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Abstract: The critical phosphorus source areas (CPSAs) were determined by identifying 
and integrating both the transport factors of phosphorus (soil erosion, surface runoff, 
slope and Euclidean distance from water resources) and source factors (total phosphorus 
in the soil, land use and land cover) in Al-Abrash basin in Tartu’s province, Syria during 
the winter season 2017-2018. The input data to the models, which were performed to 
determine the above mentioned six factors, consists of information through remote 
sensing, meteorological and soil data. The study indicated that CPSAs were located 
along Al-Abrash riverbanks. There are large areas of field crops and orchards in these 
regions, which relatively have high quantities of total phosphorus in the soils due to 
use of organic and inorganic fertilizers in previous stages and due to proximity of these 
agricultural areas to water resources (Al–Abrash river). In addition, CPSAs were located 
in the eastern part of Al-Abrash dam along the village of Beit Al-Sheikh Younis, and 
these regions are affected by high soil erosion due to various factors. The central and 
northern part of the study area was outside the water basin along the Smakah, Dananir, 
Ras Al Deir, Al-Awiya, Mashta Ghanem villages, which were planted by citrus and field 
crops. The study reflected that remote sensing data were basic for providing input for 
mathematical models so as to perform spatial analysis of CPSAs. 
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The areas with high potential transport, 
which coincide with high P source areas on a 
landscape are considered as critical phosphorus 
source areas i.e. CPSAs (Sharpley and Jarvie, 
2012; Xie and Zhao, 2016). Though many 
factors influence P loss, major factors have been 
taken into consideration based on previous 
studies such as surface runoff, precipitation, 
topography, soil erosion, euclidean distance 
from surface water, land use and land cover 
type and P concentration in soil. The surface 
runoff and soil inter flow can be generated 
with precipitation, and this process can 
significantly increase dissolved P loss (Chang, 
2010; Liu et al., 2014). The surface runoff and 
soil erosion increases with slopes, and this 
also increases the dissolved P and particulate 
P loss (Hahn et al., 2014). The soil erosion is a 
complex process due to many parameters and 
it directly increases particulate P loss (Butler 
et al., 2006; Kahiluoto et al., 2015). As results 
of land use and land cover changes, which 
are driven by human activity, the increase 
in agricultural land leads to more and more 

fertilizer use, and this results in accumulation 
of high levels of P in the soil and consequently 
more P loss occurs (McDowell, 2012; Lou et al., 
2015). The concentration of P in agricultural 
land is increasing globally, which leads to 
accumulation of high levels of P in the surface 
soil and also its loss to water sources (Withers 
et al., 2014). Factors that drive the increase in 
CPSAs can be classified into two groups: P 
source factors (S factors), which include land 
use and land cover type and P concentration; 
and P transport factors (T factors) which include 
surface runoff, slope, euclidean distance from 
surface water and soil erosion. These factors 
were first determined by P loss researches using 
in situ experiments. The methods, which are 
used in detecting CPSAs, can be classified into 
three groups: isotope tracer technique, P-index 
models and eco hydrological models. Isotope 
trace technique uses radioactive elements to 
trace a P loss path and then determine the 
CPSAs (Wang et al., 2011a, 2011b). P-index 
model integrates transport and source factors 
to show vulnerability of area to the P loss, and 
thus to detect and determine CPSAs (Zhou and 
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Gao, 2011). Eco-hydrological models are used 
to determine the CPSAs and these models are 
performed using remote sensing data (Rivero 
et al., 2009; Hahn et al., 2014). Isotope trace 
technique and the P index model generally 
concentrate on a big spatial scale. The isotope 
trace technique is more appropriate at plot 
scale (Wang et al., 2011a, 2011b), and P-index 
models have good performance at field scale, 
and farm scale (Zhou and Gao, 2011). Eco-
hydrological models are used at watershed 
scale (Ghebremichael et al., 2013), but it cannot 
account for all the major factors responsible for 
the increase in CPSAs. Remote sensing data 
can give us spatially and temporally accurate 
information, and results from remote sensing 
models can realize the discretization of P 
concentration and describe the pathway of P 
loss (Oyama et al., 2015; Shi et al., 2016). The 
present study aims to: 1) detect CPSAs at a 
regional scale by incorporating remote sensing 
data with six driving factors and 2) display 
the spatial distribution of the CPSAs and their 
extent at the study area.

Study Area
This study was conducted in Al-Abrash 

basin. It is geographically located in the south 
of Tartus province, located in the north west of 
Syria. The study area lies between longitudes 
(35.94135o and 36.18017o) east and latitudes 
(34.84333o and 34.653851o) north and covers 
285 km2 area bordered on the west by the 
Mediterranean Sea (Fig. 1). The landform of the 
study area is characterized by very complicated 
mountain systems and the elevation increases 
from west to east ranged from 4 to 400 m. The 
climate of the coastal area has good humidity 

conditions, mild winter and warm rainless 
summer. The amount of the rainfall increases 
with altitude in the region that may reach 
to 1000 mm annually. Besides, the natural 
vegetation cover that mainly consists of various 
forest species like pine, cedar, fir, and oak one 
may also find olive groves, citrus orchards, 
various crops, and protected plantations.

Materials and Methods

Data for CPSAs detection
The input data to the model consists of 

remote sensing data, meteorological and 
soil data. The remote sensing data included 
Digital Elevation Model DEM (30 m spatial 
resolution), Sentinel_2 satellite image (10 m 
spatial resolution), which were obtained from 
free public data sources (http://earthexplorer.
usgs.gov), and high spatial resolution satellite 
image from Google Earth platform. The 
meteorological data included precipitation 
from the Climate Hazards Group Infrared 
Precipitation with the Station data (CHIRPS) 
global monthly average rainfall with 5 km 
spatial resolution. The surface soil samples 
(151 soil samples) were collected randomly 
from the study area according to the land use/
land cover types and topographic properties 
to determine the total phosphorus (TP) in the 
soils. Sampling depth was (0-30 cm), and the 
position of each sampling loci was recorded 
by Global Position System (GPS).

Identification of the CPSAs at regional scale
The transport (T) factors (soil erosion, surface 

runoff, slope, Euclidean distance from surface 
water) and source (S) factors (total phosphorus 

Fig. 1. Study area.
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concentration (TP) in soil, land use and land 
cover) are integrated to locate the CPSAs at 
basin scale. The amount of soil erosion in the 
basin were calculated by the remote sensing 
driven Revised Universal Soil Loss Equation 
(RUSLE) (Wischmeier and Smith, 1978; Renard 
et al., 1991).

A=R*K*LS*C*P

wherein, A represents average annual soil loss 
per unit area (t ha-1 yr-1), R is rainfall erosivity 
factor (MJ mm ha-1 h-1 yr-1), K is soil erodibility 
factor (t ha h MJ-1 ha-1 mm-1), L is slope length 
factor, S is slope steepness factor, C is cover 
management factor, and P stands for support 
and conservation practices factor.

The depth of surface runoff was performed 
by rainfall-runoff modeling using the soil 
conservation service curve number (SCS-CN) 
model (SCS, 1985). The SCS-CN model is a 
well-established method in hydrology and 
environmental impact analysis and has been 
very popular because of its convenience, 
simplicity, and its responsiveness to four 
readily monitorable watershed properties (soil 
texture, land use/land cover, surface condition, 
and antecedent moisture condition; Ponce and 
Hawkins, 1996). The standard equations of the 
SCS – CN model is

P is total rainfall, Ia is initial abstraction, Q is 
direct runoff, S is potential maximum retention 
which can range (0, ∞), λ is initial abstraction 
coefficient or ratio, and CN (curve number) is 
empirical parameters, which are used to predict 
the direct runoff. It ranges from (0 to 100).

Slope is one of the most important measures 
of landscape characteristics, and it refers 
to the angle of inclination of a land surface 
above the horizontal, and can be calculated 
by geographic information systems through 
many mathematical equations (Chang and Tsai, 
1991; Peucker and Douglas, 1974). Slope has 
been calculated using Digital Elevation Model 
(DEM) based on Shuttle radar topography 
mission (SRTM), at spatial resolution of 30 m. 
Euclidean distance from surface water in the 
basin was calculated in ArcGIS. The land use 
and land cover map of the basin was prepared 

using rectified high spatial resolution satellite 
images from Google Earth and moderate spatial 
resolution satellite image Sentinel_2 acquired 
on 8.9.2017 and using visual interpretation 
technique. The land use and land cover map 
was classified according to Syrian land use 
and land cover classification system and the 
area of each class was calculated per square 
kilometer. Multiple linear regression (MLR) 
by stepwise method was used to predict TP 
as dependent variable at locations from soil 
samples were not taken during the fieldwork. 
Soil properties (soil organic matter, sand, 
clay, silt, percentage total calcium carbonate, 
pH, electrical conductivity, bulk density) were 
used as independent variables. In addition, 
the spectral bands of satellite images (Bands 
2, 3, 4, and 8 for Sentinel_2 image), vegetation 
indices (Normalized Differences Vegetation 
Index (NDVI), Soil Adjusted Vegetation Index 
(SAVI), the Enhanced Vegetation Index (EVI), 
Modified Soil Adjusted Vegetation Index 
(MSAVI2), Optimized Soil Adjusted Vegetation 
Index (OSAVI), Transformed Vegetation 
Index (TVI), Ratio Vegetation Index (RVI), 
Green Ratio Vegetation Index (GRVI)) and 
topographic indices (slope, aspect) were used 
as auxiliary variables (independent variables) 
to predict TP using multiple linear regression 
equation. Selection of the factors to be included 
in the model was based on the Statistical tests 
(Freund and Littell, 2000). Figure 2 shows the 
spatial distribution of the soil samples in the 
study area. Here 100-point soil samples were 
used as training points to perform models 
for predicting  the spatial distribution of TP at 
locations in which soil samples were not taken 
during the fieldwork, and 51-point soil samples 
as testing points to validate the results of those 
models. The model employed was described 
here under.

Y=a+b1X1+b2X2+bnXn+ε

where Y represents predicted (TP) (dependent 
variable), (X1, X2, Xn) are variables which 
are affected by amount of TP in the soil 
(independent variables), ‘a’ is an intercept 
(constant), (b1, b2, bn) are coefficients of the 
variables, ‘ε’ are residuals (error).

The goodness of fit of the model was based 
on R2 and probability levels. The stepwise 
regression analysis was used to select significant 
variables, by either accepting or eliminating the 
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respective predictor variables, based on the 
significance of T-test. 

Linear normalization method was used (Lou 
et al., 2016) to export the values of the transport 
factors data, which are as previously mentioned 
(soil erosion, surface runoff, slope, euclidean 
distance from surface water) and source 
factors data (total phosphorus concentration 

(TP) in soil, land use and land cover) to new 
values. Values ranged between (0.1 and 0.9) to 
facilitate comparison and analysis between the 
different variables, and to avoid the presence 
of abnormal maximum values during spatial 
analysis as shown in Table 1.

Weighting was assigned for each of the values 
(soil erosion, surface runoff, slope, euclidean 
distance, total phosphorus concentration (TP) 
in soil, land use and land cover) using ranking 
method (Roszkowska, 2013) according to effect 
of each of them on the fragile agriculture areas, 
and exposed to phosphorus loss. This means 
that the factors of the transport and the sources 
of the phosphorus were arranged from the most 
important to the least important in reference 
to the phosphorus loss in the study area. The 
rank sum method was chosen during the 
weighting process, which was carried out using 
the following formula (Roszkowska, 2013):

where, Wi Adjusted weighting for j factor, n 
number of the factors under consideration (k=1, 
2, 3…..n), rj rank position of the factor. Each 

Fig. 2. Spatial distribution of the soil samples.

Table 1. Linear normalization method

CPSAS Factors Linear normalization 
method

T factors

Soil erosion Y=0.1+
X-Min

*(0.9-0.1)
Max-Min

Surface runoff Y=0.1+
X-Min

*(0.9-0.1)
Max-Min

Slope Y=0.1+
X-Min

*(0.9-0.1)
Max-Min

Euclidean 
distance Y=0.1+

X-Min
*(0.9-0.1)

Max-Min

S factors

Total phosphorus 
concentration Y=0.1+

X-Min
*(0.9-0.1)

Max-Min
land use and  
land cover

Olives=0.3, Citrus=0.4, 
Crops = 0.5, Forest = 0.1
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factor is weighted (n-rj+1) and then normalized 
by the sum of all weights {∑(n-rk+1)}. Table 2 
shows the weights assigned to evaluate data 
layers.

The transport factors and source factors were 
integrated to locate the CPSAs at basin scale 
according to weighting values given in Table 
2 and using Overlay weighted sum method in 
ArcGIS, as shown by the following equation.

CPSAS = (ER*W1) + (RU*W2) + (TP*W3) + 
(LU*W4) + (D*W5) + (S*W6)

where, ER is soil erosion factor, RU is surface 
runoff, TP is total phosphorus in soil, LU is land 
use and land cover, D is euclidean distance, S 
is slope, W1 to W6 are weighting values.

The resulting map was then classified into 
five levels of severity of the phosphorus loss 
in the study area using Quartile classification 
method, which is considered an appropriate 

method for linearly distributed data. Figure 3 
shows flowchart of the methodology adopted 
for the study.

Results and Discussion
The quantity of soil erosion were classified 

into four classes according (Table 3) to the 
severity of the erosion (Mazahreh et al., 2018).

It is clear from the Table 3 that about 38.5% 
of the study area not affected by soil erosion. 

Table 2. Weights assigned to each factor based on the rank sum method

Raw Factors Rank Weighting (n-rj+1) Adjusted weighting
1 Soil erosion 1 6 0.286
2 Surface runoff 2 5 0.238
3 Slope 6 1 0.048
4 Euclidean distance 5 2 0.095
5 Total phosphorus concentration 3 4 0.19
6 Land use and land cover 4 3 0.143

Sum 21 1

Fig. 3. Flow chart of the methodology.

Table 3. Soil erosion classes and the percentage of the area 
under each soil erosion class

Area
(%)

Soil loss rate
(t ha-1 year-1)

Intensity of  
erosion

38.5 0 No erosion
43.34 0-10 Low
1.4 10-50 Medium
0.07 50-200 High
0 > 200 Very high
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Fig. 4. Spatial distribution of soil erosion classes.

Fig. 5. Depth of annual runoff.
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The low severity class represented about 43.34% 
of the total area, with a rate of soil loss less 
than (10 t ha-1 y-1) and medium severity class 
constituted about 1.4% of the total area, with 
a rate of soil loss between (10-50 t ha-1 y-1). 
These results are consistent with the results 
obtained by Al-Abed et al., 2018. High values of 
soil erosion are observed mainly in the eastern 
and northeastern part of the study area (Fig. 4)
due to integrated impacts of factors including 
the steep slopes, high precipitation, and soils 
with low depth located on limestone. While the 
western part of the study area was not affected 
by soil erosion as results of a combination of 
different factors, like flat land with low slope 
and deep clay loam, clay soils.

The amounts of runoff depth were classified 
to seven classes. Figure 5 represents the spatial 
distribution of the surface runoff depth classes 
in the study area for the period beginning 
October 2017 until May 2018 (Ibraheem et al., 
2019). The amounts of runoff were high in the 
western and southwestern part of the study 
area, and this may be due to the heavy soil 
texture (clay, clay loam), which does not allow 

high permeability. Additionally, the cultivation 
of field crops does not prevent the surface 
runoff as observed in forests and orchards. In 
the eastern part of the study area the runoff 
depth decreased compared with the western 
part, and this may be due to soil texture 
(sandy loam, sandy clay loam) in the eastern 
parts, in addition to vegetation cover (forest, 
olive groves) which prevent the surface runoff 
significantly.

Figure 6 represents the spatial distribution 
of the euclidean distance from surface water in 
the study area, where the euclidean distance 
output grid, contains the measured distance 
from every cell in the study area to the nearest 
water resource and this ranged from 27.75 to 
2358.47 m.

Spatial distribution of the degree slope in 
the study area (Fig. 7), was calculated using the 
(DEM) and Soil and Terrain Digital Database 
(SOTER) (Dobos et al., 2007) wherein the 
classification of the slope as depicted in Table 
4 was considered. 

Distribution of land use and land cover 
classes in the study area reflected seven classes 

Fig. 6. Euclidean distance from surface water.
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(forest, urban, water, protected plantation, 
citrus orchards, olive groves, and field crops). 
Figure 8 shows the area of each class, where 
the olive groves class was 113.32 km2, the citrus 
orchard 21.62 km2, the forest area 17.81 km2, 
field crops with protected plantation 83.93 km2, 
urban area 37.67 km2, and water area was 10.6 
km2. 

From the results of the stepwise regression 
analysis, the equation for predicting the (TP) 

Fig. 7. Degree of the slope.

Table 4. The slope percentage and classes of topography

Topography Slope percentage
Flat 0-2
Gently undulating 2-5
Undulating 5-10
Rolling 10-15
Moderately steep 15-30
Steep 30-45
Extreme Above 45

Fig. 8. Area of land use-land cover classes.
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was established and applied in the study 
area. The values of total phosphorus in the 
soil ranged between 145.59 and 496.71 mg 
kg-1. Table 5 shows the upper, lower, average 
values of total phosphorus according to each 
class of land use and land cover classes in the 
study area.

High levels of (TP) were accumulated in the 
western and northwestern parts of the study 
area, which were planted by citrus and crops 
and have high quantities of total phosphorus 
in the soils due to use of organic and inorganic 
fertilizers in previous years, and also along 
Al-Abrash river banks from the eastern and 
western sides of the dam, where there are 
different crops (protected plantation, crops, and 
citrus). Figure 9 shows the spatial distribution 
of the total phosphorus in the study area.

The study demonstrated that the critical 
phosphorus source areas (CPSAs) were 

established along Al-Abrash river banks before 
the dam along Al-Madafa to Al-Sisniyyah 
villages to Al-Abrash dam. Large areas of 
crops and orchards are located in these 
regions with high levels of (TP) in the soils. 
The intensive use of organic and inorganic 
fertilizers and proximity of these agricultural 
areas to water sources (Al-Abrash river) and 
canals leads to CPSAs. The CPSAs were also 
located before Al-Abrash dam, almost parallel 
to the previous villages along the village of 
Beit Al-Sheikh Younis to the village of Al-
Mdeirjat until the dam. Figure 10 represents 
the spatial distribution of the villages along 
Al-Abrash river and around the dam. Further, 
these villages are affected by high soil erosion 
due to various factors. 

The results are similar to findings of Al-
Qutaini (2015) which indicated the presence of 
high turbidity in water samples in Al-Abrash 
dam during February after the rainy season, 

Land use and land cover Upper values (mg kg-1) Lower values (mg kg-1) Average values (mg kg-1)
Forest 496.71 165.97 359.18
Citrus 494.31 173.71 390.68
Olives 473.17 145.59 324.83
Field crops 480.91 146.36 344.16

Table 5. Upper, lower and average values of total phosphorus

Fig. 9. Total phosphorus in soils.
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Fig. 11. Critical phosphorus source areas.

Fig. 10. Spatial distribution of the villages.
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and also consistent with those reported by 
Yaghi and Salim (2017), where they showed 
the potential pollution areas with chemical 
fertilizers in Al-Abrash basin. The western part 
of the study area after Al-Abrash dam along 
Al-Twaneen, Dahr Al-Dair, Huwaysiyeh, Tal 
Kazal villages to the sea, which are exposed to 
high intensity of surface runoff due to a large 
amount of precipitation during winter, and 
heavy texture of the soil (clay, clay loam), was 
considered as CPSAs. CPSAs were located in 
the central and northern part of the study area 
outside the basin boundary along the villages 
Smakah, Dananir, Ras Al Deir, Al-Awiya, 
Mashta Ghanem. These areas were planted 
with citrus and field crops, and being closer to 
a network of rivers and canals are also exposed 
to soil erosion of medium intensity. Al-hamidia 
region, which is located to the west of the study 
area and close to the sea, were considered as 
CPSAs. These results are consistent with Al-
Qutaini (2015), where the study showed a very 
high level of environmental pollution in the 
lower basin of Al-Abrash river, especially in 
Al-Sfsafa and Al-hamidia regions. 

The pollution of Al–Abrash river with 
nitrogen and phosphorus compounds resulted 
in growth of aquatic plants in the river channel, 
which hindered the flow of water and threatened 
the aquatic life. Figure 11 represents the spatial 
distribution of the critical phosphorus source 
areas (CPSAs).

The percentage of the area of each critical 
phosphorus source areas in CPSAs of very 
low, low, medium, high, very high categories 
according to land use and land cover classes 
(forest, olives, citrus, field crops) in the study 
area (Table 6) revealed that low and very low 
severity class of phosphorus loss in the study 
area constituted about 54.96% and 58.35% of 
the total area of the forest and olives class, 
respectively. The average severity class 
represented about 15.83% and 16.99% of the 
total area for each of the forest and olives, 

respectively. The high and very high severity 
class for phosphorus loss represented about 
29.2% and 24.66% of the forest and olive 
class respectively. This indicates that more 
than half of the area of forest and olive class 
do not suffer from high risk of phosphorus 
loss, due to the interplay of different factors 
(total phosphorus, surface runoff, soil erosion). 
Relatively low total phosphorus concentrations 
in the soils of these two classes were observed 
compared to soils for both citrus and field 
crops. The low and very low risk classes of 
phosphorus loss were about 24.9% and 13.39% 
of the total area of each citrus and field crops 
class respectively. While the average severity 
classes represented about 29.28% and 23.2%, 
and the high and very high severity class for 
phosphorus loss was about 45.79% and 63.42% 
of the total area for both citrus and field crops 
respectively. This means that more than half 
areas of field crops and close to half area of 
the citrus class were considered as risk areas 
for phosphorus loss towards the water bodies 
due to high concentration of total phosphorus 
in the soils of these regions. This is probably 
due to use of high levels of fertilizers to achieve 
high agricultural production, especially in the 
western part of the study area, and also due 
to high intensity of surface runoff, which 
transports phosphorus to closer water bodies.

Conclusion
The critical phosphorus source areas 

(CPSAs) were located along Al-Abrash 
riverbanks before and after Al-Abrash dam 
at the eastern and western parts of the study 
area. Various crops and citrus orchards are 
planted here which requires a large amount 
of phosphorus fertilization. The high and very 
high severity class for phosphorus loss was 
about 45.79% and 63.42% of the total area for 
citrus and field crops classes, respectively. In 
addition, the high and very high severity class 
for phosphorus loss was 29.2% and 28.78% of 
the forest and olive classes respectively. The 

Table 6. Percentage of the area of different vegetation type under each different phosphorus loss severity classes

Land use/land cover Phosphorus loss severity classes
Vegetation type Very low Low Medium High Very high
Forest 27.38 27.58 15.83 12.92 16.28
Olives 32.79 25.56 16.99 11.79 12.87
Citrus 4.86 20.06 29.28 28.24 17.55
Field crops 1.98 11.41 23.20 31.86 31.56
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study showed the importance of the integration 
of transport and source factors of phosphorus 
for identifying and demarcating the critical 
phosphorus source areas. The study also 
demonstrated and demonstrated the important 
role of remote sensing data as a basic factor in 
providing mathematical models with data to 
perform spatial analysis of CPSAs.
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