Morphological Variations between Provenances of *Vachellia abyssinica* Hochst. ex Benth. and *Cordia africana* Lam. from Different Seed Sources in Ethiopia

Mohammed Adefa Seid* and Marshet Nigatu Gebeyehu

Ethiopian Forestry Development (EFD), Addis Ababa, Ethiopia

Received: May 1, 2024 Accepted: May 10, 2024

OPEN ACCESS

Editor-in-Chief Praveen Kumar

Associate Editor

V.S. Rathore P. Santra R.K. Solanki

Managing Editor N.R. Panwar

Editors

R.S. Tripathi S. Soondarmurthy U.R. Ahuja R. Sharma P.P. Rohilla Raj Singh

Guest Editors

Mahesh Kumar M.L. Dotaniya Archana Verma

*Correspondence

Mohammed Adefa Seid mohammed.adefa.seid@gmail.com

Citation

Seid, M.A. and Gebeyehu, M.N. 2024. Morphological variations between provenances of Vachellia abyssinica Hochst. ex Benth. and Cordia africana Lam. from different seed sources in Ethiopia. Annals of Arid Zone 63(4): 171-183

doi.org/10.56093/aaz.v63i4.151127 https://epubs.icar.org.in/index.php/AAZ/ article/view/151127

https://epubs.icar.org.in/index.php/AAZ

Abstract: Plants exhibit phenotypic plasticity, which means they can adapt their morphology in response to changes in the environment. The objective of this study was to assess the extent of morphological variations among different seed sources of Vachellia abyssinica and Cordia africana in Ethiopia. A total of 26 populations from natural vegetation for V. abyssinica and 58 populations for C. africana from farmlands were surveyed between 2019 and 2020. We computed hierarchical clustering (HC), one-way ANOVA with a significance level of p≤0.05, and redundancy analysis (RDA). The HC analysis resulted in five cluster groups for V. abyssinica, based on parameters such as height and DBH. The one-way ANOVA revealed significant differences in mean height and DBH among these cluster groups. The RDA showed that annual mean temperature (Bio01) and mean diurnal range (Bio02) have a highly significant impact on the morphological variability among the populations of V. abyssinica (p=0.001***). Similarly, we identified three cluster groups for C. africana based on height and DBH parameters. The one-way ANOVA demonstrated significant differences in mean height and DBH among these cluster groups. The RDA indicated that Bio02 had a very significant effect on the morphological variability among the populations of C. africana (p=0.01**), followed by Isothermality (Bio03) with a significant effect ($p \le 0.05^*$). The findings of this study can be applied to the management and domestication of *V. abyssinica* and *C. africana*.

Key words: *Vachellia abyssinica, Cordia africana,* provenances, morphology, variability.

Plants have a tendency to change their morphological and physiological traits in response to environmental variations or heterogeneity of the habitats they are living in (Sultan, 1995; Robakowski *et al.*, 2003; Pescador *et al.*, 2015; Qi *et al.*, 2020). Hence, plants tend to adjust the expression of morphological traits, rate of growth, functions, and metabolism to maintain their adaptability in diverse environments (Bradshaw, 1965; Berli *et al.*, 2013; Gratani, 2014; Qi *et al.*, 2020). There is limited knowledge on the genetic variability of provenances in Ethiopia in general and *V. abyssinica* and *C. africana* in particular. *V. abyssinica* and *C. africana* occur in extensive environmental conditions and altitudinal ranges so that the phenotypic and

genotypic variability among provenances of *V. abyssinica* and *C. africana* is expected.

Tree seeds are the key input that determines the success of forestry. However, provision of quality tree seed is often in short supply (Mulawarman et al., 2003). Therefore, successful forestry relies on a well-functioning tree seed system that integrates the application of quality seed standards, effective mapping and monitoring of seed sources, and the enhancement of seed research systems. Hence, it is vital to ensure that seeds collections are made from sources with high genetic quality and desirable traits (Roshetko et al., 2007). So that, planting trees or shrubs in suitable habitat increases tree production by ensuring higher tree survival and improved good growth performance (Wenying et al., 2013). Presently, more than 2200 tree seed sources accounting for more than 85 species are identified and described in Ethiopia (unpublished), by the major stakeholders of seed sourcing and documenting, namely, the Ethiopian Forestry Development (EFD), regional tree seed centers (RTSC), and the Provision of Adequate Tree Seed Portfolios (PATSPO) of ICRAF. However, the intra-specific morphological variations

among populations of each species were not analyzed to identify sources with high genetic quality (superior populations) and desirable traits.

Vachellia abyssinica Hochst. ex Benth. (synonym: Acacia abyssinica), a Fabaceae, is a large flat-topped tree growing up to 20 meters when mature, commonly known as the podbearing species (Negash, 2021). In Ethiopia and other African regions, it is widely distributed in the Dry Afromontane areas at altitudes ranging from 1500 to 2800 m a.s.l. (Bekele-Tesemma, 1993 and 2007; Orwa et al., 2009; Negash, 2021. Cordia africana Lam. (synonym: Cordia abyssinica R.Br.), a member of the Boraginaceae family, is a much-branched deciduous tree with a rounded crown and often a crooked trunk, growing up to 25 meters tall (Bekele-Tesemma, 1993 and 2007; Orwa et al., 2009). In Ethiopia, it is widely distributed in the Dry and Moist Afromontane agroclimatic regions, with altitudes ranging from 900 to 2,500 m a.s.l. It is commonly found in Polyscias and Podocarpus forests, as well as in forest remnants in farmlands (Friis, 1992; Bekele-Tesemma, 1993 and 2007; Orwa et al, 2009), and have long

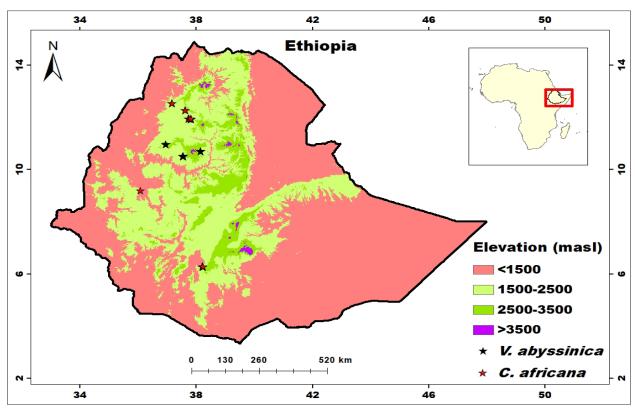


Fig. 1. Map of Ethiopia indicating the sampling sites for V. abyssinica and C. africana.

Label Variable description Units Bio01 Annual mean temperature Degrees celsius Bio02 Mean diurnal range [Mean of monthly (max. temp - min. temp)] Degrees celsius Bio03 Isothermality (Bio2/Bio7) Dimensionless Bio04 Temperature seasonality (Standard deviation) Degrees celsius Max. temperature of warmest month Degrees celsius Bio05 Bio06 Min. temperature of coldest month Degrees celsius Bio07 Temperature annual range (Bio5-Bio6) Degrees celsius Bio08 Mean temperature of wettest quarter Degrees celsius Degrees celsius Bio09 Mean temperature of driest quarter Mean temperature of warmest quarter Degrees celsius Bio10 Bio11 Mean temperature of coldest quarter Degrees celsius Annual precipitation Bio12 Milimeters Bio13 Precipitation of wettest month Milimeters Bio14 Precipitation of driest month Milimeters Bio15 Precipitation seasonality (Coefficient of variation) Fraction Bio16 Precipitation of wettest quarter Milimeters Bio17 Precipitation of driest quarter Milimeters Bio18 Precipitation of warmest quarter Milimeters Bio19 Precipitation of coldest quarter Milimeters Elev Elevation Meters Solar radiation kJ m⁻² day⁻¹

Table 1. Descriptions of bioclimatic, soil and landscape variables used for ordination analyses.

been exploited as a major commercially timber species (Abebe and Holm, 2003).

Topographic index ($\lambda = \ln(\alpha/\tan\beta)$

The objectives of this study were to degree of intra-specific determine the morphological variability, and identifying key environmental factors affecting the intraspecific morphological variations among the populations of V. abyssinica, and C. africana. Hence, it was hypothesized that V. abyssinica and C. africana would show intra-specific morphological variations along bioclimatic and physical gradients.

Materials and Methods

Srad

Tpi

Study area: Population sampling was done across selected natural and farmland areas in Ethiopia where *V. abyssinica* and *C. africana* are mainly distributed (Fig. 1).

The study area encompasses the Acacia-Commiphora woodland and bushland proper, Acacia wooded grassland of the Rift Valley; and Combretum-Terminalia woodland and wooded grassland ecosystems of Ethiopia (Friis et al., 2010; Asefa et al., 2020).

measuring Population sampling and morphometric parameters: For this study, a total of 26 natural vegetation populations (provenances) of *V. abyssinica*, and 58 farmlands tree populations (provenances) of C. africana were surveyed between 2019 and 2020. So, for each vegetation site (seeds source), ten sampling plots were employed at every 100 m interval randomly. Therefore, one superior (mother) and 3 nearby matured trees with DBH ≥2.5 cm and height ≥1.5m (Tussie, 2004), were sampled for measuring morphometric parameters in each sampling plot. Thus, a total of 40 trees were sampled in each vegetation site. So, two morphometric parameters (i.e., stem height in decimeters (dm), and diameter at the breast height (DBH) in millimeters (mm) were measured.

Unitless

Extracting environmental variables: The 30s resolution raster data of bioclimatic variables (i.e., Bio01-Bio19), elevation, solar radiation, and topographic index (all averaged for 1970-2000) were downloaded from www.worldclim. com/version2, the Worldclim database (Fick and Hijmans, 2017), and downscaled to the

study area (i.e., Ethiopia) using ArcGis 10.8 (Table 1). The values for environmental variables corresponding to each vegetation sites were extracted using the SDM package (Naimi and Araújo, 2016) with the support of other required packages such as Dismo (Hijmans *et al.*, 2015), Raster (Hijmans and van Etten, 2012; Hijmans, 2015).

Variables sharing the higher variance (i.e., (>80% total variance) were identified using PCA as recommended by Manly (1994) and Cruz-Cárdenas *et al.* (2014), and less collinear ones (r≤0.6) were selected (De Marco and Nóbrega 2018).

Data analysis: The intra-specific morphological variations among the populations of *V. abyssinica* and *C. africana* were analyzed using agglomerative hierarchical clustering with "Euclidean" distance and "ward. D2" methods in R 4.1.3. The degree of morphological dissimilarity among population

clusters was also determined using box-potting. In box-plotting R value closer to 1 normally indicated that the presence of high dissimilarity among cluster groups, while when closer to 0 implied an even distribution of high and low ranks within and between groups (Clarke and Gorley, 2001). In other words, the closer the R value to 1 showed that more the populations within clusters were similar to each other and dissimilar to the populations in other clusters. Moreover, constrained Redundancy Analysis (RDA) was performed to determine the effects of environmental factors on the morphological variations among the populations of V. abyssinica and C. africana. Moreover, one-way ANOVA was computed to see the level of significance difference among the clusters for morphological variations at p≤0.05. Tukey's Honestly Significant Difference (HSD) was computed to assess the significance of difference between pairs of cluster groups at p≤0.05 (Steel et al., 1997), allowing all possible pairwise

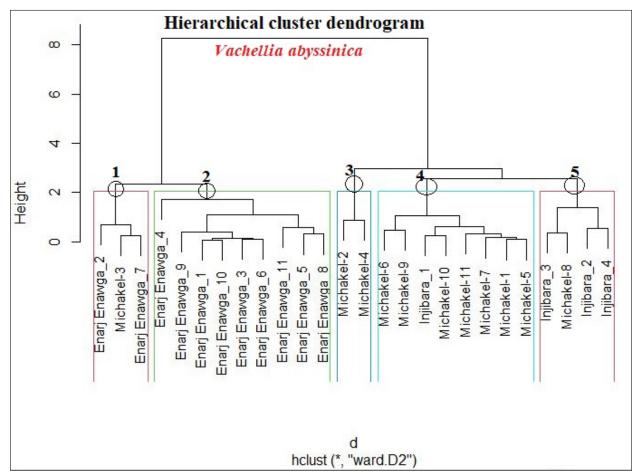


Fig. 2. Hierarchical clustering of the populations of V. abyssinica based on dissimilarity matrix of scaled data using Euclidean distances and Wards.D2 method.

, ,		O .			
	Df	Sum sq.	Mean sq.	F-value	Pr(>F)
Height					
Clusters	4	291001	72750	98.43	2.74e-13 ***
Residuals	21	15522	739		
DBH					
Clusters	4	291001	72750	98.43	2.74e-13 ***
Residuals	21	15522	739		

Table 2. One-way ANOVA of the mean significance difference of height (H) and DBH among clusters of the populations of V. abyssinica in the natural vegetations

Significance codes: Highly significant '***' if p≤0.001, Very significant '**' if p≤0.01, Significant '*' if p≤0.05.

comparisons while keeping the family-wise error rate low.

Results and Discussion

Morphological variations between and within the species of Vachellia abyssinica

The agglomerative hierarchical cluster analysis for the populations of *V. abyssinica* resulted five conspicuous cluster groups (morphotypes) based on the height (H) and DBH parameters (Fig. 2). The analysis of similarity (ANOSIM) further verified the presence of considerable dissimilarity among cluster groups of *V. abyssinica* (p=0.001***, R=0.918) (Fig. 3).

The one-way ANOVA showed that there exists a significant mean difference in height

and DBH among cluster groups V. abyssinica (Table 2). Tukey's HSD test showed that the largest height and DBH were recorded by cluster-5 (height = 126 ± 19.0 , DBH = 342 ± 34.9), and cluster-4 (height = 318 ± 32.9 , DBH = 318 ± 32.9) that is significant at p≤0.05 (Table 3, Fig. 4).

In other words, except between cluster-4 and cluster-5, there exists a significant mean difference among cluster groups with respect to their height and DBH measurements (Table 3, Fig. 4).

Similarly, the agglomerative hierarchical cluster analysis for the populations of *C. africana* resulted three cluster groups (morphotypes) based on the height and DBH parameters (Fig. 5). The analysis of similarity (ANOSIM) also

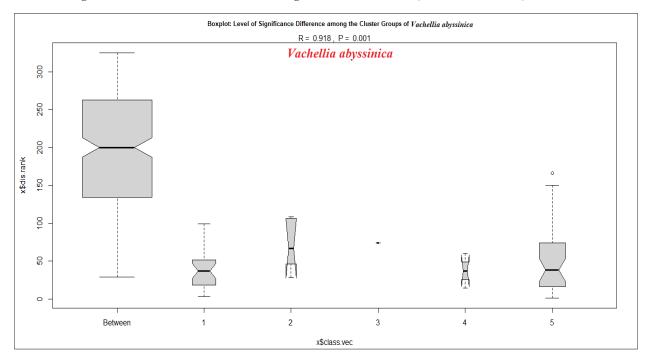


Fig. 3. A boxplot showing the dissimilarity ranks between and within classes in V. abyssinica populations (Number of permutations=999, p=.001).

Table 3. Summary of mean (\bar{x}) , standard deviation (SD) and standard error (SE) of height and DBH for cluster groups of V. abyssinica. The significance difference between pairs of treatments at $p \le 0.05$ is calculated using Tukey's HSD test. The values denoted with the same alphabet (s) along the vertical column of each germination parameter are not significantly different at $p \le 0.05$, and vice versa

	x±SD	SE
Height		
Cluster-1	55±8.1ª	4.7
Cluster-2	$65\pm18.4^{\rm b}$	6.1
Cluster-3	96±48.8°	34.5
Cluster-4	$105\pm7.9^{\rm d}$	2.8
Cluster-5	126±19.0 ^d	9.5
DBH		
Cluster-1	264±31.0 ^a	17.9
Cluster-2	144±17.1 ^b	5. <i>7</i>
Cluster-3	504±4.2°	3.0
Cluster-4	318±32.9 ^d	11.6
Cluster-5	342±34.9 ^d	17.5

verified the presence of noticeable dissimilarity among cluster groups of *C. africana* (p=0.001***, R=0.685) (Fig. 6). The one-way ANOVA showed that there exists a significant mean difference in height and DBH among cluster groups of *C. africana* (Table 4). Tukey's HSD test

also showed that the largest height and DBH were recorded by cluster-2 (height = 178 ± 20.2 , DBH = 312 ± 49.7), that is significant at $p\le0.05$ (Table 5, Fig. 7, Fig. 8), followed by cluster-3 (height = 95 ± 19.0 , DBH = 294 ± 60.2).

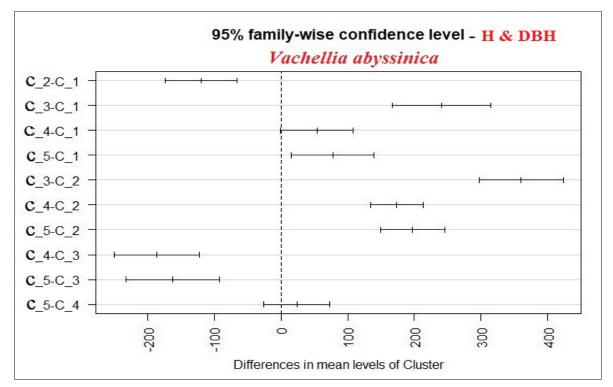


Fig. 4. Tukey's HSD test graph for pair-wise comparison of cluster groups in reference to height and DBH measurements for the populations of V. abyssinica in the natural vegetations. Any confidence intervals that do not contain 0 provide evidence of a difference in the groups (C = cluster, and H= height).

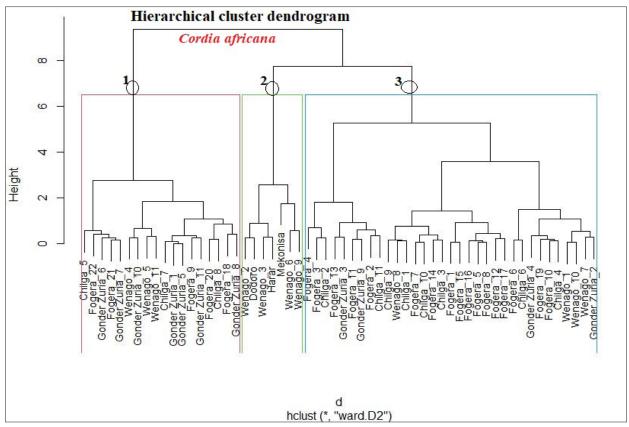


Fig. 5. Hierarchical clustering of the populations of C. africana based on dissimilarity matrix of scaled data using Euclidean distances and Wards.D2 method.

RDA of environmental variables over morphological variations: In this study, RDA showed that the morphological variability within *V. abyssinica* is constrained and affected

by mainly Bio01 and Bio02 which are appeared to have highly significant effects on the variability among the populations at p=0.001 (Table 6, Fig. 9).

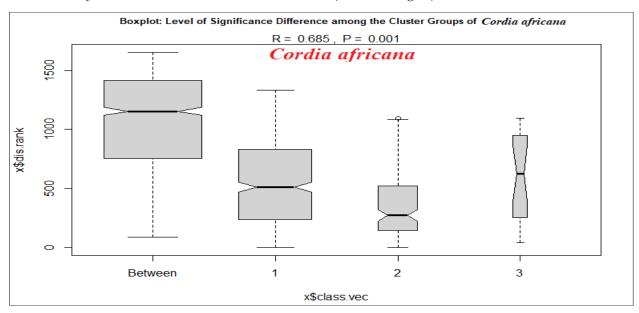


Fig. 6. A boxplot showing the dissimilarity ranks between and within classes in C. africana populations (Number of permutations=999, p=0.001).

Table 4. One-way ANOVA of the mean significance difference of height (H) and DBH among clusters of the populations of C. africana in the natural vegetations

	Df	Sum sq.	Mean sq.	F-value	Pr(>F)
Height					
Clusters	2	50513	25256	51.85	1.81e-13 ***
Residuals	56	27280	487		
DBH					
Clusters	2	164954	82477	26.07	9.97e-09 ***
Residuals	56	177200	3164		

Significance codes: Highly significant '***' if p≤0.001, Very significant '**' if p≤0.01, Significant '*' if p≤0.05.

Table 5. Summary of mean (\bar{x}) , standard deviation (SD) and standard error (SE) of height and DBH for cluster groups of C. africana. The significance difference between pairs of treatments at $p \le 0.05$ is calculated using Tukey's HSD test. The values denoted with the same alphabet (s) along the vertical column of each germination parameter are not significantly different at $p \le 0.05$, and vice versa

	$\bar{x}\pm SD$	SE
Height		
Cluster-1	80±27.2a	6.2
Cluster-2	178±20.2 ^b	7.6
Cluster-3	95±19.0°	3.3
DBH		
Cluster-1	185±50.8 ^a	11.7
Cluster-2	312±49.7 ^b	18.8
Cluster-3	294±60.2 ^b	10.5

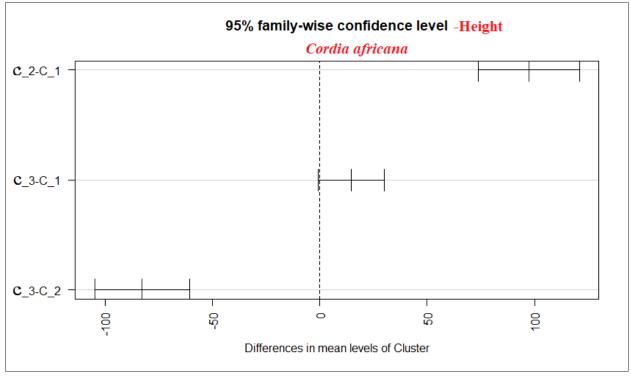


Fig. 7. Tukey's HSD test graph for pair-wise comparison of cluster groups in reference to height measurements for the populations of C. africana in the natural vegetations. Any confidence intervals that do not contain 0 provide evidence of a difference in the groups (C= cluster).

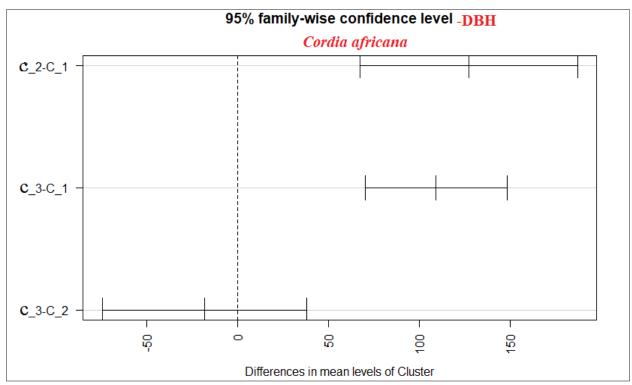


Fig. 8. Tukey's HSD test graph for pair-wise comparison of cluster groups in reference to DBH measurements for the populations of C. africana in the natural vegetations. Any confidence intervals that do not contain 0 provide evidence of a difference in the groups (C= cluster).

Similarly, RDA showed that the morphemically variability within *C. africana* is mainly affected by Bio02 with very significant effects on the variability among the populations

at p=0.01, followed by Bio03 that has significant effects on the variability among the populations at p \leq 0.05 (Table 7, Fig. 10).

Table 6. RDA for important environmental variables effecting the morphological variations among the populations of V. abyssinica (permutations=999, $p \le 0.05$)

	Df	Sums of sq.	Mean sq.	F-model	R ²
Bio01	1	0.3	0.3	25.4	0.001***
Bio02	1	0.5	0.5	44.6	0.001***
Bio03	1	0.0	0.0	1.2	0.299
Residual	22	0.2	0.2		
Total	25	0.9	1.0		

Table 7. RDA for important environmental variables effecting the morphological variations among the populations of C. africana (permutations=999, p≤0.05)

	Df	Sums of sq.	Mean sq.	F-model	R ²
Bio02	1	0.103075	0.086945	7.247929	0.006**
Bio03	1	0.072587	0.061228	5.104096	0.016^*
Bio04	1	0.00079	0.000667	0.055574	0.905
Bio06	1	0.005839	0.004926	0.410613	0.636
Bio10	1	0.043387	0.036597	3.05084	0.064
Bio13	1	0.022655	0.01911	1.593041	0.18
Residual	44	0.62574	0.527815		
Total	57	1.185529	1.0		

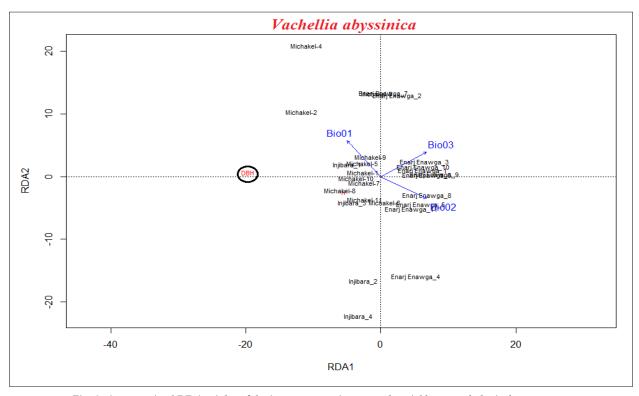


Fig. 9. A constrained RDA triplot of the important environmental variables, morphological parameters, and the population clusters of V. abyssinica.

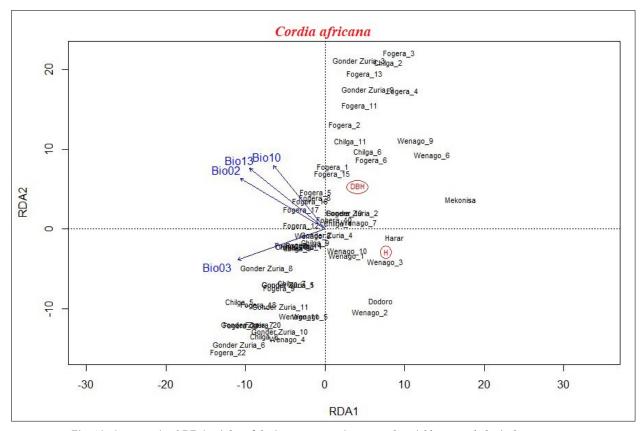


Fig. 10. A constrained RDA triplot of the important environmental variables, morphological parameters, and the population clusters of C. africana.

The majority of populations of *V. abyssinica* studied from seed sources in Michakel district of East Gojjam zone of Amhara region (cluster-5), and Injibara town administration of Awi zone of Amhara region (Cluster-4) are characterized by apparently high morphological superiority presumably with high genetic quality. Similarly, the majority of farmland populations of C. africana from Wenago, Dodoro, and Mekonisa districts of Geteo zones in south Ethiopia region, as well as farmlands from Harar city areas show high morphological superiority. A study by Guyassa et al. (2013) also indicated the presence of significant morphological variation among six provenances of C. africana studied from northern Ethiopia (i.e., Mekelle, Kemisie, Zegie, Finote-selam, Dejen and Tikil-dingay). Therefore, seed collections and establishment of plantation forestry is advised to get sourced from these sites as described by Mulawarman et al. (2003) and Roshetko et al. (2007), with appropriate selection of site-matching (Lillesø et al., 2011; Nyoka et al., 2011). Therefore, plantation forestry of tree species in appropriate site matching would remarkably increase production by ensuring high tree survival rate and good growth successes (Wenying et al., 2013).

This study indicated that the morphological variations of *V. abyssinica* is mainly limited by temperature-related bioclimatic variables mainly Bio01 (annual mean temperature) and Bio02 (mean diurnal range), while that of *C. africana* is determined by temperature-related bioclimatic variables, namely, Bio02 and Bio03 (isothermality). These findings have pertinent implications for identifying the most suitable habitat (i.e., site-matching) for plantation and establishment of seed sources for the subject tree species as recommended by Lillesø *et al.* (2011) and Nyoka *et al.* (2011).

It is apparent that natural vegetations show high diversity compared to farmland areas that is also verified in this study where high tree diversity is observed by *V. abyssinica* compared to the *C. africana* studied from the farmland areas. A study by Guyassa *et al.* (2013) also showed that provenances of *C. africana* form natural vegetations are generally superior in their total height and bole length. This is likely related to the selective removal of morphologically superior trees in farmlands (i.e., remnants of natural vegetations) for

domestic utilizations. The selective thinning and exploitation of wood products converting natural vegetations into agricultural areas ultimately decrease the tree diversity. This study also indicated that phenotypically and genotypically high-quality trees are present in natural vegetations and protected areas where external pressures are fairly limited.

Conclusions

This study identified the best populations (provenances) of V. abyssinica and C. africana that can be sourced for seeds of theses tree species for large-scale timber production in Ethiopia. Planting tree in their suitable habitat increases tree growth performance and production forestry. Hence, vegetation areas identified to have high-quality and superior population (provenances) of *V*. abyssinica and C. africana can be delineated, managed and maintained as potential seed sources in Ethiopia. Moreover, further field surveys should be done in order to identify additional potential tree seed sources for V. abyssinica and C. africana in broader landscapes of Ethiopia. Overall, it is also important to carryout provenance trial with appropriate managements to further identify the highquality provenances through domestication process and different management approaches.

Declaration of funding

This study was initially financed by EFD and PATSPO/ICRAF.

Acknowledgment

EFD and PATSPO/ICRAF are acknowledged for financing the field data collection works.

Data Availability Statement

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

Abebe, T. and Holm, S. 2003. The Effect of Commercial Selective Logging on a Residual Stand in Tropical Rain Forest of South-Western Ethiopia. *Journal of Tropical Forest Science* 15(3): 387-398. http://www.jstor.org/stable/23616440.

Asefa, M., Cao, M., He, Y., Mekonnen, E., Song, X. and Yang, J. 2020. Ethiopian vegetation types, climate and topography. *Plant Diversity* 42(4): 302-311. https://doi.org/10.1016/j.pld.2020.04.004.

- Bekele-Tesemma, A. 1993. Useful trees and shrubs for Ethiopia: Identification, propagation and management for agricultural and pastoral communities. Technical handbook No 5. Regional Soil Conservation Unit (RSCU) Swedish International Development Authority (SIDA), Embassy of Sweden, Kenya.
- Bekele-Tesemma, A. 2007. Useful trees of Ethiopia: identification, propagation and management in 17 agroecological zones. Nairobi: RELMA in ICRAF Project, 552p.
- Berli, F.J., Alonso, R., Bressan-Smith, R., and Bottini, R. 2013. UV-B impairs growth and gas exchange in grapevines grown in high altitude. *Physiologia Plantarum* 149(1): 127-140. https://doi.org/10.1111/ppl.12012.
- Bradshaw, A.D. 1965. Evolutionary significance of phenotypic plasticity in plants. *Advances in Genetics* 13: 115-155.
- Clarke, K.R. and Gorley, R.N. 2001. Primer v5: User Manual/Tutorial. Primer-E Ltd., Plymouth.
- Cruz-Cárdenas, G., López-Mata, L., Villaseñor, J. L. and Ortiz, E. 2014. Potential species distribution modeling and the use of principal component analysis as predictor variables. *Revista Mexicana de Biodiversidad*, 85(1): 189-199. https://doi.org/10.7550/rmb.36723.
- De Marco, J.P. and Nóbrega, C.C. 2018. Evaluating collinearity effects on species distribution models: An approach based on virtual species simulation. *PLoS ONE* 13(9): e0202403, 1-25. https://doi.org/10.1371/journal.pone.0202403.
- Fick, S.E. and Hijmans, R.J. 2017. WorldClim 2: new 1km spatial resolution climate surfaces for global land areas. *International Journal of Climatology* 37 (12): 4302-4315.
- Friis, I. 1992. Forests and forest trees of North East tropical Africa. Kew Bull (additional series XV).
- Friis, I., Demissew, S. and van Bruegel, P. 2010. Atlas of the potential vegetation of Ethiopia. Potential vegetation map for Ethiopia. *The Royal Danish Academy of Sciences and Letters* 1-315.
- Gratani, L. 2014. Plant phenotypic plasticity in response to environmental factors. *Advances in Botany* 1-17. https://doi.org/10.1155/2014/208747.
- Guyassa, E., Tesfaye, S., Raj, A.J., Abdulkadir, A. and Gure, A. 2013. Morphology characterization of *Cordia africana* populations at six provenances in northern Ethiopia. *International Journal of Agricultural Science and Research (IJASR)* 3(2): 175-186.
- Hijmans, R.J. 2015. Raster: Geographic data analysis and modeling. R Package Version 2: 4-15. http://CRAN.R-project.org/package=raster.
- Hijmans, R.J., Phillips, S, Leathwick, J. and Elith, J. 2015. Dismo: Species distribution modeling. R

- Package Version 1.0-12. http://CRAN.R-project.org/package=dismo.
- Hijmans, R.J. and van Etten, J. 2012. Raster: Geographic analysis and modeling with raster data. R package version 2.0-12.
- Lillesø, J-P., Graudal, L., Moestrup, S., Kjær, E.D., Kindt, R., Mbora, A. and Jamnadass, R. 2011. Innovation in input supply systems in smallholder agroforestry: Seed sources, supply chains and support systems. *Journal of Agroforestry Systems* 83(3): 347-359.
- Manly, B.F.J. 1994. *Multivariate Statistical Methods: A Primer*. Chapman and Hall, London. 2nd ed.
- Mulawarman, J.M., Roshetko, S.M., Sasongko and Irianto, D. 2003. *Tree Seed Management Seed Sources, Seed Collection and Seed Handling: A Field Manual for Field Workers and Farmers*. International Centre for Research in Agroforestry (ICRAF) and Winrock International. Bogor, Indonesia.
- Naimi, B and Araújo M.B 2016. SDM: A reproducible and extensible R platform for species distribution modelling. *Ecography* 39: 368-375. https://doi.org/10.1111/ecog.01881.
- Negash, L. 2021. A Selection of African Native Trees: Biology, Uses, Propagation and Restoration Techniques. Addis Ababa, Ethiopia.
- Nyoka, I., Mng'omba, A., Akinnifesi, K., Ajavi, O., Sileshi, G. and Jamnadass, R. 2011. Agroforestry Tree Seed Production and Supply Systems in Malawi. *Small-Scale Forestry* 10(4): 419-434.
- Orwa, C., Mutua, A., Kindt, R., Jamnadass, R. and Anthony S. 2009. Agroforestry Database: A tree reference and selection guide version 4.0. http://apps.worldagroforestry.org/treedb/AFTPDFS/Ziziphus_mucronata.PDF, http://apps.worldagroforestry.org/treedb/AFTPDFS/Zizyphus_spina-christi.PDF.1-5.
- Pescador, D.S., de Bello, F., Valladares, F. and Escudero, A. 2015. Plant trait variation along an altitudinal gradient in mediterranean high mountain grasslands: Controlling the species turnover effect. *PLoS ONE* 10(3): e0118876. https://doi.org/10.1371/journal.pone.0118876.
- Qi, J., Liu, W., Jiao, T. and Hamblin, A. 2020. Variation in Morphological and Physiological Characteristics of Wild *Elymus nutans* Ecotypes from Different Altitudes in the Northeastern Tibetan Plateau. *Journal of Sensors* 1-12. https://doi.org/10.1155/2020/2869030.
- Robakowski, P., Montpied, P. and Dreyer, E. 2003. Plasticity of morphological and physiological traits in response to different levels of irradiance in seedlings of silver fir (*Abies alba Mill*). *Trees* 17(5): 431-441. https://doi.org/10.1007/s00468-003-0257-z.
- Roshetko, J.M., Lasco, R.D. and Delos Angeles, M.D. 2007. Smallholder agroforestry systems for carbon storage. *Mitigation and Adaptation*

- Strategies for Global Change 12: 219-242. https://doi.org/10.1007/s11027-005-9010-9.
- Steel, R.G.D., Torrie, J.H. and Dickey, D.A. 1997. Principles and Procedures of Statistics: A Biometrical Approach. 3rd ed., McGraw-Hill, New York.
- Sultan, S.E. 1995. Phenotypic plasticity and plant adaptation. *Acta Botanica Neerlandica* 44(4): 363-383. https://doi.org/10.1111/j.1438-8677.1995. tb00793.x.
- Tussie, G.D. 2004. Vegetation Ecology, Rangeland Condition and Forage Re- Sources Evaluation in the Borana Lowlands, Southern Oromia, Ethiopia. Cuvillier, Göttingen, Germany.
- Wenying, J., Yufen, C., Xiaoxiao, Y. and Shiling, Y. 2013. Chinese loss plateau vegetation since the last glacial maximum and its implications for vegetation restoration. *Journal of Applied Ecology* 50(2): 440-448. Doi: 10.1111/1365-2664.12052.

Printed in December 2024