Optimization of Plant Growth Regulators Use for Improved Growth, Yield, and Economic Returns from Tomato (*Solanum lycopersicum* L.) in Arid Regions

Suman Poonia, Santosh Choudhary*, S.K. Moond, P.R. Raiger, Moola Ram¹ and Ronak Kuri

College of Agriculture, Agriculture University, Jodhpur 342 304. India ¹AICRP on Pearl Millet, Jodhpur (Rajasthan)

Received: October 31, 2023 Accepted: January 2, 2024

OPEN ACCESS

Editor-in-Chief
Praveen Kumar

Associate Editor V.S. Rathore P. Santra R.K. Solanki

Managing Editor N.R. Panwar

Editors

R.S. Tripathi S. Soondarmurthy U.R. Ahuja R. Sharma P.P. Rohilla Raj Singh

Guest Editors

Surendra Poonia Akath Singh Soma Srivastava

*Correspondence

Santosh Choudhary s.choudhary83@yahoo.co.in

Citation

Poonia, S., Choudhary S., Moond, S.K., Raiger, P.R., Ram, M. and Kuri, R. 2024. Optimization of plant growth regulators use for improved growth, yield and economic returns from tomato (Solanum lycopersicum L.) in arid regions. Annals of Arid Zone 63(1): 107-112

doi: 10.59512/aaz.2024.63.1.13 https://epubs.icar.org.in/index.php/AAZ/ article/view/144645

https://epubs.icar.org.in/index.php/AAZ

Abstract: A field experiment was conducted to optimize the application of plant growth regulators in tomato cultivation during rabi, 2021-22. The objective was to assess their effects on growth, yield attributes, fruit yield, and economics. The experiment included 10 treatments with three plant growth regulators (GA₃, 4-CPA, and NAA), each applied at three levels (25, 50, and 75 μg mL⁻¹), along with a control (water). The experimental design was a randomized block with three replications. Results indicated that GA₃ and NAA significantly enhanced plant height, the number of branches, fruit yield, and economic returns. Conversely, 4-CPA adversely affected yield and consequently economic returns. Optimal dosages for GA₃ and NAA were identified at 53.5 μg mL⁻¹ and 63.1 μg mL⁻¹, respectively, using second-order polynomial regression $(y=ax^2+bx+c)$. This resulted in tomato yields of 29.55 and 29.69 t ha⁻¹, respectively. NAA treatments stood out, providing the highest net returns (Rs. 4,80,447 ha⁻¹) and a favourable B:C ratio of 4.26:1, making it a promising choice for tomato cultivation.

Key words: 4-CPA, Economic Optimum Dose, Fruit Yield, GA₃, NAA.

Tomato (*Solanum lycopersicum* L.) is the second most important solanaceous vegetable crop in India, surpassed only by potatoes, both in terms of cultivated area and production. This versatile crop finds its way into a variety of culinary applications, from salads and cooked dishes to processed products. Beyond its culinary versatility, tomato also plays a crucial role in human nutrition, offering a rich source of antioxidants such as lycopene, vitamin A, vitamin B, and essential minerals (Ali *et al.*, 2020).

Tomato, being a warm-season crop, is sensitive to severe frost. Hence, temperature plays a vital role in the fruit set and pigmentation of tomato. The optimal temperature for fruit setting ranges between 21-28°C, while lycopene synthesis is most efficient between 21-24°C (Rehman *et al.*, 2015). Therefore, comparatively warm and sunny weather during the winter season in western Rajasthan provides the ideal conditions for *Rabi* cultivation of tomato. However, during

108 POONIA et al.

winter high diurnal temperature variations, dry winds, and intense sunlight, contribute to poor fruit set and thus reduced fruit yield. To overcome these abiotic stresses caused by weather-related factors, the application of plant growth regulators (PGRs) through foliar sprays can be a promising solution.

Plant growth regulators are a group of compounds that have the potential to regulate pre-harvest fruit drops, enhance flower bud formation, and promote fruit ripening. Among these, gibberellic acid (GA₃) is known to stimulate stem elongation, facilitate flower maturation, and enhance overall plant growth, all of which have a direct impact on tomato yield and quality (Chaudhury et al., 2013). 4-chlorophenoxy acetic acid (4-CPA) is an auxin that influences the ripening process of tomatoes by affecting sucrose metabolism. Notably, the application of 4-CPA after anthesis, increases fruit set percentage, the number of fruits per plant, fruit weight, fruit diameter, fruits per cluster, and yield per cluster in tomatoes, particularly at lower temperatures (Chishti et al., 2020). Naphthalene acetic acid (NAA) also plays a role in reducing pre-harvest fruit drops, resulting in an increased number of fruits per plant when applied at the flowering stage (Alam and Khan, 2002). However, it is important to note that the effectiveness of different growth regulators in improving crop yield and quality can vary significantly depending on their concentration, timing and method of application.

Prior research has delved into the application of growth regulators in diverse crops. However, their distinct impact on tomato cultivation in the arid regions of western Rajasthan remains relatively unexplored. Recognizing this knowledge gap, the current study was undertaken to evaluate the effects of GA₃, 4-CPA, and NAA application on crop growth, yield attributes, fruit production, and the overall economics of cultivation in the arid regions of western Rajasthan. This research aims to contribute valuable insights into optimizing tomato cultivation practices in arid environments.

Materials and Methods

An experiment was conducted during the *Rabi* 2021-22 at the Instructional Farm, College of Agriculture, Jodhpur, which is located at an

altitude of 231 meters above mean sea level. The experimental site is located between 26°15' to 26°45' North latitude and 73°00' to 73°29' East longitude. This region is situated within the agro-climatic zone known as the 'Arid Western Plains Zone' of Rajasthan. Jodhpur typically experiences an arid climate characterized by dry, warm, and sunny winters, with an average annual precipitation of approximately 367 mm. During the experimental period (early December to mid-April), the daily maximum and minimum temperatures ranged between 16.1°C and 40.3°C and 10.9°C and 36.6°C, respectively. The mean daily relative humidity varied from 88.1% to 27.1%. Soil of the experimental field was sandy-loam in texture, slightly alkaline (pH 8.2), low in organic carbon (0.13%; Walkley and Black, 1934), and had 174 kg ha-1 of available nitrogen (Subbaiah and Asija, 1956), 20.2 kg ha-1 of available phosphorus (Olsen, 1954), and 325 kg ha⁻¹ of available potassium (Westerman, 1990).

The experiment involved ten different treatments, including three different levels of gibberellic acid (GA₃; 25, 50, and 75 μg mL⁻¹), 4-chlorophenoxy acetic acid (4-CPA; 25, 50, and 75 µg mL⁻¹), and naphthalene acetic acid (NAA; 25, 50, and 75 μg mL⁻¹), as well as a control treatment involving water spray. The experiment was designed using a randomized block design with three replications. The experimental field was prepared for cultivation by two cross-harrowing followed by planking. Additionally, 25 t ha-1 of FYM was thoroughly mixed into the soil during harrowing. At the time of transplanting, a uniform dose of 120 kg P₂O₅ ha⁻¹ through diammonium phosphate (DAP), 80 kg K₂O ha⁻¹ through muriate of potash (MoP), and 60 kg N ha-1 through urea were applied approximately 3-4 cm deep in the soil. The remaining nitrogen dose (60 kg ha-1 as urea) was split into two halves and applied after 35 and 60 days of transplanting as spot application.

Tomato seedlings (cv. Ansal F_1), aged 30 days, were transplanted on December 1, 2021, with a row-to-plant spacing of 60 cm x 45 cm on flatbeds, organized in plots measuring 3.15 m × 4.20 m. Soil moisture was maintained through consistent irrigation, and manual weeding was performed twice. The recommended plant protection measures were followed as per need. For the application of growth regulators,

Treatment	Plant height (cm)	No. of branches plant ⁻¹	No. of fruits plant ⁻¹	Fruit weight (g)	Fruit yield plant ⁻¹ (kg)	Fruit yield (t ha ⁻¹)
GA ₃ 25	68.7	17.6	29.1	74.1	2.04	28.7
GA ₃ 50	77.8	18.9	32.5	77.7	2.35	29.0
GA ₃ 75	80.9	19.4	35.3	81.7	2.45	29.3
4-CPA 25	61.9	15.3	26.7	65.1	1.85	25.7
4-CPA 50	57.5	14.4	25.9	63.2	1.75	23.7
4-CPA 75	53.9	13.4	23.0	61.6	1.55	22.7
NAA 25	63.8	16.3	30.5	78.1	2.15	28.7
NAA 50	69.3	17.6	35.0	81.5	2.45	28.8
NAA 75	71.3	18.2	38.1	84.3	2.55	29.7
Control	57.4	15.2	24.2	65.0	1.76	25.3
SEm±	2.58	0.75	1.12	2.39	0.084	1.10
CD (n=0.05)	77	2.2	2.2	71	0.25	2.2

Table 1. Effect of different concentrations (μg mL⁻¹) of GA₃, 4-CPA, and NAA on growth, yield attributes, and fruit yield of tomato

GA₃= Gibberellic Acid; 4-CPA= 4-Chlorophenoxy Acetic Acid; NAA= Naphthalene Acetic Acid

a stock solution of 1000 μg mL⁻¹ of GA₃, 4-CPA, and NAA was prepared using distilled water. Working solutions of 25, 50, and 75 μg mL⁻¹ of each of these growth regulators were then prepared by diluting the stock solutions with distilled water. Three foliar sprays of these PGRs were carried out at 30, 45 and 60 days after transplanting with 500 L of water per ha. The sprays were done in the early morning hours to prevent rapid drying of the spray solution due to transpiration.

Observations were recorded on plant height, the number of branches per plant, and the number of fruits per plant from five randomly selected plants in each treatment. Fruit weights were also recorded from five randomly chosen fruits in each treatment. Fruits were harvested when they reached the desired marketable size, and the weight of ripe fruits harvested in each picking was recorded until the final harvest, providing the total yield per plant. The data from periodic harvests throughout the experiment were summed to obtain the fruit yield ha⁻¹. For economic analysis, the average treatment yield, current market rates, and input costs were used to calculate net returns and the benefit-cost ratio. For determining the optimum dosages of PGRs the second-order polynomial regression (y=ax²+bx+c) was fitted between levels of PGRs applied and the fruit yield of tomato. The economically optimum PGR dose was determined by marginal analysis through the quadratic function. The PGR level where the marginal returns are equal to marginal cost was defined as economically optimum dosage.

The data recorded for various parameters were analyzed with the help of the Analysis of Variance technique (Gomez and Gomez 1984) for RBD design using OPSTAT Software (Sheoran, 2023), and regression analysis was performed by using MS Excel. The determination of significant differences between the treatment means was conducted using the critical difference (CD) at a 5% probability level.

Results and Discussion

Growth attributes

The results in Table 1 shows that GA₃ and NAA significantly improved tomato plant height and branches per plant compared to control, while deleterious effects of 4-CPA on plant morphology hindered growth assessment. The effect of GA₃ on plant height (80.9 cm) and number of branches per plant (19.4 cm) were significantly highest at 75 µg mL⁻¹, with no statistical difference with GA₃ at 50 μg mL-1. Similar results were observed by Naz et al. (2020) with foliar spray of GA₃ 100 μg mL⁻¹. This enhancement is attributed to effect of GA₃ on stem elongation through rapid cell multiplication and antimitotic action, fostering growth and branch proliferation (Arivazhagan et al., 2018). In the case of NAA, application of 75 µg mL⁻¹ was at par with that of 50 µg mL-1 (Table 1) for plant height and number of branches at final harvest. Similar results were observed by Naz et al. (2020) and Ujjwal et al. (2018) in tomato with NAA (30 µg mL⁻¹). The positive response to NAA is likely due to its role in augmenting photosynthesis,

110 POONIA et al.

Table 2. Effect of different concentrations (µg mL⁻¹) of GA₃, 4-CPA and NAA on the economics of tomato cultivation

Treatment	Variable cost (Rs. ha ⁻¹)	*Total Cost (Rs. ha ⁻¹)	**Gross Return (Rs. ha ⁻¹)	Net returns (Rs. ha ⁻¹)	B:C ratio	Additional returns over control (Rs. ha ⁻¹)
GA ₃ 25	8288	117409	5,73,267	4,55,858	3.88	61313
GA ₃ 50	13575	122697	5,80,667	4,57,970	3.73	63425
GA ₃ 75	18863	127984	5,86,667	4,58,683	3.58	64138
4-CPA 25	3568	112690	5,13,333	4,00,644	3.56	6099
4-CPA 50	4136	113258	4,73,333	3,60,075	3.18	-34470
4-CPA 75	4704	113826	4,53,333	3,39,507	2.98	-55038
NAA 25	3255	112377	5,74,600	4,62,223	4.11	67678
NAA 50	3510	112632	5,76,667	4,64,035	4.12	69490
NAA 75	3765	112887	5,93,333	4,80,447	4.26	85902
Control (water spray)	3000	112122	5,06,667	3,94,545	3.52	-

^{*}Fixed cost of tomato cultivation- Rs.1.09 lakh/ha

translocation, and utilization of photosynthates, stimulated by enhanced cell division in apical regions.

Yield attributes

The application of 75 μg mL⁻¹ GA₃, though at par with 50 μg mL⁻¹ GA₃, produced highest values of the number of fruits per plant at final harvest (35.3) and fruit weight (81.7 g) of tomato (Table 1). Similar results were observed by Singh et al. (2019) and Bhosale, (2000). The more production of flower primordia (Ujjawal et al., 2018) and efficient photosynthate allocation to reproductive parts attributes to these trends. Similarly, the significantly maximum number of fruits per plant at final harvest (38.1) and highest fruit weight (84.3 g) were observed with NAA (75 µg mL-1), and it was at par with NAA (50 µg mL-1). Similar results were observed by Bokade (2004). This might be due NAA application likely increased fruit weight by accumulating sufficient nutrients for larger fruit development.

Due to the potential of 4-CPA to check flowers and fruit drops the number of fruits per plant (25.9) was observed to be significant up to 4-CPA@50 µg mL⁻¹. Similar results were observed by Naz *et al.* (2020), and Bokade, (2004) in tomato. Application of 4-CPA at higher concentration promoted fruit formation but caused deformities and parthenocarpy, resulting in lower fruit weight due to puffiness.

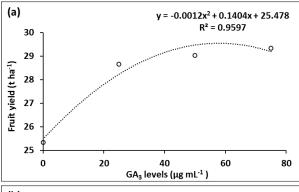
Fruit yield

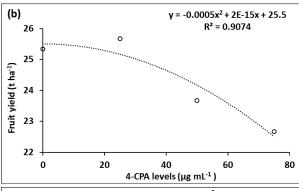
The fruit yield of tomato was influenced significantly at all levels of GA₃ and NAA over control (Table 1). However, the fruit yield of tomato could not be influenced significantly

among 4-CPA levels over control. With GA₃, significantly highest fruit yield per plant (2.5 kg) and fruit yield ha⁻¹ (29.3 t) over control was observed with 75 μ g mL⁻¹, which incidentally was at par with application of 50 μ g mL⁻¹. These findings are in agreement with the findings of Singh *et al.* (2019) and Ranjeet *et al.* (2014). The application of GA₃ augments photosynthesis, leading to increased plant biomass which resulted in an increased fruit set, which ultimately led to more fruit set percentage, more fruit per plant, and higher fruit yield.

Results further revealed that tomato fruit yield decreased with the increase in the 4-CPA levels, attributed to the lower fruit set percent and low fruit weight. These results contradict the findings of Baliyan (2013), who reported a positive relationship between 4-CPA and fruit yield of tomato at 75 μg mL⁻¹. Further, with the application of NAA, significantly maximum fruit yield per plant (2.6 kg) and fruit yield ha-1 (29.7 t) over control was observed with NAA@75 μg mL⁻¹, and at par with NAA@50 μg mL⁻¹. Similar results were reported by Ranjeet et al. (2014). The application of NAA boosted yield by enhancing physiological activity, leading to more flowers and fruits resulting in higher fruit set and yield.

Economics


The data (Table 2) indicates that the application of GA_3 and NAA at all levels increased perceptibly the net returns from tomato; while with application 50 and 75 μ g mL⁻¹ of 4-CPA net returns declined *vis a vis* control. The highest net returns (Rs. 4,80,447 ha⁻¹) and B:C ratio (4.26:1) were recorded with the application of NAA (75 μ g mL⁻¹) followed


^{**}Sale price of tomato- Rs. 20/kg

	•	
Parameters	GA_3	NAA
Economic optimum dose (μg mL ⁻¹)	53.5	63.1
Yield at economic optimum dose (t ha ⁻¹)	29.55	29.69
Response at economic optimum dose (t ha-1 ug mL-1)	0.552	0.470

Table 3. Fruit yield of tomato (Y) as a function of PGR application and economic optimum dose.

by NAA (50 μg mL⁻¹) (Rs. 464,035 ha⁻¹ and 4.12:1). The Application of NAA at 75 μg mL⁻¹ and 50 μg mL⁻¹ resulted into additional net returns of RS. 85,902 ha⁻¹ and Rs. 69,490 ha⁻¹, respectively over control. Similar results were also reported by Singh *et al.* (2017) and Ramesh, (2019). The difference in net retunes among different treatments was mainly due to the difference in fruit yield and partly the treatment cost also contributed as NAA is much cheaper than GA₃ and 4-CPA.

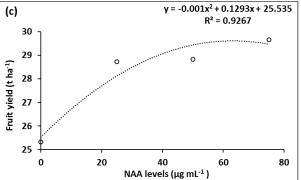


Fig. 1. Quadratic regression between fruit yield (t ha⁻¹) of tomato and levels of a) GA₃ b) 4-CPA and c) NAA.

Economic optimum dose of PGRs

In determining the optimum dosage of PGRs, the relationship between yield and PGR levels was found to be defined best by the quadratic model with R2 values of 0.959, 0.907, and 0.926 of GA₃, 4-CPA, and NAA, respectively (Fig. 1). As the yield trends with increasing levels of 4-CPA were negative, the economic optimum dosage of only GA3 and NAA were attempted. The economic optimum dose for GA₃ was estimated to be 53.5 µg mL⁻¹ and for NAA it was 63.1 µg mL-1. The fruit yield at the economic optimum dose GA3 and NAA were 29.55 t ha-1 and 29.69 t ha-1, respectively (Table 3). However, the response at the economic optimum dose in NAA (0.470 t ha⁻¹ μg mL⁻¹) is less as compared to GA₃ (0.552 t ha-1 μg mL-1) because of higher fruit yield with GA₃ levels due to higher growth enhancement.

Conclusion

In conclusion, the study demonstrated the significant impact of GA_3 and NAA on the growth, yield, and economic returns from tomato cultivation. GA_3 (53.5 μg mL⁻¹) and NAA (63.1 μg mL⁻¹) emerged as the economic optimum levels, maximizing yields to 29.55 t ha⁻¹ and 29.69 t ha⁻¹ respectively. The economic analysis revealed that NAA, in particular, offered the highest net returns, making it an economically viable choice for tomato cultivation. These findings highlight the potential of these growth regulators in enhancing tomato production.

References

Alam, S.M. and Khan, M.A. 2002. Fruit yield of tomato as affected by NAA spray. *Asian Journal of Plant Sciences* 1: 24.

Ali, M.Y., Sina, A.A., Khandker, S.S., Neesa, L., Tanvir, E.M., Kabir, A., Khalil, M.I., Gan, S.H. 2020. Nutritional composition and bioactive compounds in tomatoes and their impact on human health and disease: A Review. *Foods* 10(1):45. doi: 10.3390/foods10010045.

Arivazhagan, M., Duraipandiyan, V., Ignacimuthu, S., 2018. Effect of gibberellic acid on plant growth and yield of Capsicum annuum var. grossum (L.) Sendt. cv. KKM. *Physiology and Molecular*

112 POONIA et al.

Biology of Plants 24(3): 415–421. doi.org/10.1007/s12298-018-0555-8.

- Baliyan, S.P., Rao, K.S.M., Baliyan, P.S. and Mahabile, M. 2013. The effects of 4-CPA plant growth regulator on the fruit set, yield and economic benefit of growing tomato in high temperatures. *International Journal of Agricultural Science* 3(2): 29-36.
- Bokade, N.S. 2004. Effect of growth regulators on summer tomato (*Lycopersicon esculentum* Mill.) cultivation. *M.Sc.* (*Horticulture*) *Thesis*, Mahatma Phule Krishi Vidyapeeth, Rahuri, Maharashtra.
- Chaudhury, S., Islam, N., Sarkar, M.D. and Ali, M.A. 2013. Growth and yield of summer tomato as influenced by plant growth regulators. *International Journal of Sustainable Agriculture* 5(1): 25-28.
- Chishti, S.A.S., Aleem, S., Sharif, I., Nadeem, K., Parveen, N. and Najeebullah, M. 2020. Influence of 4-CPA growth regulator for enhancing yield tomato during low night temperature stress. *Pakistan Journal of Agricultural Research* 33(2): 217-223.
- Gomez, K.A. and Gomez, A.A. 1984. Statistical Procedures for Agricultural Research. 2nd Edition, John Wiley and Sons, New York 680 p.
- Naz, S., Naqvi, S.A.H., Siddique, B., Zulfiqar, M.A. and Rehman, A. 2020. Exogenous application of selected antioxidants and phyto development directors influenced the development, output and biochemical attributes of tomato (*Lycopersicum esculentum Mill.*). *Pakistan Journal of Agricultural Research* 33(4): 789-797.
- Olsen, S.R., Cole, C.V., Watanabe, F.S. and Dean, L.A. 1954. Estimation of available phosphorus in soils by extraction with sodium bicarbonate. United States Department of Agriculture Circular, 939:
- Ramesh, V.K. 2019. Studies on the effect of foliar application of plant growth regulators on growth, yield and seed quality in tomato (Solanum lycopersicum L.). M.Sc. (Horticulture) Thesis, Dr Yashwant Singh Parmar University of Horticulture and Forestry Solan, Nauni, Himachal Pradesh.

- Ranjeet, Ram, R.B., Parkash, J. and Meena, M.L. 2014. Growth, flowering, fruiting, yield and quality of tomato (*Lycopersicon esculentum Mill.*) as influenced plant bioregulators. *International Journal of Plant Sciences* 9(1): 67-71.
- Rehman, S., Khan, S., Ullah, A. and Hussain, K. 2015. Temperature sensitivity: Effects on tomato growth and yield attributes. Journal of Agricultural Research, 53(1), 109-121.
- Sheoran, O.P. 2023. Statistical Package for Agricultural Scientists (OPSTAT). CCS HAU, Hisar. http://www.202.141.47.5/opstat/index.asp.
- Singh, J., Dwivedi, A.K., Devi, P., Bajeli, J., Tripathi, A. and Maurya, S.K. 2019. Effect of plant growth regulators on growth and yield attributes of tomato (*Solanum Lycopersicon Mill.*). *International Journal of Current Microbiology and Applied Sciences* 8(1): 1635-1641.
- Singh, P., Singh, D., Jiaswal, D.K., Singh, D.K. and Singh, V. 2017. Impact of naphthalene acetic acid and gibberellic acid on growth and yield of capsicum (*Capsicum annum* L.) cv. Indra under shade net conditions. *International Journal of Current Microbiology and Applied Sciences* 6(6): 2457-2462.
- Subbaiah, B. V. and Asija, G. L. 1956. A rapid procedure for the determination of available nitrogen in soils. *Current Science* 25(8), 259-260.
- Ujjwal, V., Singh, M.K., Dev, P., Chaudhary, M., Kumar, A. and Tomar, S. 2018. Effect of different levels of gibberellic acid and NAA on vegetative growth and flowering parameters of tomato (Solanum lycopersicum L.). Journal of Pharmacognosy and Phytochemistry 1: 146-148.
- Walkley, A. and Black, I.A. 1934. An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. *Soil Science* 37(1), 29-38.
- Westerman, R.L. 1990. Use of Ammonium Acetate to Extract Potassium from Soils for Plant Analysis. In: *Soil Testing and Plant Analysis*. Soil Science Society of America, Inc., Madison, WI, USA. pp. 152-160.