Influence of Shade on Genotypic Performance of Clusterbean (*Cyamopsis tetragonoloba*, L. Taub.) under Hot Arid Conditions

Rama Dadheech, R. Sharma and H.R. Mahla*

ICAR-Central Arid Zone Research Institute, Jodhpur 342 003 India

Received: March 2023

Abstract: Twelve varieties of guar were evaluated in shade and open environments. Analysis of variance for varieties showed non-significant variations for days to 50% flowering and pods per plant for both shade and open environments while nodes per plant, cluster length, pods per cluster and seeds per pod were non-significant in shade only with other traits being significantly variable in both the environments. As expected for a species of dry habitat, shade avoidance mechanism for most of the traits showed increase in the value under shade however, a small reduction in days to flowering and number of branches was recorded. Yield was significantly correlated with nodes per plant, branches per plant and pods per plant under both the open and shaded environment. However, cluster on branches was though positive in both the environments, it was significant only under shade. Path analysis for shade environment indicated maximum direct effect by cluster on branches followed by days to flower initiation, cluster length and nodes per plant. The increase in yield was accompanied by increase in cluster length, pods per cluster, pod length and seeds per pod indicating increased efficiency of plant under 35% reduced radiation and associated heat stress, probably proved beneficial for seed yield.

Key words: ANOVA, clusterbean, *Cyamopsis tetragonoloba*, correlations, genetic variability, path analysis, yield.

Clusterbean (*Cyamopsis tetragonoloba* (L.) Taub), popularly known as clusterbean is drought hardy crop grown mainly in Thar Desert covering regions of India and Pakistan. Clusterbean, probably also originated in -this region and is characterized as a short day erect or bushy annual (Purseglove, 1981). It attained an industrial importance and export value for its multipurpose seed borne gum (galactomannan) (Lee *et al.*, 2004; Rodge, 2008). In 2017-18 alone, 419952 tons of clusterbean gum worth US\$ 647 million was exported from India (Thombare *et al.*, 2016; APEDA, 2018). Clusterbean seed is composed of three main components, expressed as percentage: seed coat 14-17%, endosperm 35-42% (mostly galactomannan), and embryo 43-47% (Goldstein and Alter, 1959).

Hot arid climate prevailing in western Rajasthan suits the cultivation of clusterbean which can survive extended periods of drought and high salinity (Francois *et al.*, 1990; Ashraf *et al.*, 2005). Obviously, the clusterbean has evolved

OPEN ACCESS

Edited by

Praveen Kumar Vipin Chaudhary K.S. Jadon S.C. Meena R.K. Solanki

*Correspondence

H.R. Mahla hans.mahla@icar.gov.in

Citation

Dadheech, R., Sharma, R. and Mahla, H.R. 2023. Influence of shade on genotypic performance of clusterbean (Cyamopsis tetragonoloba, L. Taub.) under hot arid conditions. Annals of Arid Zone 62(3): 243-251

https://doi.org/10.59512/aaz.2023.62.3.7 https://epubs.icar.org.in/index.php/AAZ/ article/view/134827

https://epubs.icar.org.in/index.php/AAZ

to sustain the harsh climate characterized by intermittent drought spells; high solar radiation and temperature and nutrient poor soils of the region. In hot arid environment, high air temperature and low humidity are the two factors thought to be critical for reductions in photosynthetic capacity. However, extremely high summer irradiance prevalent in this region is particularly severe that not only directly limits the photosynthetic activity but also contributes to enhanced environmental temperature and soil moisture depletion, further accentuating the adverse effect on photosynthetic activity.

The clusterbean possesses highly developed physiological mechanism to tolerate the three important abiotic stresses i.e., high temperature, high irradiance and moisture Morphologically, woody clusterbean plants are dark green and are covered by pubescence for efficient reflection of solar radiations whereas it seems to be efficient in energy dissipation and quenching of free radicals to survive absorbed extra light energy. However, the acclimation to solar radiation is an active process requiring energy for efficient enactment that is expected to inhibit the realization of potential of the varieties in the open fields. In an study with three clusterbean genotypes, Vyas et al. (1996) reported an increase in yield at 25% shading accompanied by an increase in the plant height, nodes per plant and yield attributes like pods per plant, seed per pod and seed size. The study indicated genotypic differences also although very few genotypes were investigated. The biggest challenge is thus to understand the effect of extreme climatic conditions on growth and yield of clusterbean and develop genotypes especially suited to adverse growth conditions prevailing in the arid region.

Yield improvement program, selection of superior parents is an essential prerequisite i.e., possessing better heritability and genetic advance along with per se performance for various traits (Khan et al., 2005). Correlation provides the information analysis interrelationship of significant plant traits and hence, leads to a directional model for direct and/or indirect improvement in grain yield (Khan et al., 2004). Correlation and path studies give an idea about the contribution of different characters to seed yield (Vandana and Dubey, 1993). Hence, current studies were conducted to estimate the genetic variability, heritability,

correlations and association among yield and yield attributing traits between different genotypes of clusterbean under shade and open conditions.

Materials and Methods

Plant materials and field evaluation

Twelve morphologically diverse varieties were evaluated during kharif 2017 in Central Arid Zone Research Institute (26.3°N and 73.02°E), Jodhpur, India. Six of them viz., HVG 2-30, M-83, FS-277, AG-112, RGC-197 and RGC-1066 were single stem while HG2-20, HG-884, RGC-1038, RGC-1017, RGC-986 and HG-365 were branched. Of these M-83 and HVG 2-30 were smooth and glabrous while rests all were pubescent. The experiment was laid out in randomized block design (RBD) with three replications. The genotypes were sown in two rows of 4 m length following spacing of 45 x 15 cm. The crop was raised with optimum management practices both under open and shaded conditions. The shade was created by a plastic dome fitted in rainout shelter. The shading achieved was about 35% of the average irradiation (3.2-6.8 µmol m⁻² sec⁻¹) received per day during clusterbean growing season (July-November). Shading was calculated using line quantum sensor with meter attached (LQM 70-

Morphological characterization

Observations were recorded on individual plant basis for the following morphological characters: plant height (PH, cm), nodes per plant (NP), branches per plant (BP), clusters on main stem (CM) and branches (CB), cluster length (CL, cm), pods per cluster (PDC), pod length (PDL, cm), pods per plant (PDP), seeds per pod (SPP), 100 seed weight (SW, g) and yield per plant (YP, g), while days to flower initiation (FI) and 50% flowering (50% F) were recorded on the plot basis.

Statistical analysis

The genotypic and phenotypic components of variance, coefficients of variability, broad sense heritability and genetic advance were estimated by adopting the formulae suggested by Allard (1960) and Singh and Chaudhary (1977) using pooled data and under both environments. As correlation alone cannot explain relationships among the characters therefore, path coefficient

Source	R	eplicatior	ı		Variety		Environment	VXE		Error	
DF		2			11		1	11		46	
	Pooled	Shade	Open	Pooled	Shade	Open	Pooled	Pooled	Pooled	Shade	Open
FI	199.74	71.05	107.56	97.15***	68.97**	43.889*	203.34**	74.81**	70.43	30.27	24.44
50%F	161.67	48.22	93.39	55.66**	29.64	41.64	190.12**	90.38**	86.67	31.77	39.28
PH	62106.52	268.09	213.90	8725.42***	10574.21***	1971.40***	63308.68**	3577.82	8896.37	4420.17	656.01
BR	3.39	1.35	0.48	576.88***	268.15***	321.94**	0.06	9.61	40.20	16.71	10.27
ND	156.30	0.15	2.96	176.39***	123.16	103.10**	180.5 **	93.17	185.15	113.67	21.59
CM	26.15	0.08	8.88	163.96***	106.36**	136.40**	10.89	33.44	149.57	48.64	22.13
СВ	16.51	14.92	1.34	1311.63***	600.96***	730.35**	19.01*	34.49	102.44	46.44	36.32
CL	10.46	3.19	0.84	52.56***	25.00	40.82***	5.55*	21.44	63.77	29.10	21.41
PDC	9.46	2.42	1.54	33.23**	24.46	20.07**	0.22	19.11	48.56	26.13	11.13
PDL	3.84	1.51	0.60	22.50**	12.49***	13.38***	4.01**	4.82	10.35	2.60	4.37
PDP	303.15	172.42	86.41	2053.39**	869.24	1678.46	382.72 *	403.28	3572.62	1322.03	1756.28
SPP	6.74	0.84	2.55	10.31**	5.87	11.07*	1.68*	8.48*	18.84	6.64	5.56
SW	0.77	0.69	0.07	10.61***	5.03**	6.65**	0.22 *	3.77**	5.15	3.14	0.94
ΥP	103 48	6 91	12 32	99 77**	72 26**	78 42**	41 09**	55 72**	118 01	37 70	29 39

Table 1. Summary of analysis of variance (ANOVA) for different morpho-physiological characters

DF = Degree of freedom, FI = Flower initiation, 50% F = 50% Flowering, PH = Plant height (cm), BR = Branch per plant, ND = Nodes per plant, CM = Clusters on main branch, CB = Clusters on branch, CL = Cluster length (cm), PDC = Pods per cluster, PDL = Pod length (cm), PDP = Pods per plant, SPP = Seeds per pod, SW = 100 seeds weight (g), YP = Yield per plant(g)

analysis was carried out following Dewey and Lu (1959). The recorded data for phenotypic characters were analyzed by determining their descriptive statistics using OPSTAT software (Sheoran *et al.*, 1998).

Results and Discussion

Analysis of variance (ANOVA)

The analysis of variance (Table 1) of pooled data, indicated significant genotypic variation for all important yield attributing traits. Environmental variations were also significant for all the traits except branches per plant, clusters on main stem and pods per cluster. Interactions between varieties and environments were found significant for days to flower initiation, days to 50% flowering, seeds per pod, 100 seeds weight and yield per plant.

Varieties showed non-significant variations for days to 50% flowering and pods per plant for both in shade and open environment while nodes per plant, cluster length, pods per cluster and seeds per pod were non-significant in shade environment only with other traits being significantly variable in both the environments. A high varietal response to shade associated environmental conditions has been responsible for high variance due to environment for days to flowering, plant height and yield per plant.

The shade significantly increased the plant height and delayed onset of flowering with increase in yield. This indicated detrimental influence of solar radiation on productivity of plant in open environment.

Determination of mean, range values, coefficient of variations and genetic parameters

The coefficient of variation, range, mean, heritability [h² (%)], genotypic coefficient of variability (GCV), phenotypic coefficient of variability (PCV), genetic advance (GA) and genetic advance as per cent of mean (GAM) were estimated for pooled and both the environments (Table 2). Maximum increase under shade was for plant height (99.51%) over open (59.19%) followed by yield per plant (53.88%) over open (4.50%). Most of the traits showed increase in the value under shade however, a small reduction in days to flowering and number of branches was recorded. Maximum increase in yield (Table 3) was recorded for a single stem clusterbean variety M-83 (196.32%), followed by branched varieties RGC-1017 (136.84%) and HG 2-20 (105.37%). All of the varieties except two single stem pubescent types, RGC-197 and RGC-1066 exhibited an increase in yield under shade (Table 2). Similar results were reported by Vyas et al. (1996) for clusterbean and Mauro et al. (2013) for Medicago truncatula and Trifolium subterraneum.

Table 2. Genetic parameters for different characters in clusterbean

~			50% F	PH	BR	ND	CM	СВ	CL	PDC	PDL	PDP	SPP	SW	YP
C.V.		0.50	0.62	11.38	38.96	16.06	21.55	53.91	21.01	16.37	9.38	30.18	7.29	4.11	71.25
Range		28-34	30-38	43.3- 176.6	0-8.3	9.3- 22.6	4.3-14	0-18.3	2.6-7.5	2.3-8.6	4.3-7.8	13.3- 57.6	5.7-8.9	3.25-5	1.4- 10.95
Mean	Pooled	31.43	34.32	88.64	2.77	14.31	7.50	3.73	5.07	4.63	5.87	30.19	7.82	4.06	5.86
	Shade	30.86	33.81	118.09	2.69	15.77	8.02	3.80	5.38	4.90	6.02	30.92	8.04	4.05	6.93
	Open	31.97	34.89	59.19	2.86	12.84	6.99	3.65	4.76	4.35	5.71	29.46	7.61	4.06	4.50
h² (%)	Pooled	54.51	27.99	37.10	89.77	32.89	42.36	85.78	33.35	28.75	62.21	24.63	22.46	60.78	35.44
	Shade	54.24	22.39	55.78	91.20	28.01	52.93	89.24	19.31	22.52	74.11	9.50	20.38	42.32	48.58
	Open	54.09	30.38	55.99	88.46	35.93	70.14	78.54	47.35	46.49	63.06	24.35	49.84	81.46	57.48
GCV	Pooled	3.88	2.25	11.26	103.46	10.34	18.60	109.98	15.32	12.91	9.48	15.33	4.03	9.40	18.64
(%)	Shade	4.14	1.91	13.48	104.51	8.99	19.67	110.13	10.46	11.99	9.67	8.53	3.46	8.00	18.36
	Open	3.36	2.45	11.50	101.87	11.56	25.43	107.19	20.34	15.25	10.19	16.55	6.59	10.66	29.53
PCV	Pooled	5.26	4.25	18.49	109.19	18.03	28.58	118.75	26.52	24.07	12.02	30.89	8.50	12.05	31.31
(%)	Shade	5.62	4.04	18.05	109.44	16.99	27.03	116.58	23.79	25.26	11.23	27.66	7.66	12.30	26.34
	Open	4.57	4.44	15.37	108.31	19.29	30.36	120.95	29.55	22.36	12.84	33.54	9.33	11.81	38.96
GA	Pooled	1.86	0.84	12.52	5.60	1.75	1.87	7.83	0.92	0.66	0.90	4.73	0.31	0.61	1.34
	Shade	1.94	0.63	24.49	5.52	1.55	2.36	8.14	0.51	0.57	1.03	1.60	0.26	0.43	1.83
	Open	1.63	0.97	10.49	5.67	1.83	3.06	7.16	1.37	0.93	0.95	5.20	0.73	0.81	2.19
GAM	Pooled	5.90	2.45	14.13	201.93	12.22	24.94	209.83	18.22	14.26	15.40	15.67	3.93	15.09	22.86
(%)	Shade	6.28	1.86	20.74	205.60	9.80	29.48	214.31	9.47	11.72	17.14	5.41	3.22	10.72	26.36
	Open	5.09	2.78	17.73	197.37	14.28	43.87	195.69	28.83	21.42	16.67	16.82	9.58	19.81	46.13
% chang	ge over	-3.48	-3.10	99.51	-6.09	22.78	14.78	4.05	13.18	12.70	5.42	4.96	5.68	-0.38	53.88

CV% = Coefficient of variation, h^2 = Heritability (%), GCV = Genotypic coefficient of variation, PCV = Phenotypic coefficient of variation, PCV = Power initiation, PCV =

The coefficient of variation (CV%) is appropriate statistics for comparing the extent of variation between different characters with different scales. The CV% was maximum for yield per plant (71.25%) followed by clusters per branch (53.91%) and branches per plant (38.96%) in pooled analysis. Highest heritability

(broad sense) for pooled (89.77 %) and both environments (shade and open) was observed for branches per plant followed by clusters on branches, pod length, days to flower initiation, indicating the least influence of environment in their expression (Table 2), thus suggesting that selection for these traits based on phenotypic

Table 3. Comparison of varietal yield (g) under shade and open conditions

Varieties	Yield in Shade (g)	Yield in Open (g)	% change over open
HVG 2-30	4.72	3.83	23.08
M-83	5.64	1.90	196.32
FS-277	6.89	3.55	94.20
AG-112	6.89	4.72	45.85
RGC-197	5.81	6.11	-4.84
RGC-1066	5.56	6.01	-7.52
HG2-2-20	9.60	4.67	105.37
HG-884	8.67	5.33	62.74
RGC-1038	7.53	5.48	37.40
RGC-1017	7.22	3.05	136.84
RGC-986	6.01	4.88	23.10
HG-365	8.65	7.67	12.73

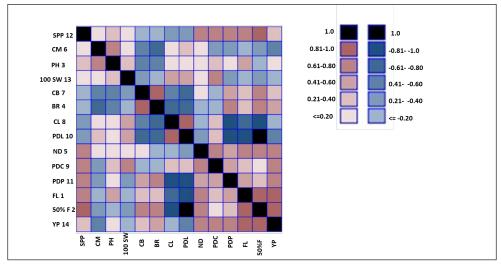


Fig. 1a. Genotypic correlation of different traits under open environment.

appearance would be reliable in the future. These results are in accordance with Rai et al. (2012) whereas, in conflict with those of Kapoor and Bajaj (2014). GCV for pooled ranged from 2.25 for days to 50% flowering to 109.98 for clusters on branches. High GCV was observed for branches per plant (103.46). Similarly for shade it ranged from 1.91 to 110.13 and for open environment and 2.45 to 107.19 for days to 50% flowering and cluster on branches respectively. The magnitude of PCV was in general higher than corresponding genotypic coefficient of variation indicating the higher influence of environmental factors in their expression. These results are similar to those of Dwivedi (2009) and Malaghan (2012) which indicate that greater the genetic variability

among the parents, more are the chances of further improvement. High genetic advance as percentage of mean (GAM) for pooled and both shade and open environment was observed for number of clusters on branches and branches per plant. High genetic advance coupled with high heritability could have resulted from low environment interactions and high variations for the traits and are in accordance with the findings of Gipson and Balakrishnan (1990) and Saini *et al.* (2010).

Correlation coefficient and path analysis

A perusal of results (Fig. 1a,b) revealed greater genotypic correlations than their corresponding phenotypic correlations indicating the preponderance of genetic variance

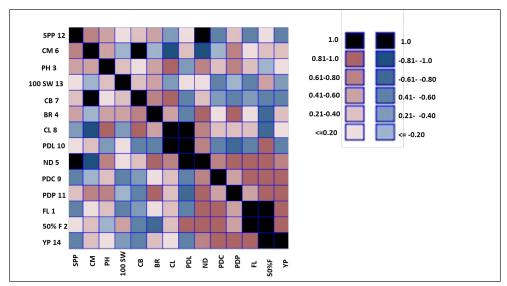
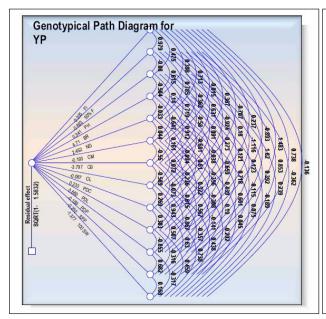



Fig. 1b. Genotypic correlation of different traits under shade environment.

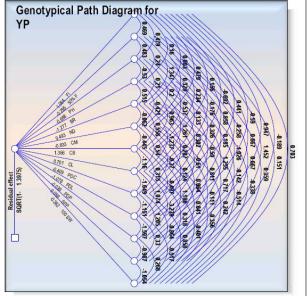


Fig. 2a. Genotypic path coefficients for shade environment.

Figure 2b. Genotypic path coefficients for open environment.

in expression of characters (Gill et al., 1995). Genotypic correlations for open environment (Fig. 1a) were higher and significant for yield with days to 50% flowering (0.996) followed by days to flower initiation (0.811), pods per plant (0.744), pods per cluster (0.716), nodes per plant (0.630), branches per plant (0.410) and seeds per pod (0.363). Genotypic correlations were also positive for shade environment (Fig. 1b) for nodes per plant (0.858), branches per plant (0.800) and pods per plant (0.644). Clusters on main stem and pod length were negatively correlated with yield in both the environments, whereas cluster length, 100 seed weight and plant height were negatively correlated with yield only in shade. Similar results were reported in open environment by Akhtar et al. (2015), Manivannan et al. (2015), Jukanti et al. (2015) and Boghara et al. (2016), in partial agreement with Rohman and Hussain (2003) while contradicts from Kalpande et al. (1997).

Cause and effect relationship of seed yield in path analysis for shade environment (Fig. 2a) indicated maximum direct effect by cluster on branches (1.36) followed by days to flower initiation (1.06), cluster length (0.70) and nodes per plant (0.49). Pods per plant (1.62), branches per plant (1.36) and nodes per plant (0.75) exhibited positive indirect effect through Clusters on branches. Indirect effects of pods per plant (1.00), nodes per plant (0.85) and seeds per plant (0.74) through days to flower initiation

and pod length (0.75), seeds per pod (0.22) and cluster on branches (0.37) through cluster length were also important. Similar results were in conformity with findings of Patil (2014) under open environment study. Days to flowering and cluster length contributed substantially towards yield in open also but indirectly. Plant height exhibited negative direct effect (-0.68) on yield per plant (Arumugarangarajan *et al.*, 2000; Manivannan and Anandakumar, 2013).

In path analysis for open environment (Fig. 2b), the maximum direct effect on yield was shown by branches per plant (4.71) followed by nodes per plant (2.45), pod length (0.663), plant height (0.341) and pods per cluster (0.233). Direct effect and correlation of pod length was reported by Brindha et al. (1997). Direct effect and positive association of plant height on yield was in conformity with the finding of Hanchinamani (2003). Indirect effects of pods per plant (3.38), 50% flowering (2.89) and days to flowering initiation (1.87) through branches per plant and 50% flowering (1.92), days to flower initiation (1.74), seeds per pod (1.62) and pods per plant (1.07) through nodes per plant were also important. Cluster length (0.67) and pods per cluster (0.20) exerted positive effect indirectly through Pod length. The study revealed that selection favoring branches, nodes, pods per clusters and may bring out desired improvement towards enhancing the yield However, main challenge

remains to break negative correlations among yield and the pod length.

The increase in plant height in the shade was due to increased inter-node length and increased nodes per plant that probably resulted in more clusters on main stem (Table 2). The increase in yield was accompanied by increase in cluster length, pods per cluster, pod length and seeds per pod indicating increased efficiency of plant under reduced radiation and associated heat stress. Shading elongates hypocotyl, petiole, leaf blade, internodes, stem and branches but supresses shoot branching and accelerates flowering time (Franklin, 2008; Casal, 2012; Casal, 2013; Nozue, 2015). All of these responses can be helpful for promoting survival when there is competition for light from neighbouring plants. The elongation of plant height and cluster length is also correlated with pod length and seed weight, which becomes rewarding in shade. Similar results were reported by Ma and Li (2019) in Arabidopsis. The ability of plants to adjust their morphology, physiology and phenology to sub-optimal light conditions is well documented (Cai, 2011; Bande et al., 2013). Contrary to present study longer period of vegetative growth was associated with shading and a delay in reproductive development (Mauromicale et al., 2010; Cai, 2011). These differences for character correlations and their effects observed among environments might be due to alteration of phenological development and plant architecture.

Conclusion

As expected for a plant species of dry habitat, shade avoidance mechanism facilitated growth and yield in clusterbean under present investigations. Inhibition of detrimental effect of high light intensity received in 35% shade probably proved beneficial for seed yield. Shade had more pronounced effect on plant height, however, most of the other agronomic and yield attributing traits also modified favorably. The character correlations and their effects were modified with shade probably due to alteration of phenological development and plant architecture.

Acknowledgment

Authors are acknowledging the financial assistance provided by Protection of Plant Varieties and Farmers' Rights Authority,

Government of India, Ministry of Agriculture and Farmers Welfare, New Delhi under the project "Establishment of field gene bank in arid region" for Ph.D. studies, and the results presented here are a part of Ph.D. research of first author.

Competing Interests

Authors declare that they have no competing interests.

References

- Akhtar, L.H., Minhas, R., Bukhari, M.S. and Shah, S.A.S. 2015. Genetic Analysis of Some Quantitative Traits in Clusterbean (*Cyamopsis tetragonoloba* L.). *Journal of Environmental & Agricultural Sciences* 4:48-51.
- Allard, R.W. 1960. Principle of Plant Breeding. John Wiley and Sons Co., New York, 485 p.
- APEDA, 2018. http://www.apeda.in/apedahindi/ Comparative_Statement_April-August_ 2017_ 18.pdf.
- Arumugarangarajan, P., Jebaraj, S. and Backiyarani, S. 2000. Relationship among major economic characters in clusterbean. *South Indian Horticulture* 48(1-6): 64-68.
- Ashraf, M.Y., Akhtar, K., Sarwar, G. and Ashraf, M. 2005. Role of the rooting system in salt tolerance potential of different clusterbean accessions. *Agronomy for Sustainable Development* 25: 243–249.
- Bande, M.B., Grenz, J., Asio, V.B. and Sauerborn J. 2013. Fiber yield and quality of abaca (*Musa textilis* var. Laylay) grown under different shade conditions, water and nutrient management. *Industrial Crops and Products* 42: 70-77.
- Boghara, M.C., Dhaduk, H.L., Kumar, S., Parekh, M.J., Patel, N.J. and Sharma, R. 2016. Genetic divergence, path analysis and molecular diversity analysis in clusterbean (*Cyamopsis tetragonoloba* L.Taub.). *Industrial Crops and Products* 89: 468-477.
- Brindha, S., Ponnuswami, V. and Thamburaj, S. 1997. Correlation studies in clusterbean (*Cyamopsis tertragonoloba*). *South Indian Horticulture* 45: 59-60.
- Cai, Z. 2011. Shade delayed flowering and decreased photosynthesis, growth and yield of Sacha inchi (*Plukenetia volubilis*) plants. *Industrial Crops and Products* 34: 1235-1237.
- Casal, J.J. 2012. Shade avoidance. *Arabidopsis Book* 10:e0157. Doi: 10.1199/tab.0157.
- Casal, J.J. 2013. Photoreceptor signaling networks in plant responses to shade. *Annual Review on Plant Biology* 64, 403-427. doi: 10:1146/aanurev.arplant-050312-120221.

Dewey, D.R. and Lu, K.H. 1959. A correlation and path-coefficient analysis of components of crested wheatgrass seed production. *Agronomy Journal* 51: 515–518.

- Dwivedi, N. K. 2009. Evaluation of vegetable guar germplasm. *Journal of Arid Legumes* 6(1): 17-19.
- Francois, L.E., Donovan, T.J. and Maas, E.V. 1990. Salinity effects on emergence, vegetative growth and seed yield of guar. *Agronomy Journal* 82: 587-592.
- Franklin, K.A. 2008. Shade avoidance. *New Phytologist* 179: 930-944. doi: 10.1111/j.1469-8137.2008.02507.x
- Gill, J.S., Verma, M.M., Gumber, R.K. and Singh, B. 1995. Character association in mung bean lines derived from three inter-varietal crosses in mung bean. *Crop Improvement* 22: 255-260.
- Gipson, A. and Balakrishnan, R. 1990. Variability study in clusterbean [*Cyamopsis tetragonoloba* (L.) Taub]. *South Indian Horticulture* 38: 311-314.
- Goldstein, A.M. and Alter, E.N. 1959. Guar gum. In: Industrial Gums, Polysaccharides and their Derivatives (Ed. Whistler). Academic Press, New York, pp 321.
- Hanchinamani, N.G. 2003. Studies on variability and genetic divergence in clusterbean (*Cyamopsis tetragonoloba* (L.) Taub) for vegetable pod and gum purpose. *M.Sc. Thesis*. University of Agricultural Sciences. Dharwad, Karnataka, India.
- Jukanti, A., Bhatt, R., Sharma, R. and Kalia, R. 2015. Morphological agronomic and yield characterization of clusterbean (Cyamopsis tetragonoloba L.) germplasm accessions. Journal of Crop Science and Biotechnology 18: 83-88.
- Kalpande, H.V., Patil, J.G., Deshmukh, R.B., Dumber, A.D. and Kute, N.S. 1997. Correlation and path coefficient analysis in green gram under different environments. *Journal of Maharashtra Agricultural Universities* 22: 281-283.
- Kapoor, R. and Bajaj, R.K. 2014. Genetic variability and association studies in guar (*Cyamopsis tetragonoloba* (L.) Taub.) for green fodder yield and quality traits. *Journal of Research Punjab Agricultural University* 51: 109-113.
- Khan, M.D., Khalil, I.H., Khan, M.A. and Ikramullah 2004. Genetic divergence and association for yield and related traits in mash bean. *Sarhad Journal of Agriculture* 20: 555–561.
- Khan, M.Q., Awan, S.I. and Mughal, M.M. 2005. Estimation of genetic parameters in spring wheat genotypes under rainfed conditions. *Indian Journal of Biological Sciences* 2: 367-370.
- Lee, J.T., Connor-Appleton, S., Haq, A.U., Bailey, C.A. and Cartwright, A.L. 2004. Quantitative measurement of negligible trypsin inhibitor activity and nutrient analysis of guar meal

- fractions. *Journal of Agriculture and Food Chemistry* 20:6492-56495.
- Ma, L. and Li, G. 2019. Auxin dependent cell elongation during the shade avoidance response. *Frontiers in Plant Sciences* 10: 914.
- Malaghan, S.N. 2012. Genetic variability and divergence studies in clusterbean. *M.Sc. Thesis*, University of Horticultural Sciences, Bagalkot (India).
- Manivannan, A. and Anandakumar, C.R. 2013. Genetic variability, character association and path analysis in clusterbean (*Cyamopsis tetragonoloba* (L.) Taub). *Journal of Food Legumes* 26(3-4): 34-37.
- Manivannan, A., Anandakumar, C. R., Ushakumari, R. and Dahiy, G. S. 2015. Genetic diversity of guar genotypes (*Cyamopsis tetragonoloba* (L.) Taub.) based on agro-morphological traits. *Bangladesh Journal of Botany* 44: 59-65.
- Mauro, R.P., Sortino, O., Dipasquale, M. and Mauromicale, G. 2013. Phenological and growth response of legume cover crops to shading. *Journal of Agricultural Science* 152(6): 917-931.
- Mauromicale, G., Occhipinti, A. and Mauro, R.P. 2010. Selection of shade-adapted subterranean clover species for cover cropping in orchards. *Agronomy and Sustainable Development* 30: 473-480. doi: 10.1051/agro/2009035.
- Nozue, K., Tat, A.V., Devisetty, U.K., Robinson, M., Mumbach, R., Ichlhashl, Y., Lakkala, S. and Maloof, J.N. 2015. Shade avoidance components and pathways in adult plants revealed by phenotypic profiling. *PLoS Genetics* 11(4): e1004953. doi:10.1371/journal.pgen.1004953
- Patil, D.V. 2014. Genetic variability and sowing dates effect of clusterbean (*Cyamopsis tetragonoloba* L. Taub). *Plant Archives* 14(1):1-6.
- Purseglove, J.W. 1981. Leguminosae. In: *Tropical Crops: Dicotyledons*, pp. 250-254. Longman Group Ltd., Essex, UK.
- Rai, P.S., Dharmatti, P.R., Shashidhar, T.R., Patil, R.V. and Patil, B.R. 2012. Genetic variability studies in clusterbean [Cyamopsis tetragonoloba (L.) Taub]. Karnataka Journal of Agricultural Sciences 25: 108-111.
- Rodge, A.B. 2008. Quality and export potential of arid legumes. In: Souvenir. (Eds. D. Kumar and A. Henry), pp. 10-17. Scientific Publishers (India), Jodhpur.
- Rohman, M.M. and Hussain, A. 2003. Genetic variability correlation and path analysis in mungbean. *Asian Journal of Plant Sciences* 2: 1209-1211.
- Saini, D.D., Singh, N.P., Chaudhary, S.P.S., Chaudhary, O.P. and Khedar, O.P. 2010. Genetic variability and association of component characters for seed yield in clusterbean

- [Cyamopsis tetragonoloba (L.) Taub.]. Journal of Arid Legumes 7(1): 47-51.
- Singh, R.K. and Chaudhary, B.D. 1977. Biometrical Methods in Quantitative Genetic Analysis. Kalyani Publishers, New Delhi, pp. 57-58.
- Sheoran, O.P., Tonk, D.S., Kaushik, L.S., Hasija, R.C. and Pannu, R.S. 1998. Statistical Software Package for Agricultural Research Workers. Recent Advances in Information theory, Statistics & Computer Applications by D.S. Hooda & R.C. Hasija Department of Mathematics & Statistics, CCS HAU, Hisar, 139-143.
- Thombare, N., Jha, U., Mishra, S. and Siddiqui, M.Z. 2016. Guar gum as a promising starting material for diverse applications: A review. *International Journal of Biological Macromolecules* 88: 361-372.
- Vandana and Dubey, D.K. 1993. Path analysis in Faba bean. FABIS News Letter 32: 23-24.
- Vyas, S.P., Kathju, S., Garg, B. K. and Lahiri, A.N. 1996. Response of clusterbean genotypes to shade. *Indian Journal of Plant Physiology* 1(4): 234-238.

Printed in September 2023