 g of GEZ protein (65% of protein) per kg of grain in diet. Diets GP were measured at 2, 4, 6, 8, 10, 12, 24, 48 and 72 h of incubation. Incubations were stopped after 72 h where pH was measured and supernatant was filtered to determine in vitro dry matter (DMD), neutral detergent fiber (NDFD), and acid detergent fiber (ADFD) degradabilities. Addition of GEZ to corn diet had no effect on kinetics of GP, whereas GEZ added to sorghum diet, at the high dose of the enzyme (3 g/kg DM), was traduced by an increase of the rhythm of GP (c) and the volume of GP at 2, 4 and 6 h of incubation. Likewise, effect of GEZ was not affected either on the DMD or cell wall (NDFD and ADFD) of both diets (sorghum or corn). Irrespective to enzyme supply, kinetics of GP and pattern of degradation of corn were generally higher than those of sorghum. A net effect of the diet and the interactions between diet and enzyme were recorded for the volume of GP at different incubation times. The use of high doses of GEZ should be tested on the pattern rumen fermentation.


Download data is not yet available.


AOAC 1990. Official Methods for Analysis. 15th edn. Association of Official Analytical Chemists, Arlington, VA.

Bahar T and Celebi S S. 1998. Characterization of glucoamylase immobilized on magnetic poly (styrene) particles. Enzyme and Microbial Technology 23: 301–04. DOI: https://doi.org/10.1016/S0141-0229(98)00048-9

Britton R A and Stock R A. 1986. Acidosis, rate of starch digestion and intake. Proceedings of the Symposium Feed Intake by Beef Cattle. MP 121, Agricultural Experiment Station, OK, USA, pp. 125–37.

Buendía R G, Mendoza M G D, Bárcena G J R, Ortega C M E, Hernández S J and Lara B A. 2003. Efecto de la glucoamilasa de Aspergillus nígeren la digestibilidad “in vitro” de maíz y sorgo. Agrociencia 37: 317–22.

Cotta M R. 1988. Amylolytic activity of selected of ruminal bacteria. Applied and Environmental Microbiology 54: 772– 76. DOI: https://doi.org/10.1128/aem.54.3.772-776.1988

Chen K H, Huber J T, Simas J, Theurer C B, Chan Yu P S C, Santos F, Swingle Wu Z R S and de Peter E J. 1995. Effect of enzyme treatment on steam-flaking of sorghum grain on lactation and digestion in dairy cow. Journal of Dairy Science 78: 1721–27. DOI: https://doi.org/10.3168/jds.S0022-0302(95)76797-2

Crosby M M, Mendoza G D, Melgoza L M, Bárcena R, Plata F X and Aranda E M. 2006. Effects of Bacillus licheniformis amylase on starch digestibility and sheep performance. Journal of Applied Animal Research 30:133–36. DOI: https://doi.org/10.1080/09712119.2006.9706603

Duran J, Mendoza G, González S, Cobos M, Gárcia C, Ricalde R and Martínez G. 1999. Utilización de la glucioamilsa de Aspergillus niger para evaluar la digestión in vitro del almidón del sorgo. XXXV Reunión Anual de Investigación Pecuaria 19–22 Octubre, Mérida Yucatán. 240.

Declerk N, Machius M, Chambert R, Wiegand G, Huber R and Gallardi C. 1997. Hyperthermo stable mutants of Bacillus licheniformis alpha-amlyse: thermodynamic studies and structural interpretation. Protein Engineering 10: 541–49. DOI: https://doi.org/10.1093/protein/10.5.541

Eun J S, Beauchemin K A, Hong S H and Bauer M W 2006.Exogenous enzymes added to untreated or ammoniated rice straw: Effects on in vitro fermentation characteristics and degradability. Animal Feed Science and Technology 131: 86– 101. DOI: https://doi.org/10.1016/j.anifeedsci.2006.01.026

France J, Dijkstra J, Dhanoa M S, Lopez S and Bannink A. 2000. Estimating the extent of degradation of ruminant feeds from a description of their gas production profiles observed in vitro: derivation of models and other mathematical considerations. British Journal of Nutrition 83: 143–50. DOI: https://doi.org/10.1017/S0007114500000180

Frumholtz P and Beauchemin K. 1999. El uso de enzimas en rumian-tes. Biotecnología para la Alimentación Animal. AMENA. México, D.F. 153 p.

Goering M K and Van Soest P J. 1970. Forage Fiber Analysis (Apparatus, Reagents, Procedures and Some Applications). Agriculture Handbook, No379. Agricultural Research Service, USDA, Washington, USA.

Gutiérrez C L C, Mendoza M G D, Ricalde R, Melgoza L M and Plata F. 2005. Effects of exogenous amylases or glucoamylase dose onin situ ruminal digestion of corn and sorghum. Journal of Applied Animal Research 27: 7–10. DOI: https://doi.org/10.1080/09712119.2005.9706527

Huntington G. 1997. Starch utilization by ruminants: From basics to the bunk. Journal of Animal Science 75: 852–67. DOI: https://doi.org/10.2527/1997.753852x

Kaiser A G. 1999. Increasing the utilization of grain when fed whole to ruminants. Australian Journal of Agricultural Research 5: 737–56. DOI: https://doi.org/10.1071/AR98164

Klibanov A M. 1983. Stabilization of enzymes against thermal inactivation. Advances in Applied Microbiology 39: 1–28. DOI: https://doi.org/10.1016/S0065-2164(08)70352-6

Kung L. 1999. Productos microbianos para la alimentación directa y enzimas en la nutrición de rumiantes. In: Biotecnología para la Alimentación Animal. AMENA. México, D.F. 153 p.

Lee-Rangél H A, Mendoza G D, Pinos-Rodríguez J M, Bárcena R, Plata F and Ricalde R. 2006. Journal of Applied Animal Research 29: 141–44. DOI: https://doi.org/10.1080/09712119.2006.9706590

Mackie R I and White B A. 1990. Recent advances in rumen microbial ecology and metabolism, potential impact on nutrient output. Journal of Dairy Science 73: 2971–95. DOI: https://doi.org/10.3168/jds.S0022-0302(90)78986-2

Matsuo M and Yasui T. 1988. B-xylosidases of several fungi. Methods in Enzymology 160: 684–95. DOI: https://doi.org/10.1016/0076-6879(88)60188-1

Mendoza M G D, Britton R A and Stock R A. 1993. Influence of ruminal protozoa on site and extent of starch digestion and ruminal fermentation. Journal of Animal Science 71: 1572– 78. DOI: https://doi.org/10.2527/1993.7161572x

Mendoza M G D, Britton R A and Stock R A. 1995. Effect of protozoa and urea level on “in vitro” starch disappearance and amylolytic activity of ruminal microorganism. Animal Feed Science and Technology 54: 315–25. DOI: https://doi.org/10.1016/0377-8401(95)00765-F

Mendoza M G D, Britton R A and Stock R A. 1998. Ruminal fermentation andin situ starch digestion with high moisture corn, dry rolled grain sorghum or a mixture of these grains. Animal Feed Science and Technology 74: 329–35. DOI: https://doi.org/10.1016/S0377-8401(98)00183-7

Mendoza M G and Ricalde V R. 1993. Manual técnico de alimentación de bovinos en clima templado. Libro de texto. Universidad Autónoma Metropolitana Unidad Xochimilco. Distrito Federal. 76 p.

Mendoza M G D, Britton R A and Stock R A. 1999. Effect of feeding mixtures of high moisture corn and dry rolled grain sorghum on ruminal fermentation and starch digestion. Small Ruminant Research 32: 113–18. Mora J G, Bárcena G J R, Mendoza M G D, González M S S and Herrera H J F. 2002. Respuesta productiva y fermentación ruminal en borregos alimentados con grano de sorgo tratado con amilasas. Agrociencia 36: 31–92. DOI: https://doi.org/10.1016/S0921-4488(98)00161-8

Morgavi D P, Newbold C J, Beever D E and Wallace J R. 2000. Stability and stabilization of potential feed additive enzymes in rumen fluid. Enzyme and Microbial Technology 26: 171– 77. DOI: https://doi.org/10.1016/S0141-0229(99)00133-7

NRC. 2001. Nutrient Requirements of Dairy Cattle. 7th revised edn. National Academy of Science, Washington, DC, USA.

Ørskov E R and L McDonald. 1979. The estimation of protein degradability in the rumen from incubation measurements weighted according to the rate of passage. Journal of Agricultural Science 92: 499–503. DOI: https://doi.org/10.1017/S0021859600063048

Ortega C M E and Mendoza G D. 2003. Starch digestion and glucose metabolism in the ruminant. A review Interciencia 28: 380–86.

Owens F N, Secrist D S, Hill J and Gill D R. 1997. The effect of grain source and grain processing on performance of feedlot cattle; a review. Journal of Animal Science 75: 868–79. DOI: https://doi.org/10.2527/1997.753868x

Reilly P J. 1985. Enzymatic degradation of starch. Starch Conversion Technology. 345 p. (Eds) Van Beyunm G M and Roels J A. Macel Dekker, Inc. N.Y.

Rojo R, Mendoza G D and Crosby M M. 2001b. Use of the thermo stable amylase from Bacillus licheniformis on in vitro digestibility from sorghum and corn starch. Agrociencia 35: 423–27.

Rojo R, Mendoza G, González S, Barcena R, Crosby M and Landois L. 2001a. Use of exogenous amylases Bacillus licheniformis and Aspergillus niger in high grain diets. Journal of Animal Science 79: 280

Rojo R, Mendoza G D, González S S, Suárez O, Bárcena R and Landois L. 2000. Digestibilidad in situ y respuesta productiva de borregos alimentados con dietasba-sadas en grano de sorgo tratado con amilasas. Asociación Mexicana de Producción Animal. Tapachula, Chis. México. pp: 205–08.

Rojo R, Mendoza G D, González S S, Landois L, Bárcena R and Crosby M M. 2005. Effects of exogenous amylases from Bacillus lecheniformis and Aspergillus niger on ruminal starch digestion and lamb performance. Animal Feed Science and Technology 123(2): 655–65. DOI: https://doi.org/10.1016/j.anifeedsci.2005.04.053

Rojo R R, Mendoza-Martínez G D, Montañez-Valdez O D, Rebollar-Rebollar S, Cardoso-Jiménez D, Hernández-Martínez J and González-Razo F J. 2007. Exogenous amylolytic enzymes in the feeding of ruminant feeders. Universidad y Ciencia, Tropicohúmedo 23 (2): 173–81.

Romero B M, López A J and Gómez A R. 1992. Digestibilidad de dietas de engorda tratadas con enzimas para grano de sorgo. Memorias, XXVIII Reunión Nacional de Investigación Pecuaria, Chihuahua, México, p.181.

SAS Institute. 2002. SAS User’s Guide: Statistics. Ver 9.0. SAS Institute, Cary, N.C. USA. 956 pp.

Slovay. 1991. Technology and teamwork that work Slovay enzymes Inc. Technical Report 4651–0859. 10 p

Stock R A, Brink D R, Britton R A, Goedeken F K, Sindt M H, Kreikemier K K, Bauer M L and Smith K K. 1987. Feeding combinations of high moisture corn and dry-rolled grain sorghum to finishing steers. Journal of Animal Science 65: 290–302. DOI: https://doi.org/10.2527/jas1987.651290x

Theodorou M K, Williams B A, Dhanoa M S, McAllan A B and France J. 1994. A simple gas production method using a pressure transducer todetermine the fermentation kinetics of ruminant feeds. Animal Feed Science and Technology 48: 185– 97. DOI: https://doi.org/10.1016/0377-8401(94)90171-6

Thurn K K and Kotarski S F. 1987. Subcellular localization of starch-degrading enzymes in Bacteroides ruminicola. 19th Biennial Conference on Rumen Function, Chicago, IL, USA, p. 30.

Van Soest P J, Robertson J B and Lewis B A. 1991. Methods for dietary fibre, neutral detergent fibre, and non-starch carbohydrates in relation to animal nutrition. Journal of Dairy Science 74: 3583–97. DOI: https://doi.org/10.3168/jds.S0022-0302(91)78551-2

Yanke L J, Dong Y, Callisterm T A, Baem H D and Cheng K J. 1993. Comparison of amylolytic activities of ruminal fungi grown on cereal grains. Canadian Journal of Microbiology 39: 817–20. DOI: https://doi.org/10.1139/m93-121









How to Cite

SALEM, A. Z. M., AMMAR, H., KHOLIF, A. E., ELGHANDOUR, M. M. Y., & ORTIZ, L. B. (2015). Effect of glucoamylase enzyme extract on in vitro gas production and degradability of two diets with 25% of corn or sorghum grains. The Indian Journal of Animal Sciences, 85(2), 183–188. https://doi.org/10.56093/ijans.v85i2.46613