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Late blight caused by oomycete Phytophthora 
infestans (Mont.) de Bary has historically been 
an important disease of potatoes and tomatoes 
worldwide. In the mid 1800, late blight 
caused widespread crop failures throughout 
Northern Europe including Ireland where it 
was responsible for the Irish famine (Elansky 
et al., 2001). Since then, it has spread far and 
wide and now occurs wherever potatoes are 
grown. Losses due to P. infestans have been 
estimated to € 12 billion per annum of which 
the losses in developing countries have been 
estimated around € 10 billion per annum 
(Haverkort et al., 2009). A survey carried 
out to estimate the impact of late blight on 
potato yield and fungicide use in the United 
States revealed that use of the fungicides 
alone cost $77.1 million at an average cost 
of around $507 per ha which do not include 
non-fungicide control practices (Guenthner et 

al., 2001). Region wise economic importance 
of late blight shows that the disease takes 
highest toll of potato in Sub-Saharan Africa 
(44% crop losses) followed by Latin America 
(36%), Caribbean (36%), South-East Asia (35%), 
South-West Asia (19%) and Middle East and 
North Africa (9%) (CIP, 1997). Information 
on various aspects of late blight has been 
reviewed by different workers (Erwin et al., 
1983; Neiderhauser, 1986; CIP, 1989; Ingram 
and Williams, 1991; Singh and Shekhawat, 
1999; Singh and Bhat, 2003; Fry, 2008; Cooke 
et al., 2011; Lozoya-Saldana, 2011).

SYMPTOMS

The disease appears as water- soaked 
irregular pale green lesions mostly near tip 
and margins of leaves which rapidly grow into 
large brown to purplish black necrotic spots. 
A white mildew, which consists of sporangia 
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and spores of the pathogen, can be seen on 
lower surface of the infected leaves especially 
around the edges of the necrotic lesions. Light 
to dark brown lesions encircle the stems. The 
affected stems and petioles become weak at 
such locations and may collapse. Entire crop 
gives blackened blighted appearance especially 
under disease favourable conditions and may 
be destroyed within a week. Tubers in soil 
become infected by rain borne sporangia 
coming from the diseased foliage. Late blight 
infected tubers show irregular reddish brown 
to purplish areas which extend into internal 
tissues of the tubers. The infected tubers 
usually are hard, dry and firm but may get 
attacked by soft rot causing bacteria and rot 
in field and stores.

THE PATHOGEN

Late blight is caused by Phytophthora 
infestans (Mont.) de Bary. It belongs to the 
oomycetes, a diverse group of eukaryotic 
microorganisms in a group called the 
Stramenopiles, clustering together with others 
in a super group, the Chromalveaolata (Adl 
et al., 2005). The position of the oomycetes as 
a unique lineage of eukaryotes unrelated to 
true fungi but closely related to heterokont 
(brown algae) and diatoms which is well 
established through molecular phylogenies and 
biochemical studies (Baldauf et al., 2000). 

PATHOGEN VARIABILITY

Monitoring population structure of P. 
infestans has been on the agenda of scientific 
community and new techniques have become 
available. Earlier biological markers including 
mating types, race pattern and metalaxyl 
sensitivity were used for monitoring the 
population structure of P. infestans. But now 
with the introduction of molecular techniques, 
other markers have gained importance. 
The most used techniques for late blight 
population studies are: Isozymes, RFLP 

(restriction fragment length polymorphism), 
mitochondrial haplotype, AFLP (amplified 
fragment length polymorphism) and, SSRs 
(simple sequence repeats, microsatellites) 
(Cooke and Lees, 2004). 

Physiological races: Phytophthora infestans is 
highly variable. The variability in the pathogen 
is evident by the frequent appearance of its 
new pathogenic types (virulences) in field and 
sectoring of fungus colonies often observed 
in the laboratory. Giddings and Berg (1919) 
and Berg (1926) were pioneers in detecting 
variations in the P. infestans populations. 
Pathological specializations (races) within 
potato isolates were reported by Schick (1932) 
after almost seven years of introduction of 
resistant hybrids/cultivars having R genes. 
However, universal appearance of races or, 
at least their detection, did not occur until 
resistance genes from Solanum demissum were 
transferred to commercial potato species, 
S. tuberosum. Since then, race spectrum in 
different countries/regions has been monitored 
regularly. One hundred and twenty one races 
were reported from Mexico (Rivera-Pena, 
1995). Thirty eight physiological races were 
identified among 60 potato and tomato isolates 
from different Italian regions (Cristinzio et 
al., 1998). Virulence to all major resistance 
genes was recorded (Guo et al., 2009) and 61 
races were detected in northern China (Li et 
al., 2009) and Estonia (Runno et al., 2009). In 
India, the racial complexity has reached its 
zenith and presently most complex races (10-
11 gene complex) are prevalent in most potato 
growing regions (CPRI, 2013).

Mating types: P. infestans is heterothallic 
and requires two mating types for sexual 
reproduction. Prior to 1984 the A2 mating 
type was restricted to Mexico and Andean 
mountains which is the centre of origin of 
cultivated potatoes. First report of A2 mating 
type outside Mexico was from Switzerland 
(Hohl and Iselin, 1984). Subsequently, A2 
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mating type was detected in USSR during 1990s 
(Vorobev et al., 1991), USA (Deahl et al., 1991), 
Belarus (Ivanyuk and Konstantinovich, 1999), 
Netherlands (Drenth et al., 1993), India (Singh 
et al., 1994), Pakistan (Ahmed and Mirza, 1995), 
Northern Ireland (Cooke et al., 1995), Canada 
(Chycoski and Punja, 1996), France (Gilet, 1996), 
China (Zhiming et al., 1996), Hungary (Bakonyi 
and Ersek, 1997), Italy (Cristinzio and Testa, 
1997), Ecuador (Oyarzun et al., 1997), Myanmar 
(Myint, 2002), Colombia (Vargas et al., 2009) 
and Sri Lanka (Kelaniyangoda, 2011).

Occurrence of A2 mating type in different 
parts of the world is considered to be due 
to a second migration of P. infestans from 
Mexico (Fry et al., 1999), the first being from 
Europe and America during the historical 
potato famine around the year 1845. Despite 
introduction of A2 mating type in different 
parts of the world through migrations, its 
further build-up vis-à-vis the old population 
(A1 mating type) has not followed a definite 
trend. In Sweden (southwest), Hungary and 
Estonia both mating types were detected 
(Widmark et al., 2007; Nagy et al., 2006; Runno 
et al., 2009). In Mexico (Michoacan) both A1 
and A2 mating types were detected in equal 
ratio in the same field (Fernandez-Pavia et 
al., 2005). Majority of the isolates collected 
from China (Guo et al., 2009; Li et al., 2009) 
and Southern Germany had only A1 mating 
type (Moller et al., 2009). However, in most 
of the countries the new strain has already 
taken over or is fast displacing the old strain 
(Spielman et al., 1991). In India, A2 mating type 
has stabilized in temperate hills while the A1 
is dominating in sub-tropical plains (Singh 
et al., 2005; CPRI, 2013). The new strains of 
the pathogen have been found to be more 
aggressive than the old population (Fry et al., 
1999). Turkensteen and Mulder (1999) have 
reported that pathogen during the last 20 
years has developed a shorter life cycle (by 
30%), ability to cause more leaf spots, shorter 

infestation period (6 instead of 8h), tolerance 
to a greater temperature range (5 to 270 C 
instead of 10 to 25 oC), form stem lesions more 
frequently, develops oospores and sporulation 
on tubers and is more inclined to develop 
resistance to fungicide metalaxyl. 

Population of P. infestans in most countries 
has changed dramatically and original A1 have 
almost been displaced by more virulent A2 

strain. Occurrence of both A1 and A2 strains 
at the same location has also opened up the 
possibility of development of thick walled 
oospores which could survive extreme 
winter (Medina and Platt, 1999) or summer 
conditions. The oospores may act as another 
source of primary inoculum, in addition to 
the already known sources such as infected 
seed tubers, waste heaps and volunteer 
plants etc. The impact of potato late blight 
increased greatly during the 1990s following 
the migration of more genetically diverse and 
more aggressive genotypes of P. infestans from 
Mexico (Goodwin et al., 1994). Recent work 
has indicated that the new P. infestans clones, 
especially the US-8 and US-14 genotypes, are 
more aggressive (Lambert and Currier, 1997; 
Kirk et al., 2001; Kirk et al., 2009). The new 
genotypes of late blight are 10 times more 
likely to produce infected sprouts than their 
predecessor, US-1 (Marshall and Stevenson, 
1996). Migration and sexual recombination can 
play an important role in enhancing genetic 
diversity in P. infestans. Chowdappa et al. 
(2013) have recently reported that migration 
of 13_A2 genotype was responsible for 
outbreak of destructive late blight epidemics 
in Karnataka state of India since 2009 and 
has suggested the importance of bio-security 
in agricultural trade. An increasing severity 
of late blight, a shift in pathogen population 
toward increased specific virulence and an 
increased tolerance to metalaxyl has been 
recorded in past three decades in the north 
western plains of India (Arora, 2008)
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Metalaxyl resistance: Metalaxyl a phenylamide 
group of systemic fungicide was highly 
effective against P. infestans and other 
peronosporales and was used worldwide to 
combat mildews and Phytophthora diseases 
of various crops. It is taken up rapidly by 
almost all parts of potato plant, translocate 
acropetally and exerts its fungitoxic effect 
only inside the host tissue. Its effectiveness 
was so remarkable that it suppressed lesion 
appearance, enlargement and sporulation 
in low concentrations (10-25 ug/ml) and 
was effective even when used as curative 
after three days of inoculation (Urech et al., 
1977). Metalaxyl acts by interference in RNA 
synthesis by inhibition of rRNA polymerase or 
both RNA and DNA synthesis. Its site specific 
nature made it more prone to development of 
resistance in the pathogen. Fungicide resistant 
isolates were detected in oomycetous fungi 
soon after the introduction of these fungicides 
as single products on various crops including 
P. infestans in Europe (Carter et al., 1982; 
Cooke, 1981; Davidse et al., 1981; Dowley and 
O’Sullivan, 1981), the Middle East (Cohen 
and Reuveni, 1983), and in the Moscow 
region at the end of 1980’s (Elansky et al., 
1999). In India, resistance to metalaxyl in P. 
infestans wild population was first observed in 
Nilgiri hills of South India in 1989. Metalaxyl 
resistant strains appeared towards the end 
of summer crop season and their frequency 
increased to 13 per cent in autumn season. 
Field trials carried out between 1989 to 1992 
indicated that the metalaxyl + mancozeb 
mixture could best be used from early to 
mid summer and must be avoided toward 
the end of summer season or during the 
autumn season when the resistant isolates 
were more frequent in the region (Arora et al., 
1992). Since then the monitoring for metalaxyl 
tolerance is being done regularly. In Hungary 
60% isolates have been reported resistant to 
metalaxyl (Nagy et al., 2006) while in Estonia 

all three categories i.e. resistant, intermediate 
and sensitive were found (Runno et al., 2009). 
Similarly, majority of isolates from southern 
Germany (Moller et al., 2009) and China were 
found resistant to metalaxyl (Li et al., 2009). 
To prolong the effectiveness of fungicides 
liable to encounter resistant problems 
Fungicidal Resistance Action Committee 
(FRAC) of International Group of National 
Associations of Agrochemical Manufacturers 
(GIFAP) has set up country specific working 
groups for phenylamide fungicides. A few 
strategies have been identified to manage 
the problem of resistance against metalaxyl 
in P. infestans. These include withdrawal of 
straight product and introduction of mixture 
with contact residual fungicides, regulation 
of number of sprays and their use early in 
the season, etc. 

Ploidy: Polyploidy is known to play an 
important role in the evolution of higher 
plants and animals (Stebbins, 1971; Lewis, 
1980) but its role in the evolution of fungi has 
been emphasized by some and dismissed by 
others (Maniotis, 1980). Although polyploidy 
has been found to occur in true fungi (Rogers, 
1973) and oomycetes (Win and Dick, 1975), the 
biological relevance of polyploidy and its role 
in evolution of these groups remain obscure. 
In P. infestans, polyploidy, as measured using 
Feulgen-DNA cytophotometry, appears to be 
quite common in populations outside Mexico. 
Sansome (1977) speculated that polyploids 
could have arisen by selection of auto-
tetraploid nuclei that may occasionally arise 
during periods of rapid nuclear divisions. 
Conversely, allopolyploid could have arisen 
by chromosome doubling in hybrids between 
P. infestans and other species (Sansome, 
1977). Ploidy status in India revealed that 
P. infestans population consisted of diploids, 
triploids and tetraploids. A1 mating type 
isolates were predominantly diploids (50%) 
followed by triploids (33%). Sub-tropical P. 
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infestans population (A1 mating type) was 
predominantly diploid and tetraploid (40% 
each). Frequency of different polyploids in 
A2 type strains was equal (Singh et al., 1997). 
Studies on sexual compatibility amongst 
different polyploids revealed that isolates 
of the same ploidy status mated freely i.e. 
diploid x diploid or tetraploid x tetraploid 
whereas those with varying ploidy status did 
not mate frequently indicating that sexual 
reproduction in nature would be conditioned 
by the ploidy status of the P. infestans 
genotypes. The polyploids differed in their 
aggressiveness. Preliminary investigations 
revealed that diploids of A1 mating type are 
more aggressive than triploids. This trend 
was however not observed in polyploids of 
the A2 type (Singh et al., 1997).

Isozymes: Isozymes have proved to be 
useful markers to estimate levels of genetic 
variability in populations, to study species 
dispersions, and to conduct phylogenetic 
analyses. Glucosephosphate isomerase (Gpi) 
and peptidase (Pep) are two systems for which 
simple genetic control has been demonstrated 
(Shattock et al., 1986; Spielman et al., 1990). 
Allozyme genotypes are described in terms 
of relative mobilities of their bands of activity 
during electrophoresis. The most common 
allele is assigned a mobility of 100 and other 
alleles are assigned a number based on their 
relative mobility. Thus 90/100 refers to a 
heterozygous genotype with two alleles, one 
allele being the most common type, and the 
other producing an enzyme that migrates 
90% as far as the common type (Fry et al., 
1991). The 90 allele for Gpi and the 83 allele 
for Pep were detected only in Europe for the 
first time after detection of the A2 mating 
type: the changes in allozyme alleles occurred 
concomitant with the change in mating type 
structure (Spielman et al., 1991). Isolates of the 
A2 mating type and new allozyme genotypes 
were discovered in the Netherlands and East 

Germany as early as 1980 (Daggett et al., 
1993; Drenth et al., 1994). Studies of isolates 
collected in Ireland in 1988 and 1989 showed 
that they belonged to the new population: the 
allozyme genotypes Gpi 90/100 Pep 83/100; 
Gpi 90/100 Pep 100/100; Gpi 100/100 Pep 
83/100 and Gpi 100/100 Pep 100/100 were 
detected which are characteristic of the new 
population (Tooley et al., 1993). The genotypes 
US-1 and US-8 are exceptions to the general 
rule of diploidy in P. infestans; individuals 
with these genotypes are probably 2n +1, 
having an extra copy of the chromosome that 
contains the Gpi locus. US-1 probably has 
two copies of the 100 allele and one of the 86 
allele. US-8 probably has three different alleles 
at the Gpi locus: 100, 111, and 122 (Goodwin 
et al., 1992). This would give a six-banded 
phenotype on a gel, with three homodimer 
(100/100, 111/111, and 122/122) and three 
heterodimer (100/111, 111/122, 100/122) 
bands. However, the 111/111 homodimer and 
the 100/122 heterodimer bands co-migrate, 
so only five bands are resolved on the gels 
(Goodwin et al., 1995). US-6 genotype has 
a Gpi banding pattern 100/100, US-7 has 
100/111, US-11 has 100/100/111, US-10 has 
111/122, and US-17 has 100/122 (Goodwin 
et al., 1998). As for Pep, US-1 and US-6 have 
bands 92/100; US-7, US-8, US-11, and US-17 
have genotype 100/100. In India, P. infestans 
population has been analysed for Gpi since 
1998. All of the isolates across the country 
were monomorphic as only single band was 
resolved. This makes the P. infestans Indian 
population distinct from European and 
American populations. It is closer to Peruvian 
population which is also monomorphic for Gpi 
(Singh and Shekhawat, 1999). In Hungary all 
isolates were monomorphic at the Gpi locus 
but four allele combinations were found at 
the Pep locus (Nagy et al., 2006). Allozyme 
analysis did not reveal any polymorphism in 
Estonian population (Runno et al., 2009) while 
different banding patterns were observed 
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for Gpi with dominant banding pattern of 
100/100/111 whereas all isolates tested were 
homozygous (100/100) at the Pep locus in 
Chinese population (Li et al., 2009). Similarly, 
different banding patterns were observed for 
both Gpi and Pep loci in Mexican population 
(Fernandez-Pavia et al., 2005).

Mitochondrial haplotypes: Mitochondrial 
DNA variation may be more useful than 
nuclear DNA variation for studying the 
migration events in P. infestans, since these 
variations evolves rapidly, uniparentally 
inherited and no segregation, elimination, 
or recombination of haplotypes have been 
observed in such variations (Klimczak and 
Prell, 1984; Forster et al., 1990; Carter et 
al., 1990). Molecular analyses of specific 
genes from mtDNA have been used to 
establish evolutionary relationships in the 
genus Phytophthora which demonstrated 
that Phytophthora species were distinct from 
true fungi (Forster et al., 1988; Forster et 
al., 1990). Mitochondrial haplotypes have 
been designated in P. infestans using both 
PCR approaches and RFLP analysis of 
mitochondrial DNA (Carter et al., 1990; 
Griffith and Shaw, 1998). A research group 
in Bangor, Wales identified haplotypes Ia, Ib, 
IIa, and IIb (Griffith and Shaw, 1998). 

May and Ristaino (2004) analysed the 
herbarium specimens collected during the 
Irish potato famine and later in the 19th and 
early 20th century and found that 86% of the 
specimens were infected with Ia mtDNA 
haplotype which was responsible for the 
historic epidemics during the 19th century in 
the UK, Europe and the USA. The P. infestans 
mtDNA derived from 10 historic herbarium 
samples lacked the variable mtDNA region 
found in modern Ib haplotypes (Ristaino et al., 
2001). Thus, present theories that assume the 
Ib haplotype is the ancestral strain responsible 
for the Irish famine are incorrect and need 

to be re-evaluated (Fry and Goodwin, 1997; 
Goodwin et al., 1994). In India, all isolates 
studied since 2002 were of the Ia mtDNA 
haplotype (except those from the north-
east Shillong hills). It seems likely that the 
Ib haplotype has been displaced by the Ia 
haplotype, however three isolates reported 
as IIb mt DNA haplotype (Chimote et al., 
2010) were the same as have been previously 
reported from Mexico, western states of the 
USA, Canada (Goodwin et al., 1994; Gavino 
and Fry, 2002) and Nicaragua (May and 
Ristaino, 2004). Ia haplotype dominance (92%) 
was also reported in Polish population of 
late blight isolates (Chmielarz et al., 2010). 
General tendency of Ia haplotype domination 
is common in most of Europe, with exception 
of Northern Ireland where a IIa haplotype is 
more frequent (Chmielarz et al., 2010). The 
recent study in Chiang Mai and Tak provinces 
of Thailand between 2006 and 2009 showed 
the dominance of IIa haplotype (Jaimasit 
and Prakob, 2010). The mt-DNA haplotype 
of isolates collected from Heilongjang and 
Jilin Provinces were determined as two 
genotypes, Ia and IIa, of which 11.1% isolates 
were Ia and 88.9% isolates were IIa (Xuanzhe 
and Shengjun, 2010). However, a previous 
study in five provinces of Northern China 
between 1997 and 2003 revealed the 100% 
dominance of IIa haplotype (Guo et al., 2009). 
The Ia haplotype was found during the first 
outbreaks of the disease in China (1938 and 
1940), Japan (1901, 1930 and 1931), India 
(1913), Peninsular Malaysia (1950), Nepal 
(1954), The Philippines (1910), Australia 
(1917), Russia (1917) and Latvia (1935) 
(Guo et al., 2010). Before 1980s, worldwide 
populations of P. infestans were dominated 
by a single clonal lineage, the US-1 genotype 
with Ib mtDNA haplotype (Goodwin et al., 
1994). This lineage has since been displaced 
by the other haplotypes (Ristaino et al., 2001). 
Since 2002, in India most isolates studied 



RK Arora, Sanjeev Sharma and BP Singh

22	 Potato J 41 (1): January - June, 2014

were of Ia mtDNA haplotype (Chimote et 
al., 2010). Displacement of old Ib mtDNA 
haplotype population by new Ia haplotypes 
is consistent with the global trend of mt 
haplotype distribution. 

EPIDEMIOLOGY

Prior to germ theory, potato late blight was 
attributed to bad weather. However, later on, 
it was established that a fungus, Phytophthora 
infestans affects the potato crop with lightning 
speed under wet conditions causing this 
disease. Ambient temperature, RH, light, 
fogginess, rainfall, dew, wind velocity etc. were 
found to have a strong relationship with the 
blight pathogen and the disease.

Effect of environment on the pathogen

Spore production: The optimum temperature 
for fungus development is 16-24oC. Sporangia 
are usually produced between 8.5 and 26oC 
with an optimum of 19-22oC (Vowinekel, 
1926). Abundant sporangia are formed at 
low air speed when the ambient humidity 
is 90-100% RH (Crosier, 1934). At higher air 
speed, numerous sporangia are formed even 
at 100% RH. Sporulation is encouraged by 
high humidity close to foliage associated with 
surface moisture. Sporulation in the field is 
inhibited by light during the day, a feature 
that ensures that sporangia are formed only 
at night when humidity and temperature 
conditions favourable for the sporulation. 
Low intensity of blue light (peak 450 nm) 
is strongly inhibitory and the inhibition 
increases with an increase in the temperature 
from 10 to 25o C (Cohen et al., 1975).

Oospores, the sexually produced resting 
spores are formed where both mating types 
A1 and A2 coexist. Temperatures in the field 
are generally conducive for the oospores 
production in most potato growing areas. 
These are produced at temperatures ranging 

from 8-22o C with an incubation period of 
7-14 days (Harrison, 1992). Studies carried out 
in the laboratory revealed that the oospores 
are also produced freely when P. infestans 
is grown in constant darkness and a few or 
no oospores are formed under continuous 
illumination with light from white fluorescent 
or incandescent lamps. Irradiation with red 
light (> 600 nm) encourages oospore formation 
(Harnish, 1965). High moisture content of 
the host tissue (≤88%) and low ambient RH 
(50-54%) favoured oospore formation under 
controlled environment. It took 14-16 days for 
oospore to develop; thereafter the number of 
oospores increased with time and decreased 
with moisture content of host tissues (Singh 
et al., 2004).

Spore germination: Duration of leaf wetness, 
inoculum density, temperature and their 
interactions determine spore germination and 
infection on potato plants. Sporangia and 
zoospores germinate only in the presence of 
free water. Zoosporangia germinate either 
indirectly by releasing zoospores or directly 
by producing a hyphal outgrowth. Sporangia 
release zoospores at low temperatures 
(4-12oC), while at higher temperatures (15-
27oC), it germinates directly by producing 
the hyphal outgrowth (Rotem et al., 1971). 
Longer period of leaf wetness are required 
for germination, if the temperature deviates 
from the optimum (Harrison, 1992). A low 
intensity irradiation (300-390 nm wave 
length) increases the proportion of sporangial 
germination, while high intensity irradiation 
kills the spores (De Weille, 1963).

Oospores germinate at temperatures of 
12 to 25oC by producing one or two short 
germ tubes bearing a terminal sporangium 
which either germinates directly or indirectly 
by liberating the zoospores (Smoot et al., 
1958). They germinate only in water or 
dilute aqueous solutions and are tolerant 
to environmental extremes. They do not 
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germinate in continuous darkness but the 
short daily exposure to moderate light 
intensity from fluorescent lamp stimulates 
germination. These resting bodies germinate 
well under continuous irradiation of blue light 
(430-490 nm) (Shattock et al., 1986).

Pathogen survival: Mycelium of P. infestans 
can tolerate considerable variation of humidity 
and temperature within the potato plants but 
sporangia are unable to survive temperatures 
above 25oC for more than 84h. However, these 
are able to survive adverse ambient conditions 
when they are in contact with leaf surface, 
presumably because transpiration ensures the 
air surrounding them is close to saturation 
(Rotem and Cohen, 1974). Without a film 
of water, sporangia lose viability within 5 
and 2.5 min at 95 and 90% RH, respectively. 
UV component of sunlight is an important 
factor in reducing the viability of detached 
sporangia. Exposure to solar radiation is 
also the main cause for death of dispersed 
sporangia during the daytime. Thick walls 
of oospores enable them to resist drying. 
Oospores in nature are either embedded in the 
host-plant tissues or buried in the soil, and as 
such these are rarely exposed to dry air.

Effect of environment on host

Growth and development of host plants 
influence development of late blight. Young 
plants are highly susceptible to blight while 
plants of intermediate age are more resistant 
than the young or old plants (Lowings and 
Acha, 1959). Leaflets of plants at flowering 
stage are most likely to give a hypersensitive 
reaction. Resistance of leaves to infection by 
P. infestans increases, as plants become water 
stressed and the rate of lesion expansion are 
strongly correlated to plant age (Carnegie 
and Colhoun, 1980). Generally potato 
plants growing under short days are more 
susceptible to blight than those growing 
under long days.

Effect of environment on the disease

Infection process: Both sporangia and 
zoospores can start fresh infection on host 
plants. Infection by direct germination of 
sporangia takes longer time as compared to 
the infection through zoospores. Zoospores 
remain motile up to 22 h at 5-6oC, whereas 
at higher temperature (24-25oC), motility 
decreases to 19 min only (Melhus, 1915). As 
soon as the zoospores become non-motile, 
they encyst and adhere firmly to the leaf 
surface, germinate and infect the host tissues. 
Germination of zoospores takes place at 3 to 
28o C and germ tube elongation occurs most 
rapidly at about 21oC (Crosier, 1934). Infection 
usually occurs within 2.5h of inoculation with 
the zoospores and small necrotic flecks appear 
within the next 24-48 h.

Dispersal of sporangia: Phytophthora infestans 
sporangia are formed at night when the 
humidity is high and disperse in the following 
morning when there is a rise in temperature 
and fall in RH. The detachment of sporangia 
from the sporangiophores on leaves is mainly 
due to the changes in humidity rather than 
temperature (Hirst, 1958). Irradiation decreases 
the RH by heating the air close to the leaf 
surface, and resulting changes in humidity 
can affect the sporangial release (Hirst, 1958). 
Number of sporangia trapped per hour is 
more closely correlated with radiation than 
with any other weather factor. Sporangia 
are hydrophilic and get readily dispersed 
into water falling on them. Splash droplets 
containing spores could result in transporting 
of the pathogen over short distances. 
Sporangia on the soil surface could also get 
splashed on to the leaves and initiate lesions 
development. Soil containing sporangia could 
remain infective about 3 weeks. Rain washes 
the sporangia from the infected foliage and 
the rain water containing the spores usually 
move along the stems into the soil and infect 
the tubers. 
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Development of an epidemic: Temperature 
between 7 to 27oC is favourable for blight 
development. Humidity plays a major role 
in development of an epidemic. Prolonged 
survival of sporangia requires high RH 
(Martin, 1923). The magnitude of disease 
progress depends on an interaction between 
biotic factors such as cultivar, age, nutrition, 
the amount of inoculum present on the host 
and the abiotic factors such as distribution 
and duration of saturated or near-saturated air 
within a favourable temperature in the crop 
canopy. The potential for disease build-up 
from a single lesion on a leaflet is enormous 
since 9.8 x 105 sporangia are produced over 
one leaflet of a susceptible potato cultivar in 
12 days in saturated air at 15oC (Harrison, 
1992). Lower humidity however, slows down 
the progress of an epidemic by inhibiting 
sporulation, their viability and the infection 
process (Easton, 1982).

Development of a potato late blight 
epidemic is greatly dependent on the presence 
of free water available from precipitation or 
dew. Infection cannot occur without free 
water on the leaf surface. Airborne sporangia 
rapidly lose their viability in the absence of 
high humidity and a surrounding film of 
water. Development of an epidemic is more 
closely associated with the timing of rain than 
with total rainfall. Overhead irrigation could 
also result in outbreaks of this disease (Van 
Everdingen, 1935).Wind has two opposing 
effects on the development of an epidemic. 
In the presence of high moisture the wind 
help in spreading the disease while at low 
moisture it retards the disease progress 
by accelerating the evaporation of surface 
moisture from the foliage and by drying out 
of the sporangia.

Photoperiod, light quality and light 
intensity, as well as the duration and intensity 
of near UV and IR radiation have a direct 
effect on pathogen development and host 

susceptibility. Bright sunshine reduces the 
ambient relative humidity around the foliage 
(Harrison and Lowe, 1989). The retarding 
effect of sunshine on the progress of foliage 
blight, and in particular its effect on infection, 
was recognized many years ago and this 
helped to include ‘cloudiness’ as one of the 
important parameters in the early late blight 
forecasting models.

An understanding of pathogen survival 
can facilitate in developing the disease 
management strategies. Infected seed tubers 
serve as overwintering and the primary 
source of inoculum (Kirk, 2003). The pathogen 
overwinters as mycelium in infected tubers, 
in refuse piles and volunteer plants or 
over-summer in subtropical zones through 
tubers kept in cold stores (Pushkarnath and 
Paharia, 1963; Boyd, 1981). Potato tubers 
left in the field after harvest and cull potato 
tubers can produce volunteer plants which 
can carry over the pathogen to the next 
season (Zwankhuizen et al., 1998). Latent 
infection of potato tubers by P. infestans has 
been implied in development of the disease 
in Ecuadorian highlands (Kromann et al., 
2008). Latent infection was demonstrated 
when the pathogen was detected with the 
aid of polymerase chain reaction (PCR) in 
asymptomatic tubers (Appel et al., 2001; 
Hussain et al., 2005; Hussain et al., 2013). 
Johnson and Cummings (2009) demonstrated 
presence of latent infection in seed tubers 
and production of viable sporangia of P. 
infestans after cold storage of infected potato 
tubers. Survival of pathogen as oospores 
in soil serves as another source of primary 
inoculum. However, its exact role and extent 
of contribution is not clear. Movement of 
pathogen from infected tubers to new plant 
could be indirect through soil. Tubers in 
soil get infected by contact with sporangia 
coming from infected haulms through rain 
water. The infection can also occur during 
washing of tubers. 
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DISEASE FORECASTING AND 
DECISION SUPPORT SYSTEM

Disease forecasting allows the prediction 
of probable outbreaks and decision support 
system can help in management of any further 
increase in disease intensity. This allows us 
to take strategic decisions about the disease 
management. Various concepts have been 
developed and utilized over the years for 
predicting late blight across the globe. They 
include ‘Dutch rules’, Beaumont’s periods, 
Irish rules, moving days concept, severity 
value accumulation, negative prognosis, 
mathematical models etc. Van Everdingen 
(1926) was the pioneer in using weather 
conditions for forecasting potato late blight 
under Holland conditions. He used dew 
periods, night temperature, cloudiness and 
rainfall, known as the “Dutch rules”, to predict 
initial appearance of late blight in Holland. 
Dutch rules in general were found satisfactory 
but sometimes the blight would appear even 
when the ‘Dutch rules’ were not fulfilled. 
Subsequently, Beaumont modified these rules 
for UK conditions and these were known 
as ‘Beaumont rules’ (Beaumont, 1947). These 
rules were based on specific temperature 
and RH periods for two consecutive days. 
They could successfully forecast late blight 
under UK conditions. However, this concept 
failed to predict disease in regions where 
rainfall either did not occur or was erratic 
during crop period. To overcome this problem 
Hyre (1954) proposed a concept known as 
‘moving days concept’ which takes care of 
the break in disease congenial conditions 
over time. Various workers have further 
modified this concept from time to time. 
Wallin (1962) developed ‘severity value’ 
concept based on temperature and relative 
humidity. This system is based on the seasonal 
accumulation of ‘severity values’. Severity 
values are numbers arbitrarily assigned to 
specific relationships between duration of RH 

periods >90% and the average temperature 
prevailing during those periods. The first 
occurrence of late blight is predicted 7-14 
days in advance after 18-20 severity values 
have been accumulated. This model has been 
evaluated extensively worldwide and used 
by growers in USA and some other countries 
as well. Besides, mathematical models have 
also developed to forecast outbreaks of late 
blight on potato in the south-central area of 
Washington State, USA (Johnson et al., 1996). 
The concept of ‘negative prognosis’ was 
developed by Ullrich and Schrodter (1966) 
using measurements of temperature, relative 
humidity, and rainfall to predict when late 
blight epidemics was not likely to occur. It 
has been used in Germany and Europe to 
predict the timing of the first prophylactic 
spray. Such concept of disease forecasting 
would be ideal for subtropical conditions 
since rain and > 90 % RH are not so common 
during the crop season. There are years when 
such conditions do not occur at all whereas in 
certain years these conditions occur only for a 
limited period. Through the use of this model 
we can avoid the use of excess application 
of fungicides by calculating the risk values 
throughout the crop season. 

After the development of more powerful 
computers, a large number of biotic and 
abiotic factors and their interrelations 
have been included in forecasting systems 
and decision support systems have been 
developed to manage the disease. Although 
not all these systems have been introduced 
in practice, still farmers have the option to 
use these systems in supporting their decision 
to workout spray schedules. Some of the 
prominent late blight forecasting systems are 
discussed below.

BLITECAST: BLITECAST is a computer 
program that combines two late blight 
forecasting techniques developed by Hyre 
and Wallin for forecasting late blight in 
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USA and Europe (Krause et al., 1975). The 
first part of the program forecasts the initial 
occurrence of late blight 7-14 days after the 
first accumulation of either ‘10 rain-favorable 
days’ according to Hyre’s criteria (Hyre, 
1954), or the accumulation of 18 severity 
values according to Wallin’s model (Wallin, 
1962). The second part of the program 
recommends fungicide sprays based on the 
number of rain-favorable days and severity 
values accumulated during the previous seven 
days. Fry et al. (1983) modified BLITECAST 
to schedule fungicide applications more 
precisely once initiation of chemical sprays 
to manage late blight has begun. They 
incorporated levels of host resistance and 
weathering of fungicides with BLITECAST 
to suit this system for applying chemicals on 
both susceptible and resistant cultivars. 

ProPhy: It was developed in the Netherlands 
and recommends first fungicide spray 
when the crop reaches a height of 15 cm 
in susceptible varieties and ten days later 
in moderately resistant varieties (Schepers, 
1995). A day is considered to be favorable 
when at least six hours with high relative 
humidity and at least two hours of leaf 
wetness or rain are recorded in a period from 
8 PM of the previous day until 12 O’Clock on 
the next day with temperature between 8 to 
25 0C. ProPhy formulates recommendations 
on the basis of the calculated protection 
periods and the weather forecast. Results of 
trials showed that growers using the ProPhy 
model used fewer fungicide applications than 
those using a 7-day calendar based model 
yet they achieved similar disease control 
(Nugteren, 1997). 

NegFry: The model was developed in 
Denmark and helpful in timing the initial 
fungicide application and scheduling of the 
subsequent sprays throughout the growing 
season. The first part of NegFry is based on 
the negative prognosis (Ullrich and Schrodter, 

1966) that calculates the epidemic free period 
and then recommends the first spray at 
the end of this period. The second part of 
the model is based after the method of Fry 
et al. (1983) which calculates subsequent 
spraying intervals based on blight units. On 
an average, this model has been successful 
in reducing fungicide applications by 50% 
in some locations. The model has also been 
implemented in other parts of Europe.

PROGEB: It is an integrated group of 
forecasting models developed for the main 
pests of potatoes and cereals in Germany 
(Gutsche, 1993). One of their components, 
PHYTEB, forecasts P. infestans on potato. 
PHYTEB consists of two sub-models, 
SIMPHYT 1 and 2. The first sub-model 
forecasts the beginning of the epidemics 7 -10 
days ahead. It takes into account the cultivars, 
date of emergence and agro meteorological 
conditions. The second sub-model simulates 
the course of the epidemic for two cultivar 
classes and different fungicide application 
practices, including no fungicide sprays. 
Two special features of this sub-model are a 
detailed mathematical representation of the 
fungicide’s action, and a function to calculate 
how long fungicide applications can be 
delayed without any risk.

PhytoPRE: This decision support system 
was developed in Switzerland (Forrer et al., 
1993). This model produces three kinds of 
outputs; field specific letters with application 
recommendations, lists with late blight records 
and graphs with IP, rainfall and fungicide 
applications, weekly bulletins with late blight 
records, rainfall, Ullrich and Schrodter’s risk 
values for the whole country, and personal 
comments from the PhytoPRE manager, and 
a lateblight risk map with IPs for the different 
regions of Switzerland and all actual late 
blight records.
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Web-blight: In 1996, the Danish Institute of 
Agricultural Sciences (DIAS) developed a 
prototype of an Internet based information 
and decision support system for agriculture. 
The system was called Pl@nteInfo. Currently 
this system is in commercial operation in close 
collaboration between DIAS and the Danish 
Agricultural Advisory Centre (DAAC). In 
Pl@nteInfo, comprehensive information and 
decision support is available for potato late 
blight such as late blight monitoring and 
disease forecasting, searchable potato variety 
database, information about fungicides and 
control strategies, NegFry homepage, animated 
weather radar pictures, local weather prognosis 
etc.(Jensen et al., 1996). 

Plant-Plus: It was introduced in The 
Netherlands as a Decision Support System 
for control of late blight in 1994 (Hadders, 
1997). The model is a combination of empirical 
and fundamental sub-models. Hourly data on 
temperature, relative humidity, radiation and 
wind speed are measured in a met station 
and using this data the model calculates the 
temperature and leaf wetness in the crop. 
Together with weather forecasts the critical 
conditions for development of late blight are 
calculated. This model recommends sprays 
by combining the risk for infection with the 
degree of crop protection. The model has been 
developed, validated and implemented in the 
Netherlands.

Guntz-Divoux: This model was developed, 
validated and implemented in Belgium and 
France (Goeminne et al., 1997). The model 
calculates the theoretical development of the 
disease based solely on weather data. Infection 
occurs when at least 10.5 consecutive hours 
with RH >90% is measured. The average 
temperature should be at least 7oC. With 
these data the models calculates the disease 
occurrence. 

PhytoPRE+2000: It is an internet based 
decision support system developed in 
Switzerland and is an improved version of 
PhytoPRE where weather conditions on major 
infection and sporulation period (MISP) have 
been incorporated (Cao et al., 1996). Compared 
to original PhytoPRE programme, it can save 
about 30-50% chemical usage.

China-blight: A web-based DSS (www.china-
blight.net) has been developed in China. This 
DSS has three sub-systems of “Real-time 
distribution of potato late blight in China”, 
“Infection risk of late blight pathogen based 
on measured as well as forecasted weather 
data” and “A farm based simple DSS for 
the chemical control on potato late blight”. 
Besides, knowledge information as well as 
services such as “control methods on late 
blight”, “Resistances of cultivars”, “Fungicide 
database”, “Other pests on potatoes”, 
“Questions and experiences exchange” and 
“Electronic record for field practices of users” 
has also been included (Hu et al., 2012).

Bio-PhytoPRE: It is a decision support system 
for organic potato farming. In organic potato 
production, limited use of copper fungicides 
is the only means for an effective control 
of late blight. To avoid negative impacts of 
copper accumulation in the environment, the 
Agroscope FAL Reckenholz developed a DSS 
to assist Swiss Organic potato producers to 
control late blight with reduced amounts of 
copper (Musa-Steenblock and Forrer, 2005).

International Potato Centre has linked 
two disease forecasting models, Blitecast and 
Simcast to climate database in a geographical 
information system (GIS) to estimate global 
severity of potato late blight. Tropical 
highlands are the zone of high late blight 
severity. Major production zones with a low 
late blight severity include Western Plains 
of India, where irrigated potato is grown in 
the cool dry season, North Central China 



RK Arora, Sanjeev Sharma and BP Singh

28	 Potato J 41 (1): January - June, 2014

and North- Western USA. Average number 
of sprays calculated for different countries 
using GIS database of potato production 
compared with estimated current fungicide 
use revealed that the estimated number 
of sprays in developing countries whether 
from Blitecast or Simcast, predicted optimum 
number of sprays much higher as compared 
with the actual number observed. On the 
basis of GIS database it was suggested that 
an increased access to host resistance and 
fungicides in developing countries could 
have a strong economic impact on potato 
production (Hijmans et al., 2000). 

FORECASTING POTATO LATE 
BLIGHT: INDIAN EXPERIENCES

The work on late blight forecasting in 
India started in 1950’s when Chaudhury and 
Pal (1959) utilized the rainfall data and dates 
of appearance of late blight in Darjeeling 
hills for 12 years using Cook’s moving graph 
concept (Cook, 1949) and Hyre’s concept 
(Hyre, 1954). They demonstrated that 7-day 
moving graph with critical rainfall line 
of 1.8” were more accurate than a 10-day 
moving graph for predicting the appearance 
of late blight in that area. Thus, criteria for 
late blight forecasting differed from region 
to region. Bhattacharyya et al. (1982) utilized 
daily weather data (temperature, rainfall and 
RH) and the date of actual appearance of late 
blight for Shimla, Shillong and Ootacamund. 
They established that if “7 day moving 
precipitation of at least 30 mm for Shimla, 
28.9 mm for Ooty and 38.5 mm for Shillong 
hills with mean temperature of 23.90 C or 
less continue for 7 consecutive days, late 
blight would appear within 3 weeks”. Once 
these conditions are met, then more accurate 
prediction based on RH and temperature was 
developed. It states that if hourly temperature 
remains in between 10-200 C associated with 
the RH ≥80% for continuous 18 hr for at least 

2 consecutive days, late blight would appear 
within a week. This model has been put to 
successful use for predicting late blight in 
Shimla hills since 1983 and it is still working 
very well. Similarly, late blight forecasting for 
eastern plains was also developed based on 
blight favourable days. The model specifies 
that first blight favourable period (BFP 1) of 
two consecutive days comprising of average 
minimum temperature (7-15oC), average 
maximum temperature (22-25oC; range 21.5-
26±1oC), RH >75% and average sunshine < 
5hr per day would predict late blight within 
7-14 days of satisfying the conditions when 
the canopy is dense (crop age >35 days) and 
within 15-21 days when the crop canopy 
is sparse (crop age < 30 days) (Prasad and 
Singh, 2005).

Singh et al. (2000) used moving graph 
concept and developed a computerized 
forecasting model ‘JHULSACAST’ for western 
UP. Models for both rainy and non-rainy 
years were worked out. For rainy years, if i) 
measurable rains (0.1-0.5 mm) for a minimum 
of two consecutive days, ii) 5-day moving 
>85% RH period ≥50 hrs, and iii) 5-day moving 
congenial temperature (7.2-26.60 C) ≥105 hrs, 
blight would appear within 10 days. For 
non-rainy years, if 7-day moving >85% RH 
period is ≥60 hrs and 7-day moving congenial 
temperature period (7.2-26.60 C) is ≥120 hrs, 
blight would appear within 10 days. These 
models have been validated and are able to 
predict late blight accurately in western U. P. 
This JHULSACAST model is almost similar 
to BLITECAST developed by Krause et al. 
(1975) except that it is meant for forecasting 
the initial appearance of late blight. Besides, 
decision rules for predicting first appearance 
of late blight in Punjab under non-rainy 
conditions have also been developed recently 
using JHULSACAST model as template. The 
model specifies that 7-day moving sum of 
RH ≥85% for at least 90 hr coupled with a 
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7-day moving sum of temperature between 
7.2-26.6oC for at least 115 hr would predict 
appearance of late blight within 10 days of 
satisfying the conditions (Arora et al., 2012). 
JHULSACAST has also been calibrated for 
Tarai Region of Uttarakhand (Pundhir et 
al., 2014) and the plains of West Bengal 
(Chakraborty et al., 2014).

Based on JHULSACAST, Decision Support 
System (DSS) has also been developed which 
has three components i.e. (i) prediction of 
first appearance of disease, (ii) decision rules 
for need based fungicide application, and 
(iii) yield loss assessment model. Fungicide 
spray is recommended on the day when 
the accumulated weighted congenial hours 
of severity is 150 and 175 for contact and 
systemic fungicides, respectively. The 
subsequent sprays are repeated after the 
accumulation of above severity values (CPRI, 
2005). Besides, yield loss assessment model 
has been developed by utilizing 8 years 
severity data. With the help of curve fit 
software, linear and non-linear regression 
lines were developed. The deviation between 
actual observed yield loss and predicted yield 
loss ranged from 0 to 13.7% and the efficacy 
of the model was 84% (CPRI, 2012). Recently, 
JHULSACAST model was implemented 
in western Uttar Pradesh using Wireless 
Sensor Networks (WSN), which is web 
based, to forecast late blight and the model 
could forecast the disease well in advance 
in comparison to other forecasting models 
tested (Jagyasi et al., 2014). 

MANAGEMENT

Reduction of the primary sources of 
inoculums is the first step in management of 
late blight. Control of contaminated sources 
such as waste heaps, infected tubers, volunteer 
plants, disease in neighbouring fields and re-
growth after haulms destruction can help 
in management of the disease (Turkensteen 

and Mulder, 1999). It has been estimated 
that onset of epidemic can be delayed by 
3 to 6 weeks if all primary infection from 
early potato can be eliminated. It has been 
shown that during most years late blight 
epidemics start from infected plants on dumps 
(Zwankhuizen et al., 2000), therefore, covering 
of dumps with black plastic sheet throughout 
the season and preventing seed tubers from 
becoming infected is an important step in 
reducing the primary inoculum (Cooke et 
al., 2011). The sheet must be kept in place 
and remain intact until the tubers are no 
longer viable. This will prevent re-growth 
and the proliferation of spores on the piles, 
reducing the risk to nearby crops. Oospores 
are a threatening primary inoculum source, 
especially with short crop rotation. Sandy 
and clay soils contaminated with oospores 
remained infectious for 48 and 34 months, 
respectively (Turkensteen et al., 2000). Use 
of early-maturing cultivars, pre-sprouting 
the seed and early planting can help to 
manage late blight. Avoiding excess nitrogen 
and use of moderate nitrogen fertilization is 
often recommended as a cultural practice to 
delay the development of late blight. Use 
of systemic fungicides early in the season is 
an effective strategy to manage late blight if 
source of primary infection is infected seed 
(Hermansen and Naerstad, 2009). Increased 
application of nitrogen can lead to increase 
in disease severity and use of more and more 
fungicides. Higher dose of phosphorus and 
potassium has been found to give a higher 
yield in a late blight year (Roy et al., 2001)

Importance of oospores as soil-borne 
inoculum is determined both by their 
formation in plant tissue and their survival 
in soil. There is a correlation between crop 
rotation and early blight infections. Infection 
usually starts early in fields which are not 
subjected to crop rotations. The decline in 
early infection was most pronounced in fields 
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subjected to crop rotations for three or more 
year between the potato crops (Bodker et al., 
2006; Hannukkala et al., 2007). This indicated 
that a sound crop rotation is important and 
is an effective way of reducing the risk of 
soil-borne infections of P. infestans. Choice 
of suitable cultivars, well aerated fields, pre- 
sprouting of tubers, early planting and use of 
resistant varieties are some of the measures 
against foliar blight while planting potatoes 
on large steep ridges, right time of mechanical 
weeding and harvesting, avoiding rapid shift 
of harvested tubers or long transports could 
minimize tuber blight (Meinck and Kolbe, 
1999). 

Development of resistant cultivars and 
exploitation of screening methodology has 
played an important role in the management of 
late blight (Bhardwaj et al., 2005; 2007; Joseph 
et al., 2007; Kaushik et al., 2007; Joseph et al., 
2011; Bhardwaj et al., 2013). Solanum demissum, 
a hexaploid wild species, has extensively 
been used to confer resistance against P. 
infestans. Field resistance is polygenic and 
more durable. Solanum bulbocastanum, S. 
microdontum, S. verrucosum and S. chacoense 
have been used as a source of field resistance 
in breeding programs. Since the pathogen 
is quite plastic and mutable matching races 
against major R genes develop readily in 
the pathogen and overcome the resistance 
of the new cultivars. However, major genes 
which have evolved naturally in S. demissum 
population for thousands of years where 
late blight occurs annually still hold their 
importance. A multilineal combination of 
resistant genes (R genes) identified so far, into 
commercial varieties has significant potential 
in management of late blight (Niederhauser et 
al., 1996). Molecular techniques have enabled 
the cloning, sequencing and generation of new 
transformants of commercial potato varieties. 
One such example is the transfer of resistance 
genes from S. bulbocastanum (diploid) to S. 

tuberosum (tetraploid) by protoplast fusion. 
Nucleic acid based studies have focussed in 
better characterization of the host for location 
and manipulation of resistance in specific 
chromosomes and genes of wild Solanum 
species, resulting in transgenic plants resistant 
to late blight (Lozoya-Saldana, 2011). Use of 
Marker assisted selection (MAS) is helpful in 
selecting genotypes at early selection stages 
without a pathogen inoculation test. Sharma 
et al. (2013) validated markers for resistance 
genes in indigenous and exotic potato 
genotypes and found genotypes (17) having 
combination of R1, R2 and R3a genes which 
are now being utilised in Indian breeding 
programme for pyramiding these genes in 
a single host background. Somatic hybrids 
having high degree of resistance to late blight 
can be used as one of the parent for potato 
breeding (Tiwari et al., 2013). Demand for 
late blight resistant varieties is always at top 
priority of the farmers to manage the disease 
(Rana et al., 2011; 2013). Disease resistance in 
potato varieties together with use of fungicides 
can slow down the development of late blight. 
A variety with field resistance to late blight 
in tubers and a medium to high resistance 
in the foliage can help in reducing the use 
of fungicides.

Use of host density as a tool for 
management of late blight has been used 
for control late blight. Tuber yield from 
both resistant and susceptible cultivar 
increase when these were grown in mixture 
as compared to the single genotype stands 
(Garrett and Mundt, 2000). Strip cropping 
of potatoes significantly reduced late blight 
severity in organic production when the 
crop was planted perpendicular to the wind 
neighboured by grass clover (Bounes and 
Finckh, 2008).

Spraying with an effective fungicide has 
been a standard practice for control of late 
blight. Bordeaux mixture, which consists 
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of copper sulfate, hydrated lime and water 
was a standard fungicide for many years. 
Subsequently organic fungicides especially 
carbamates which controlled both early 
and late blight replaced Bordeaux mixture. 
Metalaxyl – a phenylamide group of 
fungicides specific to oomycetes however, 
revolutionized late blight control (Bruck 
et al., 1980). Since it was most effective its 
use increased rapidly and this became one 
of the major fungicide used world over 
but strains of P. infestans which do not 
respond to metalaxyl appeared worldwide 
(Dowley and O’Sullivan, 1981; Gisi and 
Cohen, 1996). Metalaxyl in mixture with 
unrelated contact fungicide however, could 
retard development of resistance in the 
pathogen. Cymoxanil mixtures have been 
found effective for managing metalaxyl 
resistant strains (Samoucha and Cohen, 
1988). A synergism between cymoxanil and 
mancozeb has also been reported by Evenhuis 
et al. (1996). Fluazinam, cyazofamid and 
mandipropamid have also been used for the 
disease management. Spraying with effective 
fungicides (cyazofamid and mandipropamid) 
before periods with high risk of infections 
can give very effective control of late 
blight. Studies conducted in Denmark in 
2009 showed that use of cyazofamid and 
mandipropamid could be reduced by 30% 
by adjusting the dose according to resistance 
level in a variety and used according to 
the infection pressure (Cooke et al., 2011). 
Application of sub-phytotoxic concentration 
of boron with reduced rate of fungicide 
propineb + iprovalicarb has been reported as 
more effective as compared to plants treated 
with fungicide alone (Frenkel et al., 2010).

Elexa, a plant booster which contains 4% 
chitosan, elicits specific defense responses and 
provided 60% protection against late blight 
(Acar et al., 2008). Spray mixtures consisting 
of plant activator BABA and the protectant 

fungicide mancozeb was more effective than 
BABA or mancozeb alone in controlling late 
blight. A mixture of 5 parts BABA and 1 
part mancozeb (w/w, a.i.) exhibited a higher 
synergy factor than other combinations 
(Baider and Cohen, 2003). Foliar application 
of phosphonic acid substantially reduced 
infection of tubers by P. infestans. Healthy 
tubers of blight susceptible cultivars removed 
from treated plants and artificially inoculated 
did not develop symptoms demonstrating 
that phosphonate applications had directly 
reduced the susceptibility of tubers to 
infection, probably as a result of translocation 
into tuber tissue (Cook and Little, 2002). 
The neutralized phosphorous acid solution 
(1000mg/lt) completely inhibited the mycelial 
growth and sporangial germination of P. 
infestans and when applied as foliar spray to 
the potato plants 2-4 times at 7-day interval, 
the severity was significantly and effectively 
suppressed (Tsai et al., 2009). Similarly, 
Johnson (2008) also reported phosphorous 
acid as potential material for postharvest 
control of late blight and pink rot.

Heavy dependence on fungicides 
could pose threat to environment and 
human population (Bradshaw et al., 2000). 
Biocontrol agents and biopesticides could 
be a safe option to the use of synthetic 
fungicides. Antagonism to P. infestans by 
some naturally occurring microorganisms 
such as Trichoderma viride, Penicillium 
virdicatum, P. aurantiogiseum, Chetomium 
brasilense (CPRI, 1991; Gupta et al., 2004), 
Acremonium strictum (CPRI, 1999), Myrothecium 
varrucaria, Penicillium aurantiogriseum (Roy et 
al., 1991), Epiccocum purpuranscens, Stachybotrys 
coccodes, Pseudomonas syringae, Fusarium 
graminearum (Kim et al., 1995) and Pythium 
ultimum (Kuzuetsova et al., 1995) have been 
observed in laboratory and field studies. The 
antagonist Bacillus subtilis B5, when tested 
by dual culture, was found effective in 
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inhibiting the growth of P. infestans (Ajay and 
Sunaina, 2005). Lal et al. (2013) also reported 
the antagonistic activities of Pseudomonas 
fluorescens, Pseudomonas sp. Aspergillus flavus, 
A. niger, Penicillium sp., Trichoderma virens 
and T. harzianum against P. infestans under 
in vitro conditions. Biosurfactants can be used 
as alternatives to chemical surfactants as their 
capability of reducing surface and interfacial 
tension with low toxicity, high specificity 
and biodegradability make them important 
for inhibiting pathogens. The metabolite 
of biosurfactant producing microorganism 
(Pseudomonas aeruginosa) has shown high 
efficacy against P. infestans under in vitro 
conditions (Tomar et al., 2013).The biocontrol 
agents in general have been found to be very 
effective under laboratory and glasshouse 
conditions but less effective under field 
conditions. However, an integrated use of 
biocontrol agents along with low dose of 
fungicides could help to reduce the quantity 
of fungicides used in the management of late 
blight (CPRI, 2001).

CONCLUSION

Late blight of potato is the most dreaded 
disease and will continue to remains as the 
pathogen is evolving at a fast rate and adapting 
to new environments and hosts. There is need 
to characterize the pathogen population with 
more robust molecular markers and to study 
the epidemiology of isolates grouped in 
different categories on the basis of markers. 
Disease resistant varieties should be developed 
keeping in view the changes in the pathogen 
population. Though different forecasting 
models have been developed across the 
world but none is universally applicable, 
hence this is the need of the hour to develop 
a forecasting model which is effective in 
most regions and seasons. As the pathogen 
has developed resistance to metalaxyl based 
fungicides, new molecules with different 

mode of action need to be identified and used 
along with compatible biocontrol agents to 
minimize the use of pesticides. As more and 
more information is being generated there 
is a need to develop an appropriate disease 
management strategy based on farmer friendly 
information technology.
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