

Effects of Rhizobacteria Inoculation on Germination and Physiology Status of Tomato under Salt Stress

Boufares Khaled^{1,2*}, Kouadria Mostefa², Merdjet Yahia Naima¹ and Benali Abdelwahab³

¹Department of Agriculture, Faculty of Life and Natural Sciences, University of Tiaret 14000, Algeria

²Agro-biotechnology and Nutrition in Semi-Arid Zones Laboratory, Tiaret 14000, Algeria

³Laboratory of Plant Physiology Applied to Soilless Crops, Tiaret 14000, Algeria

Received: January 2021

Abstract: The aim of this work is to explore the effect of inoculation with native rhizobacteria strains isolated from steppe ecosystems on enhancing salt tolerance of tomato (Solanum lycopersicum L.). For this purpose, various rhizobacteria strains have been purified, identified, and then applied on tomato seeds, in vitro then in pots to study their effects on the germination parameters and growth under salt stress. Eight genera of rhizobacteria strains were identified; they displayed pertinent plant growth promotion features such as phytohormones biosynthesis, fixation of atmospheric nitrogen, and phosphate solubilization. The obtained results demonstrated that salinity negatively affected seed germination and impaired plant growth. In response to salt stress, uninoculated plants accumulated a significant amount of osmoregulators (proline and glycine betaine), and recorded a decrease in their chlorophyll content, compared to inoculated plants, where the salinity tolerance has been much better with a high seedling growth as well as high chlorophyll and low osmolyte contents. Among the eight strains used in this study, three (Agrobacterium, Citrobacter and Enterobacter) demonstrated their effectiveness in enhancing salt tolerance of tomato plants. The use of native rhizobacteria strains as biofertilizer could be a sustainable approach to improve plant growth in salinity-impacted regions.

Key words: Bacterial inoculation, biofertilization, plant growth-promoting rhizobacteria, osmoregulators, salt stress, *Solanum lycopersicum* L.

The rhizosphere is the most complex microbial habitat on earth, integrating a complex density of plant roots, soil and a diverse microbial consortium of bacteria, archaea, viruses, and microeukaryotes (Ahkami et al., 2017). Since the agricultural labor was known, human has appropriated a large part of natural biodiversity in order to ensure and increase the yields of their crops. One of the methods known is using various groups of microorganisms, including beneficial free-living soil bacteria to improve the growth of crop plants through facilitating the resource acquisition and inhibiting the plant pathogen (Amaresan et al., 2016). The interactions that exist in the rhizosphere between plants and microorganisms must become a major priority for farmers; in fact, the healthy growth of plants and the best way for taking up essential nutrients depends most on the perfect interaction of soil stability and their fertility (Ambrosini et al., 2016). In the last few years researchers have intensified studies on plant-microorganism interaction

in order to develop sustainable agriculture based on the contributions of soil microflora in improving crop yield. Plant growth promoting rhizobacteria (PGPR) are a heterogeneous group of bacteria that can be found in the rhizosphere, at root surfaces and in association with roots, which can increase the growth of the plant through diverse mechanisms (Ahemad and Kibret, 2014). PGPR can improve plant growth through the production of a variety of bioactive compounds such as phytohormones and several active enzymes (Khanna et al., 2019) (Mülner et al., 2020). PGPR can facilitate the nutrients uptake through phosphate mobilization, nitrogen fixation or iron acquisition, which enable plant's growth on nutrient-poor soils (Kumar et al., 2019). They can also contribute to growth by sustaining the plant's health, they can protect plants through direct biocontrol via the production of harmful compounds for neighboring phytopathological microorganisms (Viaene et al., 2016). Therefore, PGPR are of great value for plant productivity and health. Although much remains to be discovered about

*E-mail: khaled.boufares@univ-tiaret.dz

the potential of these bacteria, on improving crop production under stressful conditions. For this purpose, experiments were conducted to assess the effect of microbial inoculum isolated from native plant roots growing in Algerian steppe areas, on germination and growth physiology of tomato (*Solanum lycopersicum L.*) and their role in decreasing the salinity stress.

Materials and Methods

Source of rhizobacteria strains

The bacterial strains tested in this study were isolated from native plant roots growing in Algerian steppe areas (Fig. 1). The choice of area was based on the diversity of rhizospheric microorganisms that live in this area, adapted to extreme conditions (salinity and drought), and which can influence the tolerance of inoculated plants to similar stress conditions in other areas.

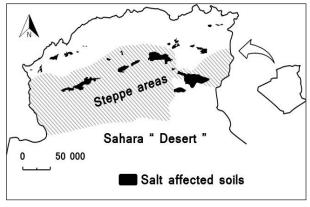


Fig. 1. Map of the steppe areas and salt soils in Algeria.

Isolation and strain purification procedures

The isolation of rhizobacteria was carried out according to the Vincent method (1972), and was done as follows: 10 g of rhizosphere soil was added to 90 mL sterile distilled water, then it was incubated on rotary shaker at 120 rpm for 10 min. 1 mL sample was serially diluted up to 10-7, then 0.1 mL of diluted sample was plated on sterile nutrient agar medium and incubated for 3 days at 28°C. Single colonies were picked up and streaked on sterile nutrient agar medium plates to get pure culture.

Phenotypic and functional characterization of isolates

Well isolated colonies were observed for morphological characterization and, screened for their Gram's stain. Further identification was continued by standard biochemical and physiological tests supplemented as needed by plant growth promotion (PGP) activities tests such as inorganic phosphate solubilization (Kumar *et al.*, 2001), IAA production (MacWilliams and Maria 2009), fixation atmospheric nitrogen (Rodge *et al.*, 2016), and catalase enzyme production (Delarras 2007). Bergey's Manual of Determinative Bacteriology (David *et al.*, 2012) was used as a reference to identify the isolates.

Rhizobacterial strains evaluation on tomato seed germination under salt stress

Eight isolates (BC1...BC8) were selected to study their effect on the germination parameters (germination per cent and root length) under different levels of NaCl stress (electrical conductivity 2; 4 and 8 dS m⁻¹). The experimental approach of our work took place in several stages, which are summarized in the Fig. 2.

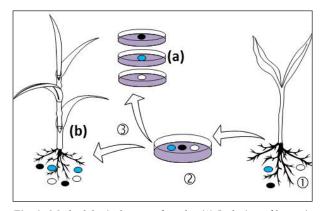


Fig. 2. Methodological steps of study. (1) Isolation of bacteria from native plants roots growing in steppe areas of Algeria, (2) Characterization and identification of strain isolates, (3) Evaluating of the effects of isolates on: (a) germination test in vitro (b) plant growth under salinity stress in the greenhouse.

The tomato seeds were surface sterilized with sodium hypochlorite 2% for 3 min and 75% ethanol for 3 min followed by repetitive washes with distilled water, and then they were soaked in each of the eight bacterial isolate suspensions separately (108 cfu. mL-1) or in distilled water free from bacterial cells as control for 24 hours. A total of 12 seeds were sown in Petri dishes (9 mm diameter) on four sheets of Whatman number 1 filter papers. The seeds were moistened either with distilled water (control) or with solutions of varying NaCl concentration and incubated in growth

Characteristics	Code							
	1	2	3	4	5	6	7	8
Shape	Filamentous	Cocco- bacillus	Bacillus	Coccus	Cocco- bacillus	Cocco- bacillus	Coccus	Cocco- bacillus
Colony	Pale yellow	White	Orange	Pale yellow	Orange	Pink	White	Pale green
Gram Staining	+	-	-	-	-	-	-	-
Catalase	-	+	+	+	-	+	-	+
Fixation atmospheric nitrogen	-	-	+	+++	+	+	++	+
Indole production	-	-	++	+	+	+	+++	+
Solubilization of inorganic phosphate	-	+	+	-	-	+	-	+

Table 1. Morphological and biochemical characterization of rhizospheric isolates

- 1: BC1 Streptomyces; 2: BC2 Acinetobacter; 3: BC3 Agrobacterium; 4: BC4 Azotobacter; 5: BC5 Flavobacterium;
- 6: BC6 Citrobacter; 7: BC7 Enterobacter; 8: BC8 Pseudomonas.

room at temperature for 25°C in the dark, for 7 days, the emergence of the radicle from the seed was considered as an index of germination (Johnson and Wax, 1978). The germination rate was calculated as follows: Germination (%) = (number of seeds germinated/total number of seeds sown) × 100. The average root length of sprouted seeds is measured, by taking the total length of the roots for each treatment and dividing it by the total number of seeds (sprouted or not) (Darrah, 1993).

Rhizobacterial strains effects evaluation on tomato cultivars growth under salt stress

In order to remove all the microorganisms, the soil used was sterilized by autoclaving at 121°C for 30 min, before the inoculation of cultures, then divided into equal quantities (1.2 kg pot-1). Some seeds were soaked in mix of the eight bacterial suspension or in distilled water (control) for 30 min, then they were sown in pots filled with sterilized soil (5 seeds pot-1 and 10 pot per treatment). The experiment was conducted in the green house at 25°C, relative humidity 60%, and plants were subjected to salinity stress by watering (electrical conductivity 2; 4 and 8 dS m⁻¹). Each experiment was replicated three times. Plant samples were collected and analyzed for chlorophyll, proline, and glycine betaine (GB) contents by following the methods described below: For the chlorophyll measurements, Chlorophyll Content Meter (model SPAD 502 Plus Konica Minolta) was used, measurements with the SPAD-502 meter produce relative SPAD meter values that are proportional

to the amount of chlorophyll present in the leaf (Ling *et al.*, 2011). The method Paquin and Lechasseur (1979) was used for proline determination in leaves, the absorbance was measured at 520 nm with a UV-visible spectrophotometer. The GB content was determined by following the method used by Park *et al.* (2004), the absorbance was measured at 365 nm. The glycine betaine concentration is determined by referring to a standard curve prepared from a solution of the glycine betaine prepared in sulfuric acid on the basis of known concentrations.

Statistical analysis

Data were analyzed for significant mean differences via two-way Analysis of Variance (ANOVA) using XLSTAT software (version 2014). The effects of the bacterial inocula, compared with the negative control, were evaluated by multiple comparisons among class means using Dunnett's test.

Results and Discussion

Phenotypic and functional characterization of isolates

At the end of the microbiological analysis, eight (08) strains of rhizobacteria have been purified and identified in the genera: Streptomyces, Acinetobacter, Agrobacterium, Azotobacter, Flavobacterium, Citrobacter, Enterobacter and Pseudomonas, then they were coded respectively as: BC1, BC2, ... BC8. Due to a large number of taxonomic species yet to be described, complete characterization has not

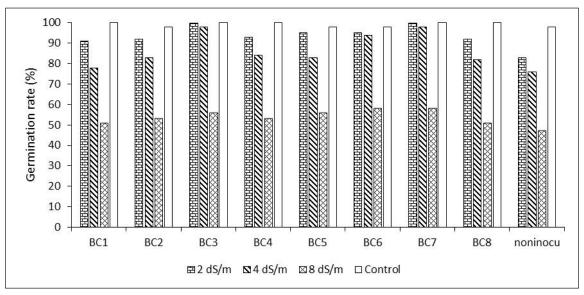


Fig. 3. Inoculation effects on seed germination percentage under salt stress.

been possible. All isolates were Gram-negative except BC1, inorganic phosphate solubilizing capacity was exhibited by BC2, BC3 and BC6 while the isolates BC4 had a good ability to fix atmospheric nitrogen. Out of the eight isolates, BC7 produced considerably higher amounts of IAA. Phenotypic and functional characterization of isolates were shown in Table 1.

Inoculation effects on seed germination under salinity stress

The results showed that under salt stress, most of the seeds undergo a reduction in their germination per cent compared to the unstressed seeds, except for inoculated seeds with BC3, BC6 and BC7 which were able to maintain a germination rate slightly close to 96% and exhibited significant difference at salinity levels of 2 and 4 dS m⁻¹ compared to other strains. By applying the high salinity level (8 dS m⁻¹), germination percent did not exceed 60% for all strains (Fig. 3).

As with germination percent, root length was also significantly ($P \le 0.05$) improved with inoculated seeds under salinity stress conditions. As may be seen below (Fig. 4), all of BC3, BC6 and BC7 strains were the most effective in enhancing germination percent and led to a considerable increase in root length.

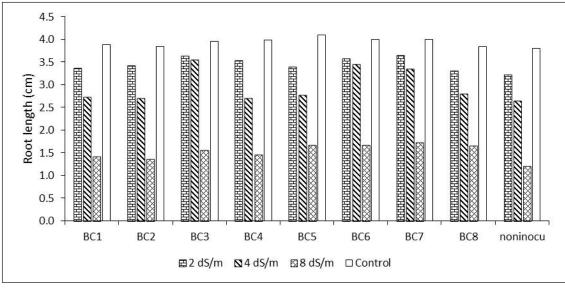


Fig. 4. Inoculation effects on root length under salt stress.

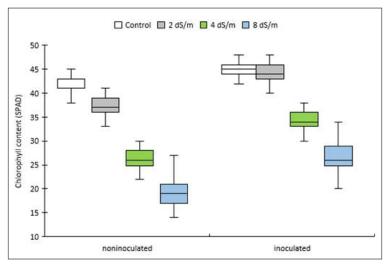


Fig. 5. Effect of inoculation on chlorophyll content under salt stress.

Inoculation effects on tomato seedling growth under salt stress

Determination of chlorophyll content: The data regarding chlorophyll content were collected after 60 days of culture, it showed that watering with salt water at different concentrations (2, 4 and 8 dS m⁻¹) induced a decrease of chlorophyll content in all treatments compared to unstressed control, this decrease was less in inoculated plants. Box-plots analysis (Fig. 5) revealed that the use of PGPR at different salinity levels was highly effective to enhance the chlorophyll content up to 44.13; 34.1 and 26.8 SPAD, respectively, for 2; 4 and 8 dS m⁻¹ compared to uninoculated plants (37.13, 26.06 and 19.26 SPAD).

Determination of proline content: It was revealed from Fig. 6 that inoculation was very effective in decreasing the proline content under high salinity levels, the lowest proline content (46.83 and 50.91 μg mL⁻¹) were obtained with inoculated plants with a mix of all strains, these results differ significantly as compared to 51.52 and 55.25 μg mL⁻¹ recorded with uninoculated plants treated respectively with 4 and 8 dS m⁻¹ salt stress.

Determination of glycine betaine content: As shown in Fig. 7, under salinity stress the uninoculated plants accumulate a significant amount of glycine betaine, its content increased from 273.83 to 306.83 and then to 336.86 μg mL⁻¹ respectively for the three varying NaCl concentration (2, 4 and 8 dS m⁻¹). However, this increase was less significant in the case

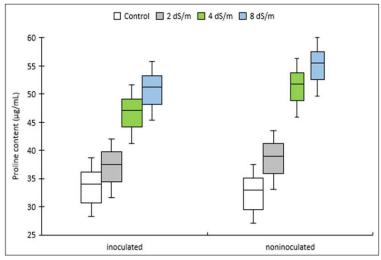


Fig. 6. Effect of inoculation on Proline content under salt stress.

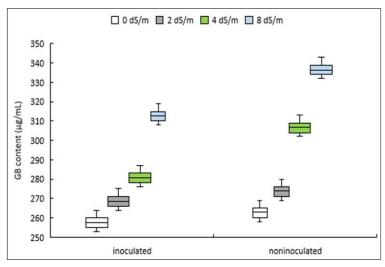


Fig. 7. Effect of inoculation on Glycine betaine content under salt stress.

of plants inoculated with a mix of all strains; 268.56, 280.56 and 312.86 µg mL⁻¹ were recorded respectively for the three concentrations. Inoculation had considerable positive impacts on decrease of this osmolyte.

Discussion

The results of the present study revealed that germination parameters including germination per cent and root length were all significantly decreased with increasing salinity stress levels in uninoculated seeds, this trend has been reported by many researchers, Bano and Fatima (2009) on Zea mays, Kazachkova et al. (2018) on Arabidopsis thaliana, Singh et al. (2015) on wheat and Zhang and Blumwald (2001) on tomato. Previous studies attribute that to a decrease in the viability of seeds and slow or less mobilization of reserve foods (Cumming et al., 2015) or suspending the absorption of water and nutrients (physiological drought) as suggested by Kazachkova et al. (2018). On the other hand, the same results indicate that the inoculated seeds are more resistant and their germination per cent higher than those uninoculated at the same salinity levels. In a general way, the effect of inoculation is manifested by an increase in germination per cent and root length. Several publications have appeared in recent years (Bhattacharyya and Jha, 2012; Egamberdieva et al., 2019; Zerrouk et al., 2020) documenting that there was a significant increase in germination per cent and root elongation after inoculation of seeds with some rhizobacteria strains. Wang et al. (2015) have proposed that the germination

parameters can be used as selection criteria of rhizobacteria for their participation in seeds tolerance to salt stress. In this work and in related references it was observed that increased salinity reduced total chlorophyll levels but increased proline, and glycine betaine contents (Shabala et al., 1998; Abiala et al., 2018). According to Gharsallah et al. (2016) the decrease in chlorophyll content is due to the reorganization of the enzymatic functioning of salt stressed plants. In fact, glutamate, which is a precursor common to chlorophyll pigments and some osmolyte, is used more in the biosynthesis of osmolyte (Bresson, 2013). In this experiment, however, results showed that the proline and GB accumulation did not rise substantially in inoculated plants, which meant that they were less stressed. Several authors suggested that different PGPR including Staphylococcus, Agrobacterium and Azotobacter genus can improve the properties of soil and facilitate the uptake of essential nutrients (Barazani and Friedman, 1999) (Ipek et al., 2014) (Viaene et al., 2016). Also Esmaeil Zade et al. (2019); Ali et al. (2020), through their studies concluded that Pseudomonas, Micrococcus and Enterobacter genus can help plants to better tolerate environmental stresses by producing certain phytohormones, such as auxins (IAA), gibberellins and cytokinins. As well other PGPR, such as Bacillus, Acinetobacter, Citrobacter and Flavobacterium, have a good ability to produce a variety of bioactive compounds such as enzymes and bioactive peptides under drought, heavy metals, and salts stress which can contribute to alleviate the stress (Kumar

et al., 2019; Khanna et al., 2019; Mülner et al., 2020). Therefore, they are of high value for plant productivity and health. From this study, it is clearly demonstrated that the adverse effects of salinity could be partially or fully compensate by the rhizobacteria inoculation, it is possible to conclude that the Rhizobacteria and their interactions with plants hold great promise for enhancing the crops production and may be useful in agronomic situations where soil salinity is diagnosed as a problem.

Conclusion

The study of rhizospherical interactions (plant-microorganisms) in the last few years has shown the capital role of microorganisms in the harmony of plant growth and proves that they are sustainable partners. Consequently, farmers must know most of them, their mode of expression and the way to take advantage of them to enhance the crop production. The results of our study demonstrate clearly that salinity decrease the germination parameters, reduces total chlorophyll levels and increase osmoregulators contents. However, inoculation with rhizobacteria strains isolated Algerian steppe areas, tomato considerably seedlings growth, raised chlorophyll content, and decreased the accumulation of osmoregulators contents (proline and glycine betaine). Summing up the above results, it clearly appears that rhizobacterias are considered as ecological and economical alternative to reduce the high salinity effect and can be used as an efficient biofertilizer in crop plants in salinity-impacted regions mainly in arid regions.

Acknowledgments

The authors thank Ibn Khaldoun University, for financial and technical support.

Thanks are due to Professor A.K. Hassani, Laboratory of Plant Physiology Applied to Soilless Crops for critical reading of the manuscript.

References

Abiala, M.A., Abdelrahman, M., Burritt, D.J. and Tran, L. 2018. Salt stress tolerance mechanisms and potential applications of legumes for sustainable reclamation of salt-degraded soils. *Land Degradation and Development* 29(10): 3812-3822. https://doi.org/10.1002/ldr.3095

- Ahemad, M. and Kibret, M. 2014. Mechanisms and applications of plant growth promoting rhizobacteria: Current perspective. *Journal of King Saud University Science* 26(1): 1-20. https://doi.org/10.1016/j.jksus.2013.05.001
- Ahkami, A.H., Allen White, R., Handakumbura, P.P. and Jansson, C. 2017. Rhizosphere engineering: Enhancing sustainable plant ecosystem productivity. *Rhizosphere* 3: 233-243. https://doi.org/10.1016/j.rhisph.2017.04.012
- Ali, S., Hameed, S., Shahid, M., Iqbal, M., Lazarovits, G. and Imran, A. 2020. Functional characterization of potential PGPR exhibiting broad-spectrum antifungal activity. *Microbiological Research* 232: 1-58. https://doi.org/10.1016/j.micres.2019.126389
- Amaresan, N., Kumar, K., Madhuri, K. and Usharani, G.K. 2016. Isolation and characterization of salt tolerant plant growth promoting Rhizobacteria from plants grown in Tsunami affected regions of Andaman and Nicobar islands. *Geomicrobiology Journal* 33(10): 942-947. https://doi.org/10.1080/01490451.2015.1128994
- Ambrosini, A., de Souza, R. and Passaglia, L.M. 2016. Ecological role of bacterial inoculants and their potential impact on soil microbial diversity. *Plant Soil* 400(1-2): 193-207. https://doi.org/10.1007/s11104-015-2727-7
- Bano, A. and Fatima, M. 2009. Salt tolerance in *Zea mays* (L). following inoculation with Rhizobium and Pseudomonas. *Biology and Fertility of Soils* 45(4): 405-413. https://doi.org/10.1007/s00374-008-0344-9
- Barazani, O. and Friedman, J. 1999. Is IAA the major root growth factor secreted from plant-growth-mediating bacteria? *Journal of Chemical Ecology* 25(10): 2397-2406. https://doi.org/10.1023/A:1020890311499
- Bhattacharyya, P.N. and Jha, D.K. 2012. Plant growth-promoting rhizobacteria (PGPR): Emergence in agriculture. *Plant Soil* 28(4): 1327-1350. https://doi.org/10.1007/s11274-011-0979-9
- Bresson, J. 2013. Interactions plante-microorganismes implication de la rhizobacterie Phyllobacterium brassicacearum dans les réponses d'Arabidopsis thaliana au stress hydrique. Doctoral thesis, Montpellier university, France, 250 p.
- Cumming, J.R., Zawaski, C., Desai, S. and Collart F. 2015. Phosphorus disequilibrium in the tripartite plant-ectomycorrhiza-plant growth promoting rhizobacterial association. *Journal of Soil Science and Plant Nutrition* 15(2): 464-485. https://doi.org/10.4067/S0718-95162015005000040
- Darrah, P.R. 1993. The rhizosphere and plant nutrition: a quantitative approach. *Plant and Soil* 155(1): 1-20. https://doi.org/10.1007/BF00024980
- David, R., BooneRichard, W. and CastenholzGeorge, M. 2012. Bergey's Manual of systematic

bacteriology. 2nd ed. NY, USA: *Springer-Verlag* 5: 33-38. https://doi.org/10.1007/978-0-387-21609-6

- Delarras, C. 2007. Microbiologie pratique pour le laboratoire d'analyses ou de contrôle sanitaire. Tec and Doc Lavoisier, Paris.
- Egamberdieva, D., Wirth, S., Bellingrath-Kimura, S., Mishra, J. and Arora, N. 2019. Salt-tolerant plant growth promoting Rhizobacteria for enhancing crop productivity of saline soils. *Frontiers* 10: 2791. https://doi.org/10.3389/fmicb.2019.02791
- Esmaeil Zade, N., Sadeghi, A. and Moradi, P. 2019. Streptomyces strains alleviate water stress and increase peppermint (Mentha piperita) yield and essential oils. *Plant and Soil* 434(1-2): 441-452. https://doi.org/10.1007/s11104-018-3862-8
- Gharsallah, C., Fakhfakh, H., Grubb, D. and Gorsane, F. 2016. Effect of salt stress on ion concentration, proline content, antioxidant enzyme activities and gene expression in tomato cultivars. *AoB Plants* 8: 1-55. https://doi.org/10.1093/aobpla/plw055
- Ipek, M., Pirlak, L., Esitken, A., Figen Dönmez, M., Turan, M. and Sahin, F. 2014. Plant growth-promoting Rhizobacteria (PGPR) increase yield, growth and nutrition of strawberry under high-calcareous soil conditions. *Journal of Plant Nutrition* 37(7): 990-1001. https://doi.org/10.1080/01904167.2014.881857
- Johnson, R.R. and Wax, L.M. 1978. Relationship of soybean germination and vigor tests to field performance. *Agronomy Journal* 70(2): 273-278. https://doi.org/10.2134/agronj1978.0002196200 7000020014x
- Kazachkova, Y., Eshel, G., Pantha, P., Cheeseman, J.M., Dassanayake, M. and Barak, S. 2018. Halophytism: What have we learnt from arabidopsis thaliana relative model systems? *Plant Physiology Preview* 178(3): 1-26. https://doi.org/10.1104/pp.18.00863
- Khanna, K., Jamwal, V., Gandhi, S., Ohri, P. and Bhardwaj, R. 2019. Metal resistant PGPR lowered Cd uptake and expression of metal transporter genes with improved growth and photosynthetic pigments in Lycopersicon esculentum under metal toxicity. *Scientific Reports* 9(1): 1-14. https://doi.org/10.1038/s41598-019-41899-3
- Kumar, A., Patel, J., Meena, V. and Srivastava, R. 2019. Recent advances of PGPR based approaches for stress tolerance in plants for sustainable agriculture. *Biocatalysis and Agricultural Biotechnology* 20: 101271. https://doi.org/10.1016/j.bcab.2019.101271
- Kumar, V., Behl, R.K. and Narula, N. 2001. Establishment of phosphate-solubilizing strains of azotobacter chroococcum in the rhizosphere and their effect on wheat cultivars under green house conditions. *Microbiological Research* 156(1): 87-93. https://doi.org/10.1078/0944-5013-00081

- Ling, Q., Huang, W. and Jarvis, P. 2011. Use of a SPAD-502 meter to measure leaf chlorophyll concentration in Arabidopsis thaliana. *Photosynthesis Research* 107(2): 209-214. https://doi.org/10.1007/s11120-010-9606-0
- MacWilliams and Maria, P. 2009. *Indole Test Protocol*. American Society for Microbiology, Washington.
- Mülner, P., Schwarz, E., Dietel, K., Junge, H., Herfort, S., Weydmann, M. and Vater, J. 2020. Profiling for Bioactive Peptides and volatiles of plant growth promoting strains of the Bacillus subtilis complex of industrial relevance. *Frontiers in Microbiology* 11: 1432. https://doi.org/10.3389/fmicb.2020.01432
- Paquin, R. and Lechasseur, P. 1979. Observations sur une méthode de dosage de la proline libre dans les extraits de plantes. *Canadian Journal of Botany* 57(18): 1851-1854. https://doi.org/10.1139/b79-233
- Park, E.J., Jeknić, Z., Sakamoto, A., DeNoma, J., Yuwansiri, R., Tony, N.M. and Chen, H.H. 2004. Genetic engineering of glycinebetaine synthesis in tomato protects seeds, plants, and flowers from chilling damage. *The Plant Journal* 40(4): 474-487. https://doi.org/10.1111/j.1365-313X.2004.02237.x
- Rodge, S., Sayali, K. and Shraddha, S. 2016. Isolation and characterization of PGPR fromroots of ficus religiosagrowing on concrete walls and its effect on plant growth in drought condition. *International Journal of Current Microbiology and Applied Sciences* 5: 583-593.
- Shabala, S.N., Martynenko, A., Babourina, O. and Newman, I. 1998. Salinity effect on bioelectric activity, growth, Na⁺ accumulation and chlorophyll fluorescence of maize leaves: A comparative survey and prospects for screening. Functional Plant Biology 25(5): 609-616. https://doi.org/10.1071/PP97146
- Singh, R., Jha, P. and Jha, P. 2015. The plant-growth-promoting bacterium Klebsiella sp. SBP-8 confers induced systemic tolerance in wheat (*Triticum aestivum*) under salt stress. *Journal of Plant Physiology* 184: 57-67. https://doi.org/10.1016/j.jplph.2015.07.002
- Viaene, T., Langendries, S., Beirinckx, S., Maes, M. and Goormachtig, S. 2016. Streptomyces as a plant's best friend? FEMS Microbiology Ecology 92(8): 119. https://doi.org/10.1093/femsec/fiw119
- Vincent, J.M. 1972. A manual for the practical study of root-nodule bacteria. *Journal of Basic Microbiology* 12(5): 153-159. https://doi.org/10.1002/jobm.19720120524
- Wang, Y., Tang, S. and Jin, H. 2015. Effect of glucose, root exudates and N forms in mycorrhizal symbiosis using Rhizophagus intraradices. Journal of Soil Science and Plant Nutrition

15(3): 726-736. https://doi.org/10.4067/S0718-95162015005000049

Zerrouk, I.Z., Rahmoune, B., Auer, S., Rößler, S., Lin, T., Baluska, F., Dobrev, P.I., Motyka, V. and Ludwig-Müller, J. 2020. Growth and aluminum tolerance of maize roots mediated by auxinand cytokinin-producing Bacillus toyonensis requires polar auxin transport. *Environmental and Experimental Botany* 176: 104064. https://doi.org/10.1016/j.envexpbot.2020.104064

Zhang, H. and Blumwald, E. 2001. Transgenic salttolerant tomato plants accumulate salt in foliage but not in fruit. *Nature Biotechnology* 19: 765-768. https://doi.org/10.1038/90824

Printed in June 2021