
Contents

Effects of biological and chemical sources of fertilizers on sunflower yield and its components	63
Maryam Zamanian and Mohammad Yazdandoost	
Targeted yield based integrated nutrient management of cabbage in torripsamment S.R. Yadav, B.S. Meena, Anirudh Choudhari and Sunil Kumar	7 5
Boron management in green gram (Vigna radiata L. Wilczek) under custard apple (Annona squamosa L.) based agri-horti system in semi-arid region Raj Kumar, J.K. Singh, Alok Kumar Singh, Srishti Dipriya Minz and Nasam Midhun Kumar	79
Conjunctive application of organic and inorganic fertilizers to improve soil fertility and wheat (<i>Triticum aestivum</i> L.) productivity in semi-arid region Narendar Kumar Meena, A.M. Latare, M.K. Singh, Prashant Sharma and Kamlesh Verma	85
Effect of different grazing management practices on soil health in Lasiurus sindicus grasslands of arid western plain Nav Raten Panwar, Sharmila Roy, Mahesh Kumar and C.B. Pandey	93
Techno-economic analysis of inclined solar dryer for carrot (Daucus carota L.) drying Surendra Poonia, A.K. Singh and Dilip Jain	99
Genetic diversity of groundnut (<i>Arachis hypogaea</i> L.) revealed by RAPD and ISSR markers Papi Reddy, Pritesh Sabara, Shital M. Padhiyar, Kulkarni, G.U., J.V. Kheni and Rukam S. Tomar	109
Effect of hormonal application on physio-biochemical characters to improve seed yield of Sewan grass (Lasiurus sindicus Henrard) Maharaj Singh, K. Venkatesan and N.K. Sinha	117
Pollen biology of <i>Grewia optiva</i> drummond genotypes: An important agroforestry tree of north western Himalayas Saresh N.V., Archana Verma, Asu Singh Godara, Dharmendera Meena and Arjun Lal Bijarnia	12 3
Genetic variability studies in fennel (Foeniculum vulgare) in arid western Rajasthan Mahipal Jat and Santosh Choudhary	135
Assessment of pattern and sustainability of livestock diversification in Odisha Urmi Pattanayak and Kalu Naik	141
Short Communication	
Should we be concerned about climate change? Bachir Khezzani	149
Modification of traditional tractor-drawn seed drill for arid region crops A.K. Singh, Dinesh Mishra, Prem Veer Gautam, Surendra Poonia and Dilip Jain	151

Effect of Different Grazing Management Practices on Soil Health in Lasiurus sindicus Grasslands of Arid Western Plain

Nav Raten Panwar*, Sharmila Roy, Mahesh Kumar and C.B. Pandey

ICAR-Central Arid Zone Research Institute, Jodhpur 342 003, India

Received: October 2021

Abstract: Maintenance of optimal levels of fodder production from grasslands and rangelands require higher importance as in the arid zone, forage species grow under hostile climatic conditions and also bear high grazing pressure. Therefore, a study was undertaken to assess the effect of different grazing management practices in *Lasiurus sindicus* grasslands on soil chemical and biological properties and carbon management. Silviculture systems, managed pastures and natural grassland with control grazing had significantly higher values for SOC, CMI, MBC and DHA in comparison to the reference soil (undisturbed soil). The grazing management in *Lasiurus sindicus* based grassland is highly favourable to soil carbon management and soil health improvement. Silvipasture system and controlled grazing in grasslands had a beneficial role in restoring soil health in arid western Rajasthan.

Key words: Grazing practices, Lasiurus sindicus, arid western plain, soil health, CMI.

Grasslands form major land use of Arid Western plains of India and support livestock based economy of the region. Grassland covers dominate among different land use systems and provide main support to the huge livestock population of the region (Kar et al., 2009). The protection of the degraded grassland and supply of nutrients sufficed for the revival of Sewan grassland (Kumawat et al., 2017). Lasiurus sindicus is one of the dominant grass species of the region and found to have higher water and energy use efficiency among the palatable desert grasses. Maintenance of optimum levels of forage production from rangelands assumes importance as in the arid zone, forage species grow under unfavorable climatic conditions and also bear high grazing pressure (Bawa, 1984). Due to increasing human/livestock population, degradation of the grasslands is rampant thereby making management and preservation of the remaining natural resource essential. Degradation of soil habitat is closely associated with soil health thus understanding soil chemical and biochemical properties becomes critical for better management of ecosystem, these properties were ultimately controlled by various labile pools of soil carbon. Management interventions, such as grazing, cutting, fertilisation, reseeding or irrigation have been found to affect SOC to some extent (Conant et al., 2017; Rumpel et al., 2015). The

*E-mail: npanwar_soil@yahoo.com

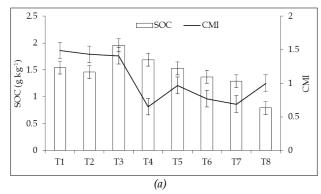
carbon management index (CMI) encompasses both SOC pool and C lability, which can be a useful indicator to assess the ability of management practices to improve soil quality (Blair *et al.*, 1995) under different agricultural systems. Soils with higher CMI improve soil C and nitrogen (N) concentrations (Kumar *et al.*, 2019). Changes in the organization of microbial biomass with land management influences soil fertility and productivity, helping in grassland restoration. Therefore, a study was undertaken to assess the effect of different land uses of *Lasiurus sindicus* (LS) on chemical and biological properties of soil.

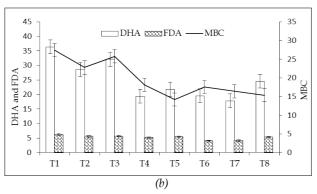
Materials and Methods

The experiment was conducted at Chandan Farm and Regional Research Station Farm, ICAR-CAZRI, Regional Research Station, Jaisalmer, Rajasthan, India during active phases of grass growth starting from 26th to 50th metrological week (July to December) in 2012. Eight *Lasiurus sindicus* land uses (1: Silvipasture - LS + Mopane; 2: Managed pasture; 3: Natural grassland - Controlled grazing; 4: Natural grassland - Over grazed; 5: Cropped area; 6: Rangeland - protected, 7: Rangeland - unprotected and 8: Reference - undisturbed soil) were selected based on their management and degradation levels.

Composite soil samples from 0-15 cm were air-dried (25°C), hammered gently to

break the clods, extraneous roots, and other foreign materials were removed, and finally passed through a 2 mm sieve. The soils were analyzed for oxidizable SOC by the method of Walkley and Black (1934), available nitrogen was determined using alkaline potassium permanganate method by Subbiah and Asija (1956), available P extracted from soil using a 0.5 M sodium bicarbonate by Olsen et al. (1954), and available K after treatment with 1 N ammonium acetate and estimation using a flame photometer (Jackson, 1962). The carbon management index was calculated using method of Blair et al., 1995.


A healthy and productive soil exists when its biological and physico-chemical properties contribute to sustain all actions taking place in it. Among these properties the activities of various soil enzymes play a fundamental role because they arbitrate various chemical reactions involved in maintaining ecosystem quality, functional diversity, nutrient cycling, mineralisation and transformation of organic matter within the carbon cycle. To assess the soil biochemical activities influenced by various land uses activity of the following soil enzymes was measured: (a) dehydrogenase, due to its important role in degradation of organic matter and because it is a general indicator of soil enzymatic activity and (b) hydrolysis of fluorescein diacetate (protease, lipase and esterase), due to their role in releasing of inorganic N in the N turnover. Soil dehydrogenase activity (DHA) was estimated by reducing 2, 3, 5-triphenyltetrazolium chloride (Casida et al., 1964). Total microbial activity in the soils


of fluorescein diacetate (FDA), as described by Green et al. (2006). The above analyses were complemented by the determination of microbial biomass carbon content (MBC) in the individual samples using the fumigationextraction method for measuring soil microbial biomass in accordance with Vance et al. (1987). The soils of the experimental site was sandy with CaCO3 concretions below 50 cm, low in soil organic carbon (<0.1%), low in available N (<70 kg ha⁻¹) and P (<10 kg ha⁻¹) and medium in available K (221 kg ha-1) with alkaline pH (>8.0). Data obtained from various observations were analysed statistically by adopting the appropriate "Analysis of Variance" method (Gomez and Gomez, 1984). Critical differences were worked out at 5% level of probability where 'F' test was significant.

was measured by monitoring the hydrolysis

Results and Discussion

Soils of these area were low in SOC (<2 g kg⁻¹), available macronutrients (available nitrogen and phosphorous) and medium in available potassium (Fig. 1a and Table 1). Silviculture systems observed higher MBC and DHA (27.4 μg g⁻¹, 10.08 μg TPF g⁻¹ soil d-1, respectively) followed by managed pastures (MBC=22.8 μg g⁻¹, DHA=6.12 μg TPF g⁻¹ soil d-1) and natural grassland with control grazing (MBC=25.8 μg g⁻¹, DHA=7.21 μg TPF g⁻¹ soil d-1) in comparison to the reference soil (Fig. 1a and 1b). The silviculture system and managed pastures reported improved soil health which is due to improved management and addition of organic matter through trees. Maximizing carbon entry, and the flow of organic carbon through a grazing system, could be achieved

T1: Silvipasture - LS + Mopane, T2: Managed pasture; T3: Natural grassland - Controlled grazing; T4: Natural grassland - Over grazed; T5: Cropped area; T6: Rangeland - Protected; T7: Rangeland - Unprotected and T8: Reference (Pristine soil)

Fig. 1. Effect of various Lasiurus sindicus based land uses on (a) SOC (g kg-1) and CMI and (b) MBC ($\mu g g^{-1}$), DHA ($\mu g TPF g^{-1} Soil d^{-1}$) and FDA ($\mu g Flu g^{-1} Soil h^{-1}$).

Table 1. Soil available N, P and K (kg ha⁻¹) as influenced by Lasiurus sindicus based land uses

Land uses of Lasiurus sindicus N		P	K	
T1	Silvipasture - LS + Mopane	64.2	5.9	192
T2	Managed pasture	59.6	5.6	217
T3	Natural grassland - Controlled grazing	74.1	6.9	241
T4	Natural grassland - Over grazed	67.8	6.1	263
T5	Cropped area	61.3	9.4	230
T6	Rangeland - Protected	52.4	8.7	224
T7	Rangeland - Unprotected	38.1	8.3	216
T8	Reference (Pristine soil)	54.8	4.6	189
CD (F	?=0.05)	1.89	0.23	NS

with proper grazing management as was observed in the soil parameters. Traditionally, small ruminants have been reported to have negative effects on the environment because of browsing in unprotected areas (Oba et al., 2000). Significantly higher values were found for silvipasture, protected natural grassland as compared to intensively managed grassland and arable lands. Silviculture systems, managed pastures and natural grassland with control grazing had higher values for SOC, MBC and DHA in comparison to the reference soil.

Soil organic carbon is a major determinant for the sustainability of agricultural systems in arid zone. The changes in C pools (active or total) reflect the changes in an agricultural system. The C management index (CMI) can be used to monitor the soil over time, and it also indicated whether a new system or practice is declining or rehabilitating the soil (Sodhi et al., 2009). The results of the study clearly showed that the CMI for silviculture system (1.49), managed pastures (1.43) and grassland with managed grazing (1.41) were higher which indicates better management (Fig. 1b). These grazing/management practices are best as they are helping in rehabilitating the soil. Values of CMI was reported below 1.00 for Natural Grassland (Over grazed); Cropped area; Rangeland (Protected) and Rangeland (Unprotected) which shows that these land uses were declining the soil health. In overgrazed grassland C content was reduced which can be attributable to reduction of herbaceous fine root biomass (Liu et al., 2014) thereby reducing the CMI of overgrazed grasslands. The overgrazed grasslands face serious degradation in Olesharo Catchment, Kenya which leads to low CMI (Saineop et al., 2018). Moreover, according to (Benbi et al., 2015) the land use with the higher

CMI seems to provide better options for C rehabilitation. The CMI is an important index to determine the soil C build-up and estimate the soil quality to compare and assess the effect of diverse cropping systems and best management practices (Blair et al., 1995). It is represented by both labile C and total SOC, thus, it acts as a good indicator of C sequestration and changes in soil with the adoption of cropping systems and management practices (Hazra et al., 2019).

Soil available macronutrients (available nitrogen and phosphorous) were observed in low category while available potassium in medium category (Table 1). Among various management practices highest available N (74.1 kg ha⁻¹), P (9.4 kg ha⁻¹) and K (263 kg ha⁻¹) in natural grassland with controlled grazing, cropped area and natural grassland - over grazed, respectively. Livestock grazing distribution considered an important management practice under all climatic condition (Horn et al., 2003). Heavy grazing was reported to reduce soil fertility and organic matter content (Steinfeld et al., 1996). However, in South Africa's communal grazing lands, significant differences between grazed and protected areas in terms of changes in soil bulk density and nutrients were not found, while differences were related to conditions within individual landscapes (Harrison and Shackleton, 1999). Jusoff (1988) reported greater concentrations of total N and available P in grazed compared to ungrazed areas of Malaysia.

Conclusion

The study indicated the positive role of grazing/management practices in improving soil properties and carbon management indices. Various grazing management practices had an influence on soil organic carbon pools, PANWAR et al.

and consequently on the CMI, the CMI could be used as an indicator for soil degradation or improvement in response to grazing management. The management practices had significant effect on the soil chemical and biological health. Silvipasture system and controlled grazing in grasslands had a beneficial role in restoring soil health in arid western Rajasthan. The grazing management in *Lasiurus sindicus* based grassland is highly favourable to soil carbon management and soil health improvement, and more attention should be paid to improve the soil health and ecosystem sustainability in the arid western plains of Rajasthan.

References

- Bawa, A.K. 1984. Effect of controlled grazing on vegetation cover of Sewan (*Lasiurus sindicus* Henr.) rangeland in arid western Rajasthan. *Annals of Arid Zone* 23(4): 341-346.
- Benbi, D.K., Brar, K., Toor, A.S. and Singh, P. 2015. Total and labile pools of soil organic carbon in cultivated and undisturbed soils in northern India. *Geoderma* 237: 149-158.
- Blair, G.J., Lefroy, R.D.B. and Lisle, L. 1995. Soil carbon fractions based on their degree of oxidation and the development of a carbon management index for agricultural systems. *Australian Journal of Agricultural Research* 46: 1459-1466.
- Casida, L.E., Klein, D. and Santoro, T. 1964. Soil dehydrogenase activity. *Soil Science* 98: 371-376.
- Conant, R.T., Cerri, C.E.P., Osborne, B.B. and Paustian, K. 2017. Grassland management impacts on soil carbon stocks: A new synthesis. *Global Change Biology* 27(2): 662-668.
- Gomez, K.A. and Gomez, A.A. 1984. Statistical Procedures for Agricultural Research (2nd Ed.). John wiley and sons, New York, 680 p.
- Green, V.S., Stott, D.E. and Diack, M. 2006. Assay for fluorescein diacetate hydrolytic activity: Optimization for soil samples. *Soil Biology and Biochemistry* 38: 693-701.
- Harrison, Y.A. and Shackleton, C.M. 1999. Resilience of South African communal grazing lands after the removal of high grazing pressure. *Land Degradation and Development* 10: 225-239.
- Hazra, K.K., Nath, C.P., Singh, U., Praharaj, C.S., Kumar, N., Singh, S.S. and Singh, N.P. 2019. Diversification of maize-wheat cropping system with legumes and integrated nutrient management increases soil aggregation and carbon sequestration. *Geoderma* 353: 308-319.

- Horn, B.E., Hart, C.R. and Paisle, S.I. 2003. Management of rangeland livestock under drought. *Annals of Arid Zone* 41(1): 1-23.
- Jackson, M.L. 1962. *Soil Chemical Analysis*. Prentice Hall of India Pvt. Ltd., New Delhi.
- Jusoff, K. 1988. Influence of sheep grazing on soil chemical properties and growth of rubber (*Heveabra siliensis*) in Malaysia. *Agroforestry Systems* 7: 115-120.
- Kar, A., Garg, B.K., Singh, M.P. and Kathju, S. 2009. Trends in Arid Zone Research in India. Central Arid Zone Research Institute, Jodhpur.
- Kumar, N., Nath, C.P., Hazra, K.K., Das, K., Venkatesh, M.S., Singh, M.K., Singh, S.S., Praharaj, C.S. and Singh, N.P. 2019. Impact of zero-till residue management and crop diversification with legumes on soil aggregation and carbon sequestration. Soil and Tillage Research 189: 158-167.
- Kumawat, R.N., Santra, P. and Sinha, N.K. 2017. Effect of different cultural practices and fertilization on the regeneration of degraded *Lasiurus sindicus* grassland in extreme arid conditions of Jaisalmer, India. *Annals of Arid Zone* 56(3&4): 89-95.
- Liu, J.B., Zhang, Y.Q., Wu, B., Qin, S.G. and Lai, Z.R. 2014. Changes in soil organic carbon and its density fractions after shrub-planting for desertification control. *Polish Journal of Ecology* 62(2): 205-216.
- Oba, G., Post, E., Stenseth, N.C. and Lusigi, W.J. 2000. The role of small ruminants in arid zone environments: A review of research perspectives. *Annals of Arid Zone* 39(3): 305-332.
- Olsen, S.R., Cole, C.V., Watanabe, F.S. and Dean, L.A. 1954. Estimation of Available Phosphorus in Soils by Extraction with Sodium bicarbonate. Circular 939, United States Department of Agriculture, Washington, DC.
- Rumpel, C., Crème, A., Ngo, P., Velásquez, G., Mora, M. and Chabbi, A. 2015. The impact of grassland management on biogeochemical cycles involving carbon, nitrogen and phosphorus. *Journal of Soil Science and Plant Nutrition* 15(2): 353-371.
- Sainepo, B.M., Gachene, C.K. and Karuma, A. 2018. Assessment of soil organic carbon fractions and carbon management index under different land use types in Olesharo Catchment, Narok County, Kenya. *Carbon Balance and Management* 13(4). https://doi.org/10.1186/s13021-018-0091-7.
- Sodhi, G.P.S., Beri, V. and Benbi, D.K. 2009. Using carbon management index to assess the impact of compost application on changes in soil carbon after ten years of rice-wheat cropping. *Communications in Soil Science and Plant Analysis* 40(21-22): 3491-3502.
- Steinfeld, H., deHaan, C. and Blackburn, H. 1996. Livestock-environment Interactions: Issues and

- GRAZING MANAGEMENT IN LASIURUS SINDICUS GRASSLANDS ON SOIL HEALTH
- Option. Commission of the EC Directorate-General for Development, WREN Media Fressingfield, Suffolk, UK.
- Subbiah, B.V. and Asija, G.L. 1956. A rapid procedure for the estimation of available nitrogen in soils. *Current Science* 25: 259.
- Vance, E.D., Brookes, P.C. and Jenkinson, D.S. 1987. An extraction method for measuring soil
- microbial biomass C. Soil Biology and Biochemistry 19: 703-707.
- Walkley, A. and Black, I.A. 1934. An examination of the Degtjareff method for determining organic carbon in soils, Effect of variations in digestion conditions and of inorganic soil constituents. Soil Science 63: 251-263.

Printed in December 2021