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Abstract: The critical phosphorus source areas (CPSAs) were determined by identifying
and integrating both the transport factors of phosphorus (soil erosion, surface runoff,
slope and Euclidean distance from water resources) and source factors (total phosphorus
in the soil, land use and land cover) in Al-Abrash basin in Tartu’s province, Syria during
the winter season 2017-2018. The input data to the models, which were performed to
determine the above mentioned six factors, consists of information through remote
sensing, meteorological and soil data. The study indicated that CPSAs were located
along Al-Abrash riverbanks. There are large areas of field crops and orchards in these
regions, which relatively have high quantities of total phosphorus in the soils due to
use of organic and inorganic fertilizers in previous stages and due to proximity of these
agricultural areas to water resources (Al-Abrash river). In addition, CPSAs were located
in the eastern part of Al-Abrash dam along the village of Beit Al-Sheikh Younis, and
these regions are affected by high soil erosion due to various factors. The central and
northern part of the study area was outside the water basin along the Smakah, Dananir,
Ras Al Deir, Al-Awiya, Mashta Ghanem villages, which were planted by citrus and field
crops. The study reflected that remote sensing data were basic for providing input for

mathematical models so as to perform spatial analysis of CPSAs.
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The areas with high potential transport,
which coincide with high P source areas on a
landscape are considered as critical phosphorus
source areas i.e. CPSAs (Sharpley and Jarvie,
2012; Xie and Zhao, 2016). Though many
factors influence P loss, major factors have been
taken into consideration based on previous
studies such as surface runoff, precipitation,
topography, soil erosion, euclidean distance
from surface water, land use and land cover
type and P concentration in soil. The surface
runoff and soil inter flow can be generated
with precipitation, and this process can
significantly increase dissolved P loss (Chang,
2010; Liu et al., 2014). The surface runoff and
soil erosion increases with slopes, and this
also increases the dissolved P and particulate
P loss (Hahn et al., 2014). The soil erosion is a
complex process due to many parameters and
it directly increases particulate P loss (Butler
et al., 2006; Kahiluoto et al., 2015). As results
of land use and land cover changes, which
are driven by human activity, the increase
in agricultural land leads to more and more
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fertilizer use, and this results in accumulation
of high levels of P in the soil and consequently
more P loss occurs (McDowell, 2012; Lou et al.,
2015). The concentration of P in agricultural
land is increasing globally, which leads to
accumulation of high levels of P in the surface
soil and also its loss to water sources (Withers
et al., 2014). Factors that drive the increase in
CPSAs can be classified into two groups: P
source factors (S factors), which include land
use and land cover type and P concentration;
and P transport factors (T factors) which include
surface runoff, slope, euclidean distance from
surface water and soil erosion. These factors
were first determined by P loss researches using
in situ experiments. The methods, which are
used in detecting CPSAs, can be classified into
three groups: isotope tracer technique, P-index
models and eco hydrological models. Isotope
trace technique uses radioactive elements to
trace a P loss path and then determine the
CPSAs (Wang et al., 2011a, 2011b). P-index
model integrates transport and source factors
to show vulnerability of area to the P loss, and
thus to detect and determine CPSAs (Zhou and
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Gao, 2011). Eco-hydrological models are used
to determine the CPSAs and these models are
performed using remote sensing data (Rivero
et al.,, 2009; Hahn et al., 2014). Isotope trace
technique and the P index model generally
concentrate on a big spatial scale. The isotope
trace technique is more appropriate at plot
scale (Wang et al., 2011a, 2011b), and P-index
models have good performance at field scale,
and farm scale (Zhou and Gao, 2011). Eco-
hydrological models are used at watershed
scale (Ghebremichael et al., 2013), but it cannot
account for all the major factors responsible for
the increase in CPSAs. Remote sensing data
can give us spatially and temporally accurate
information, and results from remote sensing
models can realize the discretization of P
concentration and describe the pathway of P
loss (Oyama et al., 2015; Shi et al., 2016). The
present study aims to: 1) detect CPSAs at a
regional scale by incorporating remote sensing
data with six driving factors and 2) display
the spatial distribution of the CPSAs and their
extent at the study area.

Study Area

This study was conducted in Al-Abrash
basin. It is geographically located in the south
of Tartus province, located in the north west of
Syria. The study area lies between longitudes
(35.94135° and 36.18017°) east and latitudes
(34.84333° and 34.653851°) north and covers
285 km? area bordered on the west by the
Mediterranean Sea (Fig. 1). The landform of the
study area is characterized by very complicated
mountain systems and the elevation increases
from west to east ranged from 4 to 400 m. The
climate of the coastal area has good humidity

conditions, mild winter and warm rainless
summer. The amount of the rainfall increases
with altitude in the region that may reach
to 1000 mm annually. Besides, the natural
vegetation cover that mainly consists of various
forest species like pine, cedar, fir, and oak one
may also find olive groves, citrus orchards,
various crops, and protected plantations.

Materials and Methods
Data for CPSAs detection

The input data to the model consists of
remote sensing data, meteorological and
soil data. The remote sensing data included
Digital Elevation Model DEM (30 m spatial
resolution), Sentinel_2 satellite image (10 m
spatial resolution), which were obtained from
free public data sources (http://earthexplorer.
usgs.gov), and high spatial resolution satellite
image from Google Earth platform. The
meteorological data included precipitation
from the Climate Hazards Group Infrared
Precipitation with the Station data (CHIRPS)
global monthly average rainfall with 5 km
spatial resolution. The surface soil samples
(151 soil samples) were collected randomly
from the study area according to the land use/
land cover types and topographic properties
to determine the total phosphorus (TP) in the
soils. Sampling depth was (0-30 cm), and the
position of each sampling loci was recorded
by Global Position System (GPS).

Identification of the CPSAs at regional scale

The transport (T) factors (soil erosion, surface
runoff, slope, Euclidean distance from surface
water) and source (S) factors (total phosphorus
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Fig. 1. Study area.
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concentration (TP) in soil, land use and land
cover) are integrated to locate the CPSAs at
basin scale. The amount of soil erosion in the
basin were calculated by the remote sensing
driven Revised Universal Soil Loss Equation
(RUSLE) (Wischmeier and Smith, 1978; Renard
et al., 1991).

A=R*K*LS*C*P

wherein, A represents average annual soil loss
per unit area (t ha! yr'), R is rainfall erosivity
factor (MJ] mm ha™ h' yr'), K is soil erodibility
factor (t ha h MJ! ha' mm™), L is slope length
factor, S is slope steepness factor, C is cover
management factor, and P stands for support
and conservation practices factor.

The depth of surface runoff was performed
by rainfall-runoff modeling using the soil
conservation service curve number (SCS-CN)
model (SCS, 1985). The SCS-CN model is a
well-established method in hydrology and
environmental impact analysis and has been
very popular because of its convenience,
simplicity, and its responsiveness to four
readily monitorable watershed properties (soil
texture, land use/land cover, surface condition,
and antecedent moisture condition; Ponce and
Hawgkins, 1996). The standard equations of the
SCS - CN model is

(P12’
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P is total rainfall, I, is initial abstraction, Q is
direct runoff, S is potential maximum retention
which can range (0, ©), A is initial abstraction
coefficient or ratio, and CN (curve number) is
empirical parameters, which are used to predict
the direct runoff. It ranges from (0 to 100).

Slope is one of the most important measures
of landscape characteristics, and it refers
to the angle of inclination of a land surface
above the horizontal, and can be calculated
by geographic information systems through
many mathematical equations (Chang and Tsali,
1991; Peucker and Douglas, 1974). Slope has
been calculated using Digital Elevation Model
(DEM) based on Shuttle radar topography
mission (SRTM), at spatial resolution of 30 m.
Euclidean distance from surface water in the
basin was calculated in ArcGIS. The land use
and land cover map of the basin was prepared

using rectified high spatial resolution satellite
images from Google Earth and moderate spatial
resolution satellite image Sentinel_2 acquired
on 8.9.2017 and using visual interpretation
technique. The land use and land cover map
was classified according to Syrian land use
and land cover classification system and the
area of each class was calculated per square
kilometer. Multiple linear regression (MLR)
by stepwise method was used to predict TP
as dependent variable at locations from soil
samples were not taken during the fieldwork.
Soil properties (soil organic matter, sand,
clay, silt, percentage total calcium carbonate,
pH, electrical conductivity, bulk density) were
used as independent variables. In addition,
the spectral bands of satellite images (Bands
2, 3, 4, and 8 for Sentinel_2 image), vegetation
indices (Normalized Differences Vegetation
Index (NDVI), Soil Adjusted Vegetation Index
(SAVI), the Enhanced Vegetation Index (EVI),
Modified Soil Adjusted Vegetation Index
(MSAVL), Optimized Soil Adjusted Vegetation
Index (OSAVI), Transformed Vegetation
Index (TVI), Ratio Vegetation Index (RVI),
Green Ratio Vegetation Index (GRVI)) and
topographic indices (slope, aspect) were used
as auxiliary variables (independent variables)
to predict TP using multiple linear regression
equation. Selection of the factors to be included
in the model was based on the Statistical tests
(Freund and Littell, 2000). Figure 2 shows the
spatial distribution of the soil samples in the
study area. Here 100-point soil samples were
used as training points to perform models
for predicting the spatial distribution of TP at
locations in which soil samples were not taken
during the fieldwork, and 51-point soil samples
as testing points to validate the results of those
models. The model employed was described
here under.

Y=a+b1X1+b2X2+ann+€

where Y represents predicted (TP) (dependent
variable), (Xi, X, X,) are variables which
are affected by amount of TP in the soil
(independent variables), ‘a” is an intercept
(constant), (bi, by, b,) are coefficients of the
variables, ‘¢” are residuals (error).

The goodness of fit of the model was based
on R? and probability levels. The stepwise
regression analysis was used to select significant
variables, by either accepting or eliminating the
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Fig. 2. Spatial distribution of the soil samples.

respective predictor variables, based on the
significance of T-test.

Linear normalization method was used (Lou
et al., 2016) to export the values of the transport
factors data, which are as previously mentioned
(soil erosion, surface runoff, slope, euclidean
distance from surface water) and
factors data (total phosphorus concentration

source

Table 1. Linear normalization method

CPSAS  Factors Linear normalization

method
. . X-Min
Soil erosion Y=0.1+ ————*(0.9-0.1)
Max-Min
X-Min
Surface runoff Y=0.1+ ———*(0.9-0.1)
Max-Min
T factors )
X-Min
Slope Y=0.1+ ———*(0.9-0.1)
Max-Min
i X-M
Fuclidean Y=0.1+ ————*(0.90.1)
istance Max-Min
X-Mi
Total phosphorus ,_g 1, —m_*(0.9—0.1)
concentration Max-Min
S factors

land use and
land cover

Olives=0.3, Citrus=0.4,
Crops = 0.5, Forest = 0.1

(TP) in soil, land use and land cover) to new
values. Values ranged between (0.1 and 0.9) to
facilitate comparison and analysis between the
different variables, and to avoid the presence
of abnormal maximum values during spatial
analysis as shown in Table 1.

Weighting was assigned for each of the values
(soil erosion, surface runoff, slope, euclidean
distance, total phosphorus concentration (TP)
in soil, land use and land cover) using ranking
method (Roszkowska, 2013) according to effect
of each of them on the fragile agriculture areas,
and exposed to phosphorus loss. This means
that the factors of the transport and the sources
of the phosphorus were arranged from the most
important to the least important in reference
to the phosphorus loss in the study area. The
rank sum method was chosen during the
weighting process, which was carried out using
the following formula (Roszkowska, 2013):

W, = (n—rj+1)/Z(n—rk+1)
where, W; Adjusted weighting for j factor, n

number of the factors under consideration (k=1,
2, 3.....n), 1j rank position of the factor. Each
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Table 2. Weights assigned to each factor based on the rank sum method

Raw Factors Rank Weighting (n-rj+1) Adjusted weighting
1 Soil erosion 1 6 0.286

2 Surface runoff 2 5 0.238

3 Slope 6 1 0.048

4 Euclidean distance 5 2 0.095

5 Total phosphorus concentration 3 4 0.19

6 Land use and land cover 4 3 0.143

Sum 21 1

factor is weighted (n-1;+1) and then normalized
by the sum of all weights {3 (n-r+1)}. Table 2
shows the weights assigned to evaluate data
layers.

The transport factors and source factors were
integrated to locate the CPSAs at basin scale
according to weighting values given in Table
2 and using Overlay weighted sum method in
ArcGIS, as shown by the following equation.

CPSAs = (ER*W;) + (RUW,) + (TP*WV;) +
(LU*Wy) + (D*Ws5) + (S*W5)

where, ER is soil erosion factor, RU is surface

method for linearly distributed data. Figure 3
shows flowchart of the methodology adopted
for the study.

Results and Discussion

The quantity of soil erosion were classified
into four classes according (Table 3) to the
severity of the erosion (Mazahreh et al., 2018).

It is clear from the Table 3 that about 38.5%
of the study area not affected by soil erosion.

Table 3. Soil erosion classes and the percentage of the area
under each soil erosion class

runoff, TP is total phosphorus in soil, LU is land Area Soil l?ss rate Intensity of
use and land cover, D is euclidean distance, S (%) (tha™ year™) erosion
is slope, W; to Ws are weighting values. 385 0 No erosion
43.34 0-10 L
The resulting map was then classified into o
. . 1.4 10-50 Medium
five levels of severity of the phosphorus loss )
in the study area using Quartile classification 0.07 50-200 High .
method, which is considered an appropriate 0 > 200 Very high
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Fig. 3. Flow chart of the methodology.
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Fig. 6. Euclidean distance from surface water.

The low severity class represented about 43.34 %
of the total area, with a rate of soil loss less
than (10 t ha' y') and medium severity class
constituted about 1.4% of the total area, with
a rate of soil loss between (10-50 t ha' y™).
These results are consistent with the results
obtained by Al-Abed et al., 2018. High values of
soil erosion are observed mainly in the eastern
and northeastern part of the study area (Fig. 4)
due to integrated impacts of factors including
the steep slopes, high precipitation, and soils
with low depth located on limestone. While the
western part of the study area was not affected
by soil erosion as results of a combination of
different factors, like flat land with low slope
and deep clay loam, clay soils.

The amounts of runoff depth were classified
to seven classes. Figure 5 represents the spatial
distribution of the surface runoff depth classes
in the study area for the period beginning
October 2017 until May 2018 (Ibraheem et al.,
2019). The amounts of runoff were high in the
western and southwestern part of the study
area, and this may be due to the heavy soil
texture (clay, clay loam), which does not allow

high permeability. Additionally, the cultivation
of field crops does not prevent the surface
runoff as observed in forests and orchards. In
the eastern part of the study area the runoff
depth decreased compared with the western
part, and this may be due to soil texture
(sandy loam, sandy clay loam) in the eastern
parts, in addition to vegetation cover (forest,
olive groves) which prevent the surface runoff
significantly.

Figure 6 represents the spatial distribution
of the euclidean distance from surface water in
the study area, where the euclidean distance
output grid, contains the measured distance
from every cell in the study area to the nearest
water resource and this ranged from 27.75 to
2358.47 m.

Spatial distribution of the degree slope in
the study area (Fig. 7), was calculated using the
(DEM) and Soil and Terrain Digital Database
(SOTER) (Dobos et al.,, 2007) wherein the
classification of the slope as depicted in Table
4 was considered.

Distribution of land use and land cover
classes in the study area reflected seven classes
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Table 4. The slope percentage and classes of topography

Topography Slope percentage
Flat 0-2

Gently undulating 2-5

Undulating 5-10

Rolling 10-15
Moderately steep 15-30

Steep 30-45

Extreme Above 45

(forest, urban, water, protected plantation,
citrus orchards, olive groves, and field crops).
Figure 8 shows the area of each class, where
the olive groves class was 113.32 km?, the citrus
orchard 21.62 km?, the forest area 17.81 km?,
field crops with protected plantation 83.93 km?,
urban area 37.67 km?, and water area was 10.6

km?.

From the results of the stepwise regression
analysis, the equation for predicting the (TP)
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Fig. 8. Area of land use-land cover classes.
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Table 5. Upper, lower and average values of total phosphorus

45

Land use and land cover Upper values (mg kg™) Lower values (mg kg™) Average values (mg kg™)
Forest 496.71 165.97 359.18
Citrus 49431 173.71 390.68
Olives 473.17 145.59 324.83
Field crops 480.91 146.36 344.16

was established and applied in the study
area. The values of total phosphorus in the
soil ranged between 145.59 and 496.71 mg
kg'. Table 5 shows the upper, lower, average
values of total phosphorus according to each
class of land use and land cover classes in the
study area.

High levels of (TP) were accumulated in the
western and northwestern parts of the study
area, which were planted by citrus and crops
and have high quantities of total phosphorus
in the soils due to use of organic and inorganic
fertilizers in previous years, and also along
Al-Abrash river banks from the eastern and
western sides of the dam, where there are
different crops (protected plantation, crops, and
citrus). Figure 9 shows the spatial distribution
of the total phosphorus in the study area.

The study demonstrated that the critical

established along Al-Abrash river banks before
the dam along Al-Madafa to Al-Sisniyyah
villages to Al-Abrash dam. Large areas of
crops and orchards are located in these
regions with high levels of (TP) in the soils.
The intensive use of organic and inorganic
fertilizers and proximity of these agricultural
areas to water sources (Al-Abrash river) and
canals leads to CPSAs. The CPSAs were also
located before Al-Abrash dam, almost parallel
to the previous villages along the village of
Beit Al-Sheikh Younis to the village of Al-
Mdeirjat until the dam. Figure 10 represents
the spatial distribution of the villages along
Al-Abrash river and around the dam. Further,
these villages are affected by high soil erosion
due to various factors.

The results are similar to findings of Al-
Qutaini (2015) which indicated the presence of
high turbidity in water samples in Al-Abrash

phosphorus source areas (CPSAs) were  dam during February after the rainy season,
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Table 6. Percentage of the area of different vegetation type under each different phosphorus loss severity classes

Land use/land cover

Phosphorus loss severity classes

Vegetation type Very low Low Medium High Very high
Forest 27.38 27.58 15.83 12.92 16.28
Olives 32.79 25.56 16.99 11.79 12.87
Citrus 4.86 20.06 29.28 28.24 17.55
Field crops 1.98 11.41 23.20 31.86 31.56

and also consistent with those reported by
Yaghi and Salim (2017), where they showed
the potential pollution areas with chemical
fertilizers in Al-Abrash basin. The western part
of the study area after Al-Abrash dam along
Al-Twaneen, Dahr Al-Dair, Huwaysiyeh, Tal
Kazal villages to the sea, which are exposed to
high intensity of surface runoff due to a large
amount of precipitation during winter, and
heavy texture of the soil (clay, clay loam), was
considered as CPSAs. CPSAs were located in
the central and northern part of the study area
outside the basin boundary along the villages
Smakah, Dananir, Ras Al Deir, Al-Awiya,
Mashta Ghanem. These areas were planted
with citrus and field crops, and being closer to
a network of rivers and canals are also exposed
to soil erosion of medium intensity. Al-hamidia
region, which is located to the west of the study
area and close to the sea, were considered as
CPSAs. These results are consistent with Al-
Qutaini (2015), where the study showed a very
high level of environmental pollution in the
lower basin of Al-Abrash river, especially in
Al-Sfsafa and Al-hamidia regions.

The pollution of Al-Abrash river with
nitrogen and phosphorus compounds resulted
in growth of aquatic plants in the river channel,
which hindered the flow of water and threatened
the aquatic life. Figure 11 represents the spatial
distribution of the critical phosphorus source
areas (CPSAs).

The percentage of the area of each critical
phosphorus source areas in CPSAs of very
low, low, medium, high, very high categories
according to land use and land cover classes
(forest, olives, citrus, field crops) in the study
area (Table 6) revealed that low and very low
severity class of phosphorus loss in the study
area constituted about 54.96% and 58.35% of
the total area of the forest and olives class,
respectively. The average severity class
represented about 15.83% and 16.99% of the
total area for each of the forest and olives,

respectively. The high and very high severity
class for phosphorus loss represented about
29.2% and 24.66% of the forest and olive
class respectively. This indicates that more
than half of the area of forest and olive class
do not suffer from high risk of phosphorus
loss, due to the interplay of different factors
(total phosphorus, surface runoff, soil erosion).
Relatively low total phosphorus concentrations
in the soils of these two classes were observed
compared to soils for both citrus and field
crops. The low and very low risk classes of
phosphorus loss were about 24.9% and 13.39%
of the total area of each citrus and field crops
class respectively. While the average severity
classes represented about 29.28% and 23.2%,
and the high and very high severity class for
phosphorus loss was about 45.79% and 63.42%
of the total area for both citrus and field crops
respectively. This means that more than half
areas of field crops and close to half area of
the citrus class were considered as risk areas
for phosphorus loss towards the water bodies
due to high concentration of total phosphorus
in the soils of these regions. This is probably
due to use of high levels of fertilizers to achieve
high agricultural production, especially in the
western part of the study area, and also due
to high intensity of surface runoff, which
transports phosphorus to closer water bodies.

Conclusion
The critical phosphorus source areas
(CPSAs) were located along Al-Abrash

riverbanks before and after Al-Abrash dam
at the eastern and western parts of the study
area. Various crops and citrus orchards are
planted here which requires a large amount
of phosphorus fertilization. The high and very
high severity class for phosphorus loss was
about 45.79% and 63.42% of the total area for
citrus and field crops classes, respectively. In
addition, the high and very high severity class
for phosphorus loss was 29.2% and 28.78% of
the forest and olive classes respectively. The
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study showed the importance of the integration
of transport and source factors of phosphorus
for identifying and demarcating the critical
phosphorus source areas. The study also
demonstrated and demonstrated the important
role of remote sensing data as a basic factor in
providing mathematical models with data to
perform spatial analysis of CPSAs.
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