Post-Adoption Response of Farmers toward Agroforestry Based Soil and Water Conservation Measures for Watershed Management in India

G.L. Bagdi¹, N.S. Nathawat¹, S.L. Arya², P. Sundarambal², Om Prakash³, Bankey Bihari², S.L. Patil², M.N. Ramesha², Ashok Kumar², A.K. Singh², R.B. Meena², Raj Kumar⁴ and R.S. Shekhawat*¹

¹ICAR-Central Arid Zone Research Institute, Regional Research Station, Bikaner 334 004, India

²ICAR-Indian Institute of Soil and Water Conservation, Dehradun 248 195, India

³ICAR-Indian Agricultural Research Institute, New Delhi 110 012, India

⁴ICAR- Central Soil Salinity Research Institute, Karnal 132 001, India

Received: September 12, 2023 Accepted: November 8, 2023

Abstract: Various watershed management programs were initiated in India with the main emphasis on soil and water conservation (SWC). It was imperative to study the postadoption response of the farmers to assess the effectiveness agroforestry based SWC technologies in watershed management. The present study was carried out in selected watersheds located in different agro-climatic zones of the India. Standardized structured data collection schedules were developed along with the relevant indices to measure continuity and discontinuity in adoption, observe technological gap and assess diffusion of the SWC technologies. Results revealed that two-third of agroforestry based SWC measures were continuously adopted, while one-third was discontinued by the farmers. Forty-six per cent of the agroforestry technologies were continuously adopted with the technological gap. About one-fifth of agroforestry based SWC technologies were also diffused to other farmers. Considerable number of farmers continuously adopted agroforestry SWC technologies with technological gap as well as discontinued them from their fields. This was due to lack of fund, non-availability of labor and requires huge amount of money to repair and maintain these technologies. Therefore, suitable mechanism of fund availability need to be explored for repairing, managing and maintaining agroforestry based SWC technologies that will help in continuous adoption even after withdrawal of public funded watershed development schemes. The paper explains post-adoption behavior of farmers regarding continued adoption, discontinuance, technological gap and diffusion of agroforestry based soil and water conservation technologies.

Key words: Post-adoption, agroforestry, soil and water conservation technologies, watershed management.

OPEN ACCESS

Editor-in-Chief
Praveen Kumar

Associate Editor V.S. Rathore P. Santra R.K. Solanki

Managing Editor N.R. Panwar

Editors

R.S. Tripathi S. Soondarmurthy U.R. Ahuja R. Sharma P.P. Rohilla Raj Singh

Guest Editors

Surendra Poonia Akath Singh Soma Srivastava

*Correspondence

R.S. Shekhawat ravindra.shekhawat@icar.gov.in

Citation

Bagdi, G.L., Nathawat, N.S., Arya, S.L., Sundarambal, P., Om Prakash, Bihari, B., Patil, S.L., Kumar, A., Singh, A.K., Meena, R.B., Kumar, R. and Shekhawat, R.S. 2024. Post-adoption response of farmers towards agroforestry based soil and water conservation measures for watershed management in India. Annals of Arid Zone 63(1): 33-45

doi: 10.59512/aaz.2024.63.1.4

https://epubs.icar.org.in/index.php/AAZ/ article/view/142337

https://epubs.icar.org.in/index.php/AAZ

Soil and water conservation (SWC) measures are adopted worldwide for conserving and managing the natural resources. Agroforestry is extensible SWC practice in different parts of the world. These measures once implemented in community participation mode, need to be analyzed for their effectiveness and post implementation response. Post-adoption behavior is a decision of farmer regarding whether to continue the existing adopted technology with or without technological gap or discontinue for adoption of better available technology or diffuse the adopted technology due to satisfactory performance (Bagdi et al., 2015). Once the technology is implemented and perform satisfactory, farmer will continuously practice it or otherwise they will discontinue it for one or other reason (Rogers, 1995).

In present days, unlike past, factors other than meeting their basic needs play an important role in discarding an adopted technology. Adoption of better technologies will not provide satisfactory benefits in terms of agricultural productivity, natural resources management and poverty alleviation, unless the obstacles to their continuous adoption are not overcome (Oladele, 2005). In some instances, withdrawing subsidies of a schemes ultimately leads to the discontinuance of the farming innovations (Van Tongeren, 2003). However, the only effective way to increase productivity is broad-based adoption of new farming technologies (Minten and Barrett, 2008). Adoption of agroforestry is considerably more complex than traditional agriculture because it usually requires establishing a new input-output mix of annuals, perennials, green manure, fodder and other components, combined with new conservation techniques such as contour hedgerows, alley cropping, and enriched fallows (Rafiq et al., 2000). Unlike standard agriculture, there are few packaged agroforestry or farm-based, natural resource management (NRM) practices to deliver to farmers (Barrett et al., 2002). As a result, agroforestry and other NRM innovations are typically more knowledge-intensive than modern agricultural development packages based on improved seed, chemical, and/ mechanical inputs. Therefore, farmer education, experimentation, and modification are more important for agroforestry and NRM development than for conventional agriculture (Barrett *et al.*, 2002).

discontinuance Continuance and a technology depends on the effective implementation, proper management and resultants benefits. Discontinuance decision to reject an innovation after its adoption (Rogers, 2003). There are three types of technological discontinuance i.e. (1) replacement, (2) disenchantment and (3) forced discontinuance. Replacement discontinuance is a decision to reject an idea in order to adopt a better idea that supersedes it. Constant waves of innovations may occur in which each new idea replaces an existing practice that was an innovation previously. For example, Traditional agroforestry systems have been replaced by industrial agroforestry in India. Disenchantment discontinuance is a decision to reject an idea as a result of the performance dissatisfaction. The rate of discontinuance is equally important as the rate of adoption in determining the adoption level of an innovation and at any particular time discontinuance of an innovation is same as the first-time adopters (Leuthold, 1967). Forced discontinuance happens when farmers are forced to change or discontinue the existing practices because of the government policies. For example, Government of India has banned the burning of crop residue in view of harmful environmental effect and promoted the residue utilization through conservation agriculture. Inability discontinuance can also be the fourth type of technology discontinuance, when farmers discontinued an adopted technology because of his inability to maintain due to high cost or technology complexity (Bagdi et al., 2018). For example, a poor farmer may find difficult to maintain agricultural field bunds on sloppy land and repair of a breached concrete check dam.

Diffusion of technological innovations have been defined as the spread of 'successful' innovations as they combine with or displace existing 'inferior' alternatives (Sarkar, 1998). Thus, diffusion concerns the extent to which the new innovation is put to productive use. Early adopters are often referred to as innovators and the diffusion process as the spread of the innovation to other members of the population (Feder and Umali, 1993). According to Rogers' Theory of Diffusion of Innovation (1983) new ideas or technologies should be diffused to

Table 1. Centre-wise selected watersheds and number of respondents

Name of Research Centre (RC)	Name of selected watersheds with number of respondents in brackets	Total respondents
RC, Vasad	Navamota (50), Rebari (50), Sarnal (50), Antisar (50), Vejalpur-Rampura (50)	250
RC, Bellary	Joladarasi (50), Chinnatekur (50), PC Pyapli (54), Mallapuram (54), Chilakanahatti (58)	266
RC, Chandigarh	Aganpur-Bhagwasi (50), Mandhala (49), Johranpur (26), Sabeelpur (50), Kajiana (50)	225
IISWC, Dehradun	Fakot (50), Raipur (50), Sabhawala (51), Langha (60)	211
RC, Ooty	Salaiyur (50), Chikkahalli (50), Eramanaikkanpatti (50), Putthuvampalli (50), Thulukkamuthur (50)	250

the intended user. However, adopters of innovation tend to explore the new technology, and experience how effectively it would work in their areas before accepting or rejecting those technologies.

Soil degradation has raised some serious debate, and is currently an important issue worldwide (Gardner, 1996). It has been observed that erosion and soil degradation have disastrous effects on the agricultural productivity (Scherr and Yadav, 1996), while few opinioned that loss of productivity due to soil erosion and degradation is as low as five per cent (Crosson, 1995).

Agroforestry is a land use system which consists of combining agricultural and forestry practices to create integrated, diverse and productive systems (Garrett et al., 2000). In agroforestry symbiotic association occurs between tree, crops and livestock and each component is benefited from each other (Bandyopadhyay, 1997). The continued use of soil and water conservation measures (SWCM) technologies are mainly influenced by the actual profitability and the cost involved in maintenance and their use. Moreover, in places where scope exists for implementing SWCM in an integrated development mode, farmers maintained their resources in a better way and their replication rates were also higher (De Graaff et al., 2008). Moreover, if large number of farmers in a specific project area or village adopt natural resource management measure, farmers of the neighbouring villages may also adopt these measures without any project or funding assistance (spontaneous diffusion) (Bodnar et al., 2006).

Indian Institute of Soil and Water Conservation (IISWC) and its Centers have developed many watershed projects in different agroclimatic zones of the country and have implemented many agroforestry based soil and water conservation technologies for resource conservation and watershed management. Continued adoption or discontinuance of agroforestry SWC technologies viz., bamboo plantation in degraded ravine beds, agrisilviculture system and silvi-pasture system, sole tree plantation, grass based vegetative barriers and live hedge etc. depends on availability of resources with the farmers and also suitability to field conditions. Therefore, it was realized that the post-adoption response of beneficiary farmers who have practiced different agroforestry based soil and water conservation technologies for watershed management should be studied to assess the present status of continue-adoption, discontinuance, technological gap and diffusion. Keeping these points in consideration the present research study was framed with the main objective to measure the extent of post-adoption response continue-adoption, (i.e. discontinuance, technological gap and diffusion) of farmers with regard to the adopted agroforestry SWC technologies of watershed management.

Materials and Methods

Study area

The research study was carried out during 2012 to 2016 in eight states of India as core project at Indian Institute of Soil and Water Conservation (IISWC), Research Centre, Vasad, (Gujarat) as lead Centre along with IISWC headquarter Dehradun, Uttrakhand, and its Centers at Agra (Uttar Pradesh), Bellary (Karnataka), Chandigarh (Haryana), Datia (Madhya Pradesh), Kota (Rajasthan) and Ooty (Tamil Nadu). The already developed watersheds by IISWC and its Centers at least three years ago were selected for the study and four or five watersheds were selected at each

Centre. Hence, the watersheds developed by IISWC and its research Centers during 1990 to 2009 were selected under this study. Thus, in total 38 watersheds were selected from eight research Centers of IISWC in the country (Table 1).

Selection of respondents

beneficiary farmers of selected watersheds who have adopted agroforestry based soil and water conservation technologies were selected as respondents in the study. At least 50 respondents were selected from each watershed comprising from all the existing categories of farmers in the watershed. A list of agroforestry based SWC technologies was prepared which were implemented during each watershed development programme. Agroforestry SWC technology-wise inventory of respondent farmers was prepared, who have adopted them, with the help of detail project report (DPR) or by organizing meetings with farmers. The inventory had the names of farmers along with size of land holding, who have adopted a particular technology in the watershed. Stratified proportionate random sampling plan was adopted to select respondents from different inventories or lists of farmers. At least 50 respondents were selected from each watershed comprising from all the existing categories of farmers in the watershed. Thus, total 1902 respondent farmers were selected in the study as sample size (Table 1). A detail structural interview schedule was developed by the investigators and data regarding personal, psychological and post-adoption behavior variables were recorded on developed structured schedule by interviewing the respondents personally.

Measurement of post-adoption response of farmers

To measure the extent of post-adoption response information about variables *viz.*, continue adoption, discontinuance, technological gap and diffusion was collected. A detail methodology consisting of data collection schedules, scoring procedure and data analysis with the following developed Bagdi *et al.*, 2015:

Technologies continue adoption index (TCAI) is the percentage of number of agroforestry based SWC technologies which continued adopted out of total initially adopted technologies by a farmer in his field under watershed area. It could be calculated as given below:

$$TCAI = \begin{array}{c} Number \ of \ Agroforestry \ SWC \\ \hline Technologies \ Continue \\ \hline Adopted \ by \ a \ Farmer \\ \hline Number \ of \ Agroforestry \ SWC \\ \hline Technologies \ Initially \\ Adopted \ by \ Farmers \\ \hline \dots (1) \end{array}$$

(ii) Overall technologies continue adoption index (OTCAI) indicate agroforestry SWC technologies which continued to be adopted by farmers of all selected watersheds in India as represented below:

$$OTCAI = \frac{\sum_{i=1}^{N} TCAI_{i}}{N}$$
 ...(2)
where, $\sum_{i=1}^{N} TCAI_{i}$ = Sum total of technologies continue adoption indices of ith farmers; N = Total number of farmers

(iii) Discontinuance of technologies index (DTI) indicate the number of agroforestry SWC technologies discontinued out of total initially adopted technologies by a farmer from his field in watershed area and it could be worked out as given below

$$DTI = \frac{Number of Agroforestry SWC}{Technologies Discontinued}$$

$$DTI = \frac{by \ a \ Farmer}{Number \ of \ Agroforestry \ SWC} \times 100$$

$$Technologies \ Initially$$

$$Adopted \ by \ Farmers \qquad ...(3)$$

(iv) Overall discontinuance of technology Index (ODTI): This index indicates the sum of the total of discontinuance of technology after initially adopted by the farmers.

$$ODTI = \frac{\sum_{i=1}^{N} DTI_i}{N}$$
 ...(4) where, $\sum_{i=1}^{N} DTI_i$ = Sum Total of Discontinuance

of Technology Indices of ith farmers

N = Total number of farmers

(v) Technological Gap Index (TGI): This is with reference to the score that a farmer obtains on continuing a technology with a gap in relation to the total number of farmers adopted that particular technology with technological gap.

$$TGI = \frac{\sum_{i=1}^{N} \left[\frac{R-A}{R}\right]}{N} X100 \qquad \dots (5)$$

where, R = Maximum possible score on complete adoption of a technology as per the design suitable in the watershed (i.e. 10).

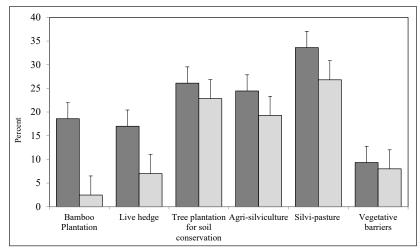


Fig. 1. Percentage of farmers initially and continuously adopted different agroforestry based SWC technologies.

A = Score obtained by a beneficiary farmer on his incomplete adoption of a technology

N = Total number of technologies adopted

(vi) Overall Technological Gap Index (OTGI): This is with reference to the score that a farmer obtains sum of the total of technologies with a gap in relation to the total number of farmers adopted that sum of total technology with technological gap.

$$OTGI = \frac{\sum_{i=1}^{K} TGI_{i}}{K}$$
 where, $\sum_{i=1}^{K} TGI_{i}$ = Sum total of Technological

Gap Indices of kth farmers

K = Total number of farmers

(vii) Technology diffusion index (TDI): Number of agroforestry SWC technologies diffused out of total initially adopted technologies by a farmer from his field in watershed area and it could be worked out as given below

$$TDI = \begin{array}{c} Number of Agroforestry SWC \\ Technologies Diffused \\ by a Farmer \\ \hline Number of Agroforestry SWC \\ Technologies Initially \\ Adopted by Farmers \\ ...(7) \end{array}$$

(viii) Overall Technology Diffusion Index (OTDI): This indicates the ratio of sum of the total of the farmers involved in the technology diffusion to the total number of farmers that adopted the technologies.

$$OTDI = \frac{\sum_{i=1}^{N} TDI_i}{N} \qquad ...(8)$$

where, $\sum_{i=1}^{N} TDI_{i} = Sum$ Total of Technology

Diffusion Indices of ith farmers

N = Total Number of farmers

Results and Discussion

Continuous adoption of agroforestry based SWC technologies

Continuous adoption of agroforestry SWC technologies by the farmers in various watersheds of the India is presented in Table 2. Overall, maximum (26.81%) of the farmers continuously adopted silvi-pasture practices for sustainable management of watersheds, compared to initial adoption (33.61% farmers) during implementation of watershed programs.

Tree plantation practice was continuously adopted by 22.83% farmers, while 26.10% farmers initially adopted these practices for soil conservation during implementation watershed programs. Agri-silviculture practice was continuously adopted by 19.29% of farmers, whereas 26.44% farmers initially adopted these measures. Vegetative barrier, live hedge and bamboo plantation was continuous adopted by 8%, 9.33% and 2.47% farmers, respectively for soil and water conservation, whereas it was initially adopted only by 9.33%, 7% and 18.58% farmers, respectively. Among the implemented agroforestry measures in different regions, results further showed that maximum continuous adoption was observed for tree plantation for soil conservation and agri-silviculture in Dehradun, silvi-pasture

Table 2. Continue adoption of agroforestry SWC technologies by farmers in different watersheds implemented by IISWC and its Research Centres in India

Name of	Number of farmers					
Technologies	Vasad	Dehradun	Chandigarh	Bellary	Ooty	_
continued adopted in watersheds	Navamota, Rebari, Sarnal, Antisar & Vejalpur Rampura (n=250) %	Fakot, Raipur, Sabhawala & Langha (n=211) %	Aganpur, Bhagwasi, Mandhala, Johranpur, Sabeelpur & Kajiyana (n=225) %	Joladarasi, Chinnat- ekur, Pyapli, Mallapuram & Chilakanahatti (n=266) %	Salaiyur, Chikkahali, Ermanaikk-anpatti, Putthuvam-palli & Thulukka-muthur (n=250)%	_
Bamboo Plantation	3.33 (43.33)	0.0 (8.33)	4.08 (4.08)	-	-	2.47 (18.58)
Live hedge of Thor, Vilayti babul, Sisal	7 (17)	-	-	-	-	7 (17)
Tree plantation for soil conservation	39.5 (47)	44 (47)	4.04 (6.06)	4.63 (6.48)	22 (24)	22.83 (26.10)
Agri-silviculture	2 (12)	50 (50)	-	3.85 (5.77)	21.33 (30)	19.29 (24.44)
Silvi-pasture cultivation	37 (52)	28.83 (33.33)	11.43 (17.14)	-	30 (32)	26.81 (33.61)
Vegetative barriers	22 (22)	-	-	0 (2)	2 (4)	8 (9.33)

Note: Figures presented in parentheses are also percentage of farmers adopted the technologies initially at the time of implementation of watershed programme.

cultivation in Ooty, bamboo Plantation in Chandigarh, and vegetative barriers in Vasad.

Discontinuance of agroforestry based SWC technologies

The data about the discontinuance of agroforestry SWC technologies recorded from various developed watersheds in the country are given in Table 3. Results showed that tree plantation practices were initially adopted by 26.10% farmers while discontinued by only 3.27% of farmers. Agri-silviculture practice was

initially adopted by 24.44% farmers but 5.14% farmers discontinued. Silvi-pasture cultivation practice was initially adopted by 33.61% farmers, but was subsequently discontinued by 6.8% farmers.

As revealed in fig.2. Bamboo plantation, live hedge and vegetative barriers was discontinued by 16.11%, 10% and 3% of farmers respectively, whereas 18.58%, 17% and 2% farmers, respectively initially adopted these technologies for soil and water conservation for sustainable watersheds management. In

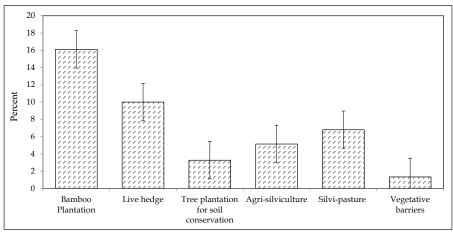


Fig. 2. Percentage of farmers discontinued agroforestry based SWC technologies.

5.14

(24.44)

10

(17)

6.80

(33.61)

1.33

(9.33)

Name of Number of farmers Mean **Technologies** Vasad Dehradun Chandigarh Bellary Ooty discontinued in Navamota, Fakot, Aganpur, Joladarasi, Salaiyur, Chikkahali, watersheds Rebari, Raipur, Bhagwasi, Chinnatekur, Ermanaikkanpatti, Sarnal. Sabhawala Mandhala. PC Pyapli, Patthuvampalli & Antisar & Langha Johranpur, Mallapuram & Thulukkamuthur &Vejalpur Sabeelpur (N=250) %(N=211) %Chilakanahatti Rampura & Kajiyana (N=266) %(N=250) %(N=225) % Bamboo plantation 8.33 0.0 16.11 (18.58)(43.33)(8.33)(4.08)2 Tree plantation for 7.5 2.02 1.85 3.27 (47)soil conservation (47)(24)(26.10)(6.06)(6.48)

1.92

(5.77)

2

(2)

Table 3. Discontinuance of agroforestry SWC technologies by farmers in different watersheds implemented by IISWC and its Research Centres in India

Note: Figures presented in parentheses are also percentage of farmers adopted the technologies initially at the time of implementation of watershed program.

5.71

(17.14)

different regions, maximum discontinuance was reported for tree plantation for soil conservation, agri-silviculture and silvi-pasture cultivation, bamboo plantation in Vasad region. The important reasons for discontinuance of agro-forestry technologies were scarcity of irrigation water, lack of maintenance, shade effect, animal grazing, less timber value with slow growth and tree cutting by local people as perceived by farmers of watersheds.

10

(12)

10

(17)

15

(52)

0

(22)

0

(50)

4.50

(33.33)

Agri-silviculture

Live hedge of

Thor, Vilayti

babul, Sisal

Silvi pasture

cultivation

Vegetative Barriers

Technological gap in agroforestry based SWC technologies

Continued adoption of agroforestry SWC technologies with technological gap by farmers

are presented in Table 4. Results revealed that out of 33.61% farmers, a maximum 17.68% farmers continuously adopted silvi-pasture cultivation practices with technological gap. Tree plantation practice with technological gap was adopted by 16.64% farmers out of 26.10% farmers (initially adopted) for soil conservation in their fields. In Fig. 3, it is clearly represented that Agri-silviculture technology with technological gap was adopted by 15.02% of farmers, compared to initially adoption by 24.44% of farmers for soil and water conservation. Live hedge, bamboo plantation and vegetative barriers measures with technological gap were adopted by 5%,

8.67

(30)

(32)

2

(4)

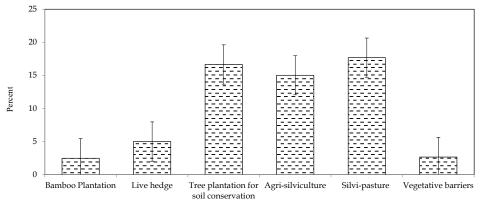


Fig.3. Percentage of farmers reported technological gap in different agroforestry based SWC technologies.

Table 4. Technological gap in agroforestry SWC technologies adopted by farmers in different watersheds implemented by IISWC and its Research Centres in India

Name of	Number of farmers						
technologies adopted with technological gap in watersheds	Vasad	Dehradun	Chandigarh	Bellary	Ooty	-	
	Navamota, Rebari, Sarnal, Antisar & Vejalpur Rampura (N=250) %	Fakot, Raipur, Sabhawala & Langha (N=211) %	Aganpur, Bhagwasi, Mandhala, Johranpur, Sabeelpur & Kajiyana (N=225) %	Joladarasi, Chinnatekur, PC Pyapli, Mallapuram & Chilakanahatti (N=266) %	Salaiyur, Chikkahali Ermanaikkanpatti, Patthuvampalli & Thulukkamuthur (N=250) %		
Bamboo Plantation	3.33 (43.33)	0 (8.33)	4.08 (4.08)	-	-	2.47 (18.58)	
Live hedge of Thor, Vilayati babul and Sisal	5 (17)	-	-	-	-	5 (17)	
Tree plantation for	31	44	3.3	0.93	4	16.64	
soil conservation	(47)	(47)	(6.06)	(6.48)	(24)	(26.10)	
Agri-silviculture	2 (12)	50 (50)	-	1.4 (5.77)	6.67 (30)	15.02 (24.44)	
Silvi-pasture cultivation	17 (52)	23.42 (33.33)	10.12 (17.14)	-	20.2 (32)	17.68 (33.61)	
Vegetative barriers	6 (22)	-	-	0 (2)	2 (4)	2.66 (9.33)	

Note: Figures presented in parentheses are also percentage of farmers adopted the technologies initially at the time of implementation of watershed program.

2.47% and 2.66% farmers respectively, whereas 17%, 2.47% and 9.33% farmers respectively initially adopted it during watershed management programs.

Comparison of agroforestry measures in different regions showed that the maximum continued adoption of agroforestry SWC technologies with technological gap was observed for agri-silviculture, silvi-pasture and tree plantation for soil conservation in Dehradun, bamboo plantation in Chandigarh, and vegetative barriers in Vasad.

Diffusion of agroforestry based SWC technologies

Diffusion of agroforestry based SWC technologies from various developed watersheds is given in Table 5 and Fig. 4. Overall data revealed that maximum diffusion was of the silvi-pasture practices and 11.25% farmers promoted this practice to other farmers' fields within watershed or nearby villages for soil and water conservation for sustainable watersheds management in the country. Tree plantation technology was diffused from 4.63%

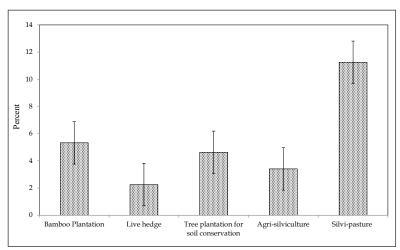


Fig. 4. Percentage of farmers diffused the different agroforestry based SWC technologies.

11.25

(39.11)

unu its ite		iiii					
Name of	Number of farmers						
Technologies	Vasad	Dehradun	Bellary	Ooty			
diffused from watersheds	Navamota, Rebari, Sarnal, Antisar & Vejalpur (N=250) %	Fakot, Raipur, Sabhawala & Langha (N=211) %	Joladarasi, Chinnatekur, PC Pyapli, Mallapuram & Chilakanahatti (N=266) %	Salaiyur, Chikkahali & Ermanaikkanpatti, Putthuvampalli & Thulukkamuthur (N=250) %			
Bamboo Plantation	5.33 (43.33)	-	-	-	5.33 (43.33)		
Live hedge of Thor, Vilayati babul & Sisal	3 (17)	-	1.5 (9.39)	-	2.25 (13.19)		
Tree Plantation for soil conservation	11 (47)	1.67 (47)	1.87 (3.38)	4 (24)	4.63 (30.34)		
Agri-silviculture	2 (12)	6 (50)	2.63 (11.27)	3 (3)	3.41 (19.06)		

Table 5. Diffusion of agroforestry SWC technologies from farmers' field of different watersheds implemented by IISWC and its Research Centres in India

Note: Figures presented in parentheses are also percentage of farmers adopted the technologies initially at the time of implementation of watershed program.

11.76

(33.33)

farmers' fields to other farmers' fields for soil conservation. Agri-silviculture technology was diffused from 3.41% of farmers' fields to other farmers' fields. Live hedge and bamboo plantation technology was diffused from 2.25% and 5.33% of farmers' fields to another farmer, respectively. Regional performance of different measures showed that maximum diffusion of agroforestry SWC technologies was observed for silvi-pasture in Ooty, and agri-silviculture, tree plantation and live hedge in Dehradun.

(52)

Silvi-pasture cultivation

Extent of post-adoption response of farmers towards agroforestry SWC technologies

The extent of post-adoption response of farmers towards different agroforestry SWC

technologies adopted during various watershed development programs is given in Table 6 and Fig. 5. It was revealed that the overall TCAI value shows that 66.95% of agroforestry based SWC technologies were continued adopted by farmers in the watersheds. Accordingly, overall DTI value shows that 33.05% of agroforestry based SWC technologies were discontinued by farmers from their fields in the watersheds developed. The overall TGI data revealed that 46.08% of agroforestry SWC technologies were continuously adopted with technological gap by farmers in their fields in the watersheds developed. Diffusion of agroforestry SWC technologies were also studied with the help of Technology Diffusion Index (TDI) and it

18

(32)

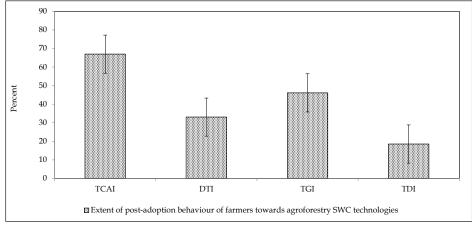


Fig. 5. Overall extent of post-adoption behavior of farmers towards agroforestry SWC technologies

Table 6. Extent of post-adoption	behavior of j	farmers towar	ds agroforestry	SWC	technologies	in	various	watersheds
implemented by IISWC	and its Resear	rch Centres in	India					

Extent of	Watersheds developed by Research Centres of IISWC in India						
post-adoption behaviour of farmers	Vasad	Dehradun	Chandigarh	Bellary	Ooty	Mean	
	Navamota, Rebari, Sarnal, Antisar & Vejalpur Rampura (n=250) (%)	Fakot, Raipur, Sabhawala & Langha (n=211) %	Aganpur Bhagwasi, Mandhala Johranpur, Sabeelpur & Kajiyana (n=225) (%)	Joladarasi, Chinnatekur, PC Pyapli, Mallapuram, Chilakanahatti (n=266) (%)	Salaiyur, Chikkahali Ermanaikkanpatti, Putthuvampalli, Thulukkamuthur (n=250) (%)	-	
TCAI	57.33	88.58	71.66	59.51	83.7	66.95	
DTI	42.67	11.42	28.34	40.49	16.3	33.05	
TGI	33.27	84.68	64.15	16.35	36.52	46.08	
TDI	14.78	14.91	-	24.95	42.37	18.52	

was found out to be 18.52% for agroforestry based SWC technologies were diffused to other farmers' fields in nearby areas or villages from the fields of farmers' who were adopted these technologies during the watershed development programs implemented.

Soil and Water Conservation (SWC) practices have been successfully tested through various development projects in the India and other countries. It is imperative to create favourable conditions so that large number of farmers can take advantage from SWC practices (Asnake et al., 2018). For continue adoption of SWC technology in the catchment area of watershed, farmers should have sufficient knowledge about the technology performance, benefits from technology, and need for its implementation of such as reduction in soil loss & runoff, increase in crop production, water conservation, and ground water recharge etc., as per the need of farmland for sustainable resource conservation and management. Agroforestry based SWC technologies should be adopted according to topographic condition, water availability, land slope and land erodibility in catchment area of watershed for the continue adoption. Moreover, before adopting any SWC technology in the catchment, farmers consider information about the technology, topography of the farmland, potential benefits and social interaction (Simon et al., 2012).

Our results showed the medium levels of continuous adoption of agroforestry practices in the farmers' fields. Farmers' continue adoption of agroforestry practices depends on the environmental and economic benefits from the implemented practices. The medium level of adoption may be resulted from the incomplete

knowledge about practice, interaction with the other practices, poor management and lesser potential benefits. Previous findings have also reported the medium level of adoption of forestry practices in India (Kandwal and Rampal, 2019). Similarly, Bagdi and Joshi (2018) also reported that three-fourth (76.02%) of farmers showed moderate level of participation in implementing SWC technologies for watershed management.

Results further showed that one-third agroforestry based SWC practices were discontinued by farmers from their agricultural fields. There may large number of reasons to discontinue a particular practice in the farm field. As agroforestry based SWC provides greater role soil and water conservation compared to other benefits. Therefore, greater intangible benefits and lesser tangible benefits may discourage farmers to discontinue the adopted practices. However, there may be other factors that discourage farmers to continue adopt a particular agroforestry based interventions. Woldeamlak Bewket (1998) reported that the major factors discouraging farmers from SWC technologies were labour shortage, land tenure insecurity and less effectiveness of technologies as per the farmers' requirements and to the farming system circumstances. Bagdi (1997) also reported that the reasons for discontinuance of agricultural technologies were the availability of alternative new or better technologies, negative consequences, non-availability of inputs and low profitability from technology. lack of information/guidance, However, non-availability of inputs and unwillingness were also considered as major reason for low/no adoption of different soil and water

conservation (SWC) practices (Dhammu et al., 1998; Kadam et al., 2001 and Kumar, 2005).

Technological gap was also reported in the adoption of different agroforestry based SWC technologies. Lack of regular training, exposure visits and demonstration of and administrative and financial constraints may be reason for the technological gap in implementation of agroforestry based SWC. Das et al. (1998) has also reported that education, farm power, material possession, social participation, socioeconomic status, extension contact, and mass media exposure has significant and negative association with the technological gap. Poor farmers are not taking proper care and maintenance of SWC structures after project withdrawal by PIA due to lack of money and resources. Therefore, financial provisions should be made for repair and maintenance of SWC technologies to adopt them in proper complete technology package without any technological gap after completion of watershed projects. Patil (1990), Gupta et al. (1993) or Gupta and Sood, 1993, Kalasariya et al. (1998), Singh (2007), Maraddi et al. (2008) reported that overall majority of the farmers belonged to medium technological gap category in adoption of agricultural production technology.

Once agroforestry based SWC adopted, it may be transferred or diffused to the another farmers by various means. This study revealed that out of total adopted agroforestry SWC practices, one-fifth of them were also diffused to other farmers' fields in nearby areas or villages from the fields of farmers' who have adopted these technologies during the implementation of watershed development programs. The diffusion of agroforestry technology might be increased among farmers who have adopted and who are potential adopters, and social networking could play an important role in spreading agroforestry as a sustainable practice. Silvopastoral systems may be included as a policy strategy for the mitigation of consequences of climatic change, such as burning and destruction of grasslands, decrease in milk production, and death of livestock (Roberto Jara-Rojas et al., 2020).

Conclusion and policy implications

It could be concluded from the study that in the government sponsored watershed development programmes, two-third (66.95%)

of agroforestry based SWC technologies were continuously adopted for natural resources conservation, while one-third (33.05%) of them were discontinued due to their non-suitability or inability of farmers to continue the technologies. Out of the total adopted technologies, about forty six percent (46.08%) of agroforestry based SWC technologies were also continuously adopted with the technological gap. It could be inferred from the findings that on completion of government sponsored watershed development programme or on withdrawal of watershed project by Project Implementing Agency (PIA), farmers are unable to take care and maintain the agroforestry based SWC technologies implemented in their fields for management of watersheds due to paucity of funds and lack of laborers. It was also concluded from the study that about one-fifth (18.52%) of agroforestry SWC technologies were also diffused to other farmers' fields in nearby areas or villages from the fields of farmers' who initially adopted these agroforestry SWC technologies during the watershed development programmes implemented by IISWC and its Centres in the country for the cause of sustainable agricultural production along with conservation of natural resources like soil and water.

Important implications of the results were that, sensitization of farmers and watershed development agencies is needed towards to give more emphasis to suitability of agroforestry SWC technology to catchment area of watershed according to topographic condition, slope of land, erodibility of land, and water availability in catchment area of watershed for their longer continued adoption. In respect to mitigate the technological gap in adopted technologies the provisions of finance or farm equipments on custom hiring basis should be provided to poor farmers at the end of watershed development project from the fund of watershed project so that the agroforestry based SWC practices could be repaired and maintained by farmers in case of non-availability of fund or laborers for achieving the long-term sustainable benefits to farmers. Implication regarding more and wider diffusion of SWC technologies for watershed management, the agroforestry SWC technologies should be transferred in watershed catchment areas where reduction in runoff & soil loss, more moisture conservation and ground water recharge is required.

Acknowledgements

Authors are grateful to the Director, Indian Institute of Soil and Water Conservation (IISWC), Dehradun, India, for providing financial support to carry out this core research project. Authors are also grateful to all the Scientists and Technical staffs associated in this research project at IISWC and its Research Centres for help in data collection and their analysis.

References

- Asnake, M., Heinimann, A., Gete, Z. and Hurni, H. 2018. Factors affecting the adoption of physical SWC practices in the Ethiopian highlands. *Journal of International SWC Research* 6(1): 23-30.
- Bagdi, G.L. and Joshi, Uma 2018. People's Participation in Implementation of Soil and Water Conservation Programme: Case Study of Antisar Watershed in Kheda District of Gujarat. Indian Journal of Extension Education 54(4): 74-83.
- Bagdi, G.L., Mishra, P.K., Kurothe, R.K., Arya, S.L., Patil, S.L., Singh, A.K., Bankey Bihari, Om Prakash, Ashok Kumar and Sundarambal, P. 2015. Post-adoption behaviour of farmers towards soil and water conservation technologies of watershed management in India. *International* Soil and Water Conservation Research 3(3): 161-169.
- Bagdi, G.L., Mishra, P.K., Arya, S.L., Patil, S.L., Singh, A.K., Bankey Bihari, Om Prakash, Ashok Kumar, Sundarambal P. and Meena R.B. 2018. Determinants of discontinuance of soil and water conservation technologies implemented in watershed management programmes in India. *Indian Journal of Soil Conservation*, 46(2): 233-241.
- Bagdi, G.L. 1997. Agricultural technologies adoption behavior of rural farmers. *Indian Journal of Extension Education* 33(3&4): 133-138.
- Bandyopadhyay, A.K. 1997. A Text Book of Agroforestry with Applications. Vikas Publishing House Pvt. Ltd., New Delhi, India.
- Barrett, C.B., Place, F., Aboudk, A. and Brown, D.R. 2002. The challenge of stimulating adoption of improved natural resource management practices in African agriculture. In: Natural Resources Management in African Agriculture: Understanding and Improving Current Practices (Eds. C.B. Barrett, F. Place and A. Aboud), pp. 1-22. CABI Publishing, Wallingford, UK.
- Bodnar, F., Schrader, T. and van Campen, W. 2006. Choices in project approach for sustained farmer adoption of soil and water conservation measures in southern Mali. *Land Degradation and Development* 17: 479-494.
- Crosson, P. 1995. Soil erosion and its on-farm consequences: What do we know? *Discussion*

- *Paper*, 95-29, Resources for the Future, Washington, DC.
- Das, R., Verma, N.S. and Singh, S.P. 1998. Technological gap in sorghum production technology: A regression analysis. *Indian Journal* of Extension Education 34(3&4): 53-56.
- De Graaff, J., Amsalu, A., Bodnar, F., Kessler, A., Posthumus, H. and Tenge, A. 2008. Factors influencing adoption and continued use of long-term soil and water conservation measures in five developing countries. *Applied Geography* 28: 271-280.
- Dhammu, Singh, A. and Gill, S.S. 1998. Adoption of crop nutrition for wheat crop in Punjab. *Indian Journal of Extension Education* 34 (3&4): 57-62.
- Feder, G. and Umali, D.L. 1993. The adoption of agricultural innovations: A review. *Technological Forecasting Social change* 43: 215–219.
- Gardner, G. 1996. Shrinking fields: Cropland loss in a world of 8 billion. *World watch Paper* 131, Washington, DC. 55.
- Garrett, H.E. and McGraw, R.L. 2000. Alley cropping practices. In: *North American Agroforestry: An Integrated Science and Practice* (Eds. H.E. Garrett, W.J. Rietveld and R.F. Fisher), pp. 149-188. ASA, Madison.
- Gupta, Ashok K. and Sood, Ashok 1993. Technology gap on production of paddy. *Indian Journal of Extension Education* 29(3&4): 87-88.
- Kadam, J.R., Bhairamkar, M.S. and Patil, V.G. 2001. Adoption of soil and water conservation practices in watershed development project. *Indian Journal of Extension Education* 37(3&4): 187-190.
- Kalasariya, B.N., Popat, M.N. and Patel, B.P. 1998. Knowledge level of hybrid-6 cotton growers. *Maharashtra Journal of Extension Education* 16: 386-388.
- Kandwal, P. and Rampal, V.K. 2019. Adoption of Forestry Practices for Livelihood in Lower Shivalik Hills. *Indian Journal of Extension Education* 55(3): 30-32.
- Kumar, Niraml 2005. Adoption of soil and water conservation technologies. *Indian Journal of Extension Education* 41(3&4): 32-35.
- Leuthold, Frank O. 1967. Discontinuance of Improved Farm Innovations by Wisconsin Farm Operators. *Ph.D. Dissertation*, University of Wisconsin, Madison. RS (E).
- Maraddi, G.N., Hirevenkanagoudar, L.V. and Bheemappa, A. 2008. Factors of technology gap in sustainable cultivation practices (SCP) among sugarcane growers. *Indian Journal of Extension Education* 44(1&2): 47-50.
- Minten, B. and Barrett, B.C. 2008. Agricultural technology, productivity and poverty in Madagascar. *World Development* 36(5): 797-822.

- Oladele, O.I. 2005. A tobit analysis of propensity to discontinue adoption of agricultural technology among farmers in southern Nigeria. *Journal of Central European Agriculture* 6(3): 249-254.
- Patil, V.G. 1990. A critical analysis of technological gap and constrains in the adoption of improved rice cultivation practices in Konkan region of Maharashtra state. *Ph. D. Thesis*, University of Agricultural Sciences, Dharwad.
- Rafiq, M., Amacher, G.S. and Hyde, W.F. 2000. Innovation and adoption in Pakistan's Northwest Frontier Province. In: *Economics of Forestry and Rural Development: An Empirical Introduction from Asia* (Eds. W.F. Hyde and G.S. Amacher), pp. 87-100. University of Michigan Press, Ann Arbor.
- Roberto, Jara-Rojas, Soraya, Russy, Lisandro, Roco, David, Fleming-Munoz and Alejandra, Engler 2020. Factors Affecting the Adoption of Agroforestry Practices: Insights from Silvopastoral Systems of Colombia. *Forests* 11: 648.
- Rogers, E. M. 1983. *Diffusion of Innovations* (3rd Ed.). The Free Press, New York
- Rogers, E.M. 1995. *Diffusion of Innovations*. The Free Press, New York
- Rogers, E.M. 2003. *Diffusion of Innovations*. The Free Press, New York.

- Sarkar, J. 1998. Technological diffusion: Alternative theories and historical evidence. *Journal of Economic Surveys* 12: 131-176.
- Scherr, S.J. and Yadav, S. 1996. Land degradation in the developing world: implications for food, agriculture, and the environment to 2020. *IFPRI Discussion Paper No. 14*, Washington, DC.
- Singh, B. 2007. Technological gap in wheat production technology in arid zone of Rajasthan. *Indian Journal of Extension Education* 43(3&4): 44-47
- Simon, A., Chris, A., Shisanya and Joy, A. Obando, 2012. Analysis of factor influencing adoption of Soil and Water Conservation technologies in Ngaciuma sub-catchment, Kenya, *African Journal of Basic & Applied Sciences* 4(5): 172-185.
- Van Tongeren, P. 2003. Assessing Agricultural Development Interventions in the western highlands of Guatemala: A farmer centered Approach. *Unpublished master's thesis*, Michigan state university, East Lansing.
- Woldeamlak, Bewket 1998. Land degradation and adoption of conservation technologies in the Digil watershed Northern Highland of Ethiopia. Retrieved from http://dspace. africaportal. org/jspui/bitstream/123456789/31897/1/ssrrseries-29.pdf?1 (accessed on 25/08/2014).

Printed in March 2024