Growth Performance of Different Tree Species in Agroforestry Systems in IGNP Command Area in Western Rajasthan

Bilas Singh*, Dhana Ram, Om Prakash, Deepak Kumar, Bhawana Sharma and M.R. Baloch

ICFRE-Arid Forest Research Institute, Jodhpur 342 005, India

Received: June 15, 2024 Accepted: August 20, 2024

OPEN ACCESS

Editor-in-Chief Praveen Kumar

Associate Editor V.S. Rathore

V.S. Rathore P. Santra R.K. Solanki

Managing Editor N.R. Panwar

Editors

R.S. Tripathi S. Soondarmurthy U.R. Ahuja R. Sharma P.P. Rohilla Raj Singh

Guest Editors

Mahesh Kumar M.L. Dotaniya Archana Verma

*Correspondence

Bilas Singh bilassingh5217@gmail.com

Citation

Singh B, Ram, D., Prakash, O., Kumar, D., Sharma, B. and Baloch, M.R. 2024. Growth performance of different tree species in agroforestry systems in IGNP command area in western Rajasthan. Annals of Arid Zone 63(4): 87-96 doi.org/10.56093/aaz.v63i4.152799 https://epubs.icar.org.in/index.php/AAZ/article/view/152799

Abstract: Tree integration in agriculture lands is climate resilient land use system traditionally practiced for improved productivity in arid regions. It enhances land productivity and improves livelihoods of rural dwellers. Four agroforestry models that includes block plantations of Prosopis cineraria (Khejri), Tecomella undulata (Rohida), grafted Zizyphus mauritiana (Ber) and Cordia myxa (Gunda) and boundary plantations of Dalbergia sissoo (Shisham), Carissa carandas (Karonda) and Cordia myxa were assessed at two sites within 500 m distance involving two farmers. Seedlings were planted in September 2021. Different crops were cultivated during kharif and rabi seasons of 2021 and 2022. Plants were measured for height and collar diameter and crop yields recorded. After two years of establishment, P. cineraria and T. undulata seedlings exhibited 99.0% survival, whereas seedlings of *Z. mauritiana* and *C. myxa* showed survival of 93.0% and 95.0%, respectively. Survival was relatively greater under block plantation as compared to the boundary plantations. Height and collar diameter growth of *T. undulata* was greater (p<0.05) by 87.0% and 37.0% than *P*. cineraria seedlings in agri-silvi model. Z. mauritiana exhibited 30.0% greater height, whereas *C. myxa* showed 22.7% greater collar diameter in agri-horti system. In boundary plantation, survival and growth was greater (p<0.05) in *D. sissoo* than *C.* carandas and C. myxa seedlings. Yield of Cyamopsis tetragonoloba was lesser than Plantago ovata and it was higher in 2022-23 than in 2021-22. However, dry matter and grain yields of both C. tetragonoloba and P. ovata were almost similar (p>0.05) in control as well as tree integrated plots. This indicated least competitive effect of trees on crops during initial 2 years. Conclusively, T. undulata and Z. mauritiana in agroforestry and D. sissoo in boundary plantation appeared suitable in initial years. However, recording of data for long term is suggested for effectual conclusion and recommendation based on tree crop interaction.

Key words: Arid region, agroforestry, growth, survival, tree-crop interaction.

The construction of Indira Gandhi Nahar Pariyojna (IGNP) has increased water availability for drinking and cultivating agricultural crops in western Rajasthan. The total length of

the main canal is about 460 km with about 10,000 km long distribution system that covers a command area of about 18.50 lakh ha (IWMI, 2007). This caters to the needs of about 17.5 million population of western Rajasthan. Increased availability of canal water has promoted intensive cultivation and enhanced production. agricultural However, exploitation of fragile ecosystems, harsh climatic conditions, and growing human pressure in the region contribute to land degradation (Varghese and Singh, 2016). Increased mechanization in agricultural activities also affects populations of naturally growing woody vegetation and their diversity. At the same time, tree-integrated farming systems are important concerning sustainability and livelihood in drought-prone dry regions (Harsh et al., 1992). The key benefits of integrating trees into farmlands include enhanced land productivity stemming from improved soil properties and fertility (Singh et al., 2000; Syano et al., 2023; Singh, 2020). Additionally, tree integration plays a crucial role in moderating soil carbon loss by controlling erosion and promoting carbon sequestration (Rizvi et al., 2019; Udawatta et al., 2023). It also facilitates nutrient cycling (Sileshi et al., 2020), enhances microbial populations (Yadav et al., 2008), and provides essential environmental services (Jose, 2009). In the Indian Desert region, species such as Prosopis cineraria, Tecomella undulata, Acacia nilotica, Acacia senegal, Acacia tortilis, and Zizyphus mauritiana are widely conserved and promoted within traditional agroforestry systems (Tewari et al., 2014). However, major drawbacks of these traditional agroforestry systems are random distribution and improper spacing and hence varying effects of trees on associated agricultural crops (Jodha, 1997; Singh et al., 2024).

On the other hand, the growth and development of the planted seedlings in farmland can significantly be affected by the existing environmental factors like air temperature, light intensity, soil water, and nutrient availability as well as competitive effects of the competing intercrops (Islam *et al.*, 2024). The competition between trees and crops for the above- and below-ground resources is a major factor limiting the successful selection of an appropriate agroforestry model in dry regions (Ong *et al.*, 1991; Upadhyaya

et al., 2021). Initially planted tree seedlings face competition from the associated crops, whereas after establishment seedlings start competing with the crops mainly for soil water, nutrients, and light (Swieter et al., 2021). Crop yield reduction by 15-90% reported beneath tree canopy is because of varying levels of competitive interaction between tree and crop interaction that depended on tree species, age, soil type, rainfall and climatic factors (Singh, 2004; Kaushik et al., 2017; Singh, 2020). Tree competition with crops also depends upon root distribution patterns, crop types, and availability of resources (Toky and Bisht, 1992; Stahl et al., 2002; van Noordvijk et al., 2015). Such tree-crop interactions may be equally applicable to the crops grown in association with some important tree species grown in western Rajasthan. These include Prosopis cineraria (L.) Druce (Khejri), Tecomella undulata (Sm.) Seem (Rohida), Dalbergia sissoo Roxb. (Shisham), Zizyphus mauritiana Lamk. (Ber), and Cordia myxa L. (Gunda), etc. (Singh et al., 2014). The growth of these tree species may depend on the climate-growth responses of individuals (Primicia et al., 2015). There are limited studies on tree-crop interaction involving these tree species in agroforestry systems particularly under the irrigated condition of IGNP areas (Yadava et al., 2013; 2018). Thus, there is a need to assess different tree-crop combinations for adopting suitable agroforestry systems for the irrigated IGNP area of western Rajasthan to sustain ecological and socio-economic services in the region. Further, recognizing the growth patterns and trends of environmentally adaptive and economically important species is therefore crucial in increasing land productivity in the region.

Therefore, this study includes the performance of different silvi- and hortispecies like *P. cineraria*, *T. undulata*, *D. sissoo*, *Z. mauritiana*, and *C. myxa* in terms of survival and growth and their effects on crop productivity in agroforestry system in IGNP command area of western Rajasthan.

Materials and Methods

Site condition

The study was conducted for two consecutive years (2021-2023) on two farmlands (sites) situated at 500 m distance in Indira Gandhi Nahar Pariyojana (IGNP) near Bandha,

Ramgarh area of Jaisalmer (27°15′47.6"N, 70°16′58.0′′E and 27°14′51.8″N, 70°16′45.7′′E) district of Rajasthan, India. The climate of the region is tropical and characterized by hot and dry summer, warm autumn, and cool winter. The rainfall period is from mid-July to September. Annual rainfall at Ramgarh, Jaisalmer (nearest meteorological station) was 139 mm, 474 mm, and 295 mm in 2021, 2022, and 2023, respectively. The mean monthly maximum temperature was 39.0°C, 38.1°C, and 35.6°C, and the minimum temperature was 14.3°C, 16.8°C and 18.0°C, respectively in 2021, 2022 and 2023. The experimental area was flat with loamy sand soil having a Gypsum layer at 50-75 cm depth. The values of soil pH and organic carbon of the first experimental site (silvi species) were 8.96 and 0.065%, whereas at the second experimental site (horti species) these values were 8.73 and 0.079%, respectively.

Plantation establishment

Six months old seedlings of different species were planted in September 2021. Experimental site I, was planted with two silvi species viz. P. cineraria (Khejri) and T. undulata (Rohida) covering 2 ha area whereas experimental Site II comprised horticultural species, specifically grafted ber (Zizyphus mauritiana) and Cordia myxa (Gunda) covering 1.5 ha area. Three replicate plantations were done in a randomized block design and the spacing between the trees was 6 m × 6 m in both experiments. A basal dose of 5 kg FYM and 10 g anti-termite chemical (Forate) were mixed in each pit during the plantation. In addition, boundary plantation (300 running meters) of D. sissoo (Shisham) seedlings was done at 6 m spacing and Carissa carandas (Karonda) seedlings were planted in between the D. sissoo seedlings at experimental site I (50 plants of each species). At experimental site II, the boundary plants involved *D. sissoo* and C. myxa seedlings planted at 6 m spacing alternatively covering 550 running meters (45 plants of each species). Soil working was done at three-month intervals. Plants were irrigated weekly during the summer season in the first year. In the second year, irrigation was done at 15-day intervals during winter and 10-day intervals during the summer season, whereas in the third year, supplement irrigation was done at 15-day intervals during both winter and summer season. Mortality of plants was addressed in July 2022 by replacing the lost

individuals to maintain the intended plant density. To protect the seedlings from termite attack, a 0.2% solution of Chlorpyrifos was applied in September, October, and April months or whenever required. During the rainy season of the third year, a second dose @ 3 kg FYM and 25 g DAP were applied to the plants.

Crop yield recording: Cluster bean (Cyamopsis tetragonoloba (L.) Taub.) was the kharif season crop, whereas Ishabgol (Plantago ovata Forsk.) was the rabi season crop at experimental site I (Agri-Silvi model), whereas at experiment site II (Agri-Horti model), cluster bean (C. tetragonoloba) was the intercrop in the kharif season, and Mustard (Brassica juncea (L.) Czern. & Coss.) was sown as the rabi season in year 2021. In the year 2022, cluster bean and Isabgol were the kharif and rabi season crops respectively in both the experiment. In addition, there were three replicate control plots, which had pure crops without tree plantation at each site. Harvesting and yield recording of kharif and rabi seasons crops were done from 1× 1 m² size quadrates laid in each replicate plot of tree species as well as the control plots in both experiments. However, there were quadrates in planted area, i.e., one at 30 cm away from the plant root zone and the other was at the centre of four plants in each plot in block plantation. Thus, there were 15 quadrates (12 in plantation + 3 in control) at each experimental site. Agricultural crops were harvested in October and March (i.e., for kharif and rabi crops respectively) of each year from the abovementioned quadrates. After air drying, the crops were threshed. Dry matter (straw) and grain of the crops were separated by winnowing, their yields were recorded by weighing using top loading balance and presented in Mega gram (tonnes) per hectare (Mg ha-1). Due to the nonavailability of irrigation water in the canal, the yield of Isabgol and mustard (sown during the rabi season of 2021) could not be recorded.

Observations: The survival percentage of the planted seedlings was calculated from the ratio of the live seedlings and the initial number of seedlings planted. It was calculated on yearly basis. The height and collar diameter (10 cm above the ground level) of the planted seedlings were recorded at six-months intervals using measuring rods and Vernier calipers respectively. Grafted Zizyphus mauritiana (37 plants) and Cordia myxa (12 plants) started

Table 1. Per cent survival of different species under different agroforestry systems in IGNP command area in western Rajasthan. Values are mean ± LSD of 3 replications

Model	Species	Replacement (%) in	Survival (%) in October 2023	ANOVA	
		Aug 2022		F value	P value
Agri-Silvi model (site-I)					
Block plantation	P. cineraria	7.77	99±1.14	0.111	NS
	T. undulata	2.78	99±0.67		
Boundary plantation	D. sissoo	33.33	96±1.11	5.991	< 0.05
	C. carandas	34.00	93±1.70		
Agri-Horti model (site-II)					
Block plantation	Z. mauritiana	6.67	93±3.82	0.619	NS
	С. туха	10.00	95±4.62		
Boundary plantation	D. sissoo	11.33	95±2.23	0.920	NS
	С. туха	12.47	94±1.81		

NS - Non significant at p>0.05

fruiting in 2022-23; hence the fruit yields were also recorded in Agri-Horti system (Experiment II).

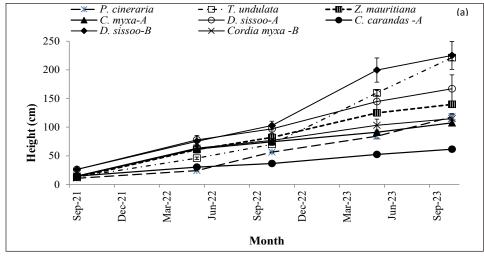
Data analysis: Data collected in the studies were statistically analyzed using the SPSS statistical package. Survival, height and collar diameter of the planted seedlings were analyzed using a one-way ANOVA separately for both experiments and types of plantations (block plantation and boundary plantation). Type of tree species was the main factor. Yields of the dry matter as well as grain of the crops were also analyzed using one way ANOVA considering trees species and the control plots as the main factor. The least significant difference test was used to compare treatments at the p<0.05 levels. Pearson's correlation was also performed to find out relationship between plant growth/crop yield and annual rainfall.

Results and Discussion

Seedling survival: Per cent survival of the planted seedling at 2 years age did not differ significantly (p<0.05) between the species of both agroforestry models except boundary plantations in the Agri-Silvi system where survival of *D. sissoo* seedlings was significantly high (96%) in comparison of *C. carandas* (Table 1). However, survival percent ranged from 93 to 99 percent in Agri-Silvi model. It was relatively less under boundary plantation as compared to those in the block plantation. Among species, the survival was lowest for *C. carandas* and highest for *P. cineraria/T. undulata*. At the experimental site of the Agri-Horti model, survival percent ranged between 93%

for *Z. mauritiana* and 95% for *C. myxa* and *D. sissoo*. Survival was almost similar in block and boundary plantations (Table 1).

Seedling growth: At experimental site I, both height and collar diameter growth differed significantly (p<0.05) between the species. Incremental growth in height and collar diameter of *T. undulata* were 603% and 228% greater as compared to those for the *P. cineraria* seedlings under block plantation. At experiment site II, the height of the grafted *Z. mauritiana* was significantly (p<0.05) greater than the seedlings of *C. myxa* indicating a 383% and 146% enhancement in incremental growth in the height and collar diameter of *Z. mauritiana* seedlings.


In boundary plantations, the growth performance of *D. sissoo* seedling was significantly (p<0.05) better as compared to *C. carandas* and *C. myxa* seedlings. Increase in the height and collar diameter of *D. sissoo* seedlings were higher by 169.0% and 253.0% as compared to the respective growth variable for *C. carandas* at experimental site I. At the experimental site II, the growth of *D. sissoo* seedlings was 96% greater in height and 75% greater in collar diameter over the respective growth variable of *C. myxa* seedlings (Table 2).

Trends in periodic growth of height and collar diameter are presented in Fig. 1. The seedlings of *D. sissoo, T. undulata* and *Z. mauritiana* exhibited better height growth as compared to the seedlings of the other species. These seedlings showed better growth in second year as compared to that in the first

Table 2. Growth of two-year-old seedling of different species in agroforestry in IGNP command area in western Rajasthan. Values are mean \pm LSD of 3 replications

Models	Experimental site I				
Agri-Silvi model	Growth parameter	P. cineraria	T. undulata	F value	P value
	Height (cm)	118±5.95	221±4.94	65.39	< 0.001
	Collar diameter (cm)	3.24±0.19	4.43±0.18	18.79	< 0.001
Boundary plantation		D. sissoo	C. carandas	P value	F value
	Height (cm)	167±14.15	62±4.66	18.09	< 0.001
	Collar diameter (cm)	3.74±0.21	1.06±0.12	15.22	< 0.001
	Experimental site II				
Agri-Horti model		Z. mauritiana	С. туха	F value	P value
	Height (cm)	140±7.00	108±5.10	6.75	< 0.05
	Collar diameter (cm)	2.91±0.38	3.57±0.51	2.92	NS
Boundary plantation		D. sissoo	C. myxa	P value	F value
	Height (cm)	225±24.29	4.54±0.58	20.11	< 0.001
	Collar diameter (cm)	5.54±2.49	3.17±0.09	11.46	< 0.001

NS - Non significant at P<0.05.

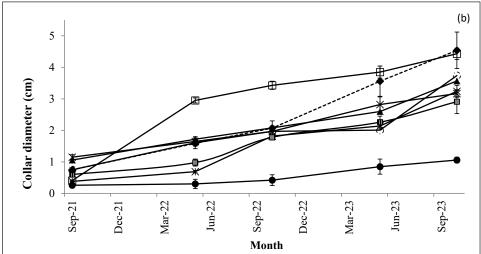


Fig 1. Periodic growth in height (a) and collar diameter (b) of different species in various agroforestry systems in IGNP command area of Jaisalmer, Rajasthan.

Table 3. Crop yield (Mg ha⁻¹) in Agri-Silvi and Agri-Horti system in IGNP command area in western Rajasthan. Values are mean ± LSD of 3 replications

Experime	ent I (Agri-Silvi system)					
Crop		P. cineraria	T. undulata	Sole crop	F value	P value
2021-22						
Cluster bean	Dry matter (Mg ha ⁻¹)	0.38 ± 0.01	0.38±0.01	0.38 ± 0.03	0.30	NS
	Grain (Mg ha ⁻¹)	0.08 ± 0.01	0.08 ± 0.01	0.08 ± 0.01	0.93	NS
2022-23						
Cluster bean	Dry matter (Mg ha ⁻¹)	1.55±0.04	1.58±0.07	1.59±0.06	1.25	NS
	Grain (Mg ha ⁻¹)	0.49 ± 0.04	0.51±0.05	0.53 ± 0.41	2.08	NS
Isabgol	Dry matter (Mg ha ⁻¹)	1.48±0.13	1.52±0.10	1.56±0.06	1.22	NS
	Grain (Mg ha ⁻¹)	0.50±0.06	0.50±0.07	0.55 ± 0.04	2.53	NS
Experime	ent II (Agri-Horti system)					
Crop		Grafted Z. mauritiana	Grafted C. myxa	Sole crop	F value	P value
2021-22						
Cluster bean	Dry matter (Mg ha ⁻¹)	0.70 ± 0.01	0.71±0.01	0.72 ± 0.01	1.24	NS
	Grain (Mg ha ⁻¹)	0.23±0.01	0.23±0.02	0.24+0.01	1.06	NS
2022-23						
Cluster bean	Dry matter (Mg ha ⁻¹)	1.56±0.11	1.56±0.05	1.56±0.07	0.02	NS
	Grain (Mg ha ⁻¹)	0.50±0.09	0.53±0.03	0.55±0.04	1.84	NS
Isabgol	Dry matter (Mg ha ⁻¹)	1.82±0.15	1.83±0.10	1.91±0.09	1.48	NS
	Grain (Mg ha ⁻¹)	0.60±0.06	0.59±0.05	0.62±0.04	0.67	NS

NS - Non significant at p<0.05.

year (Fig. 1a). Growth in collar diameter was also least in *C. carandas*. However, seedlings of *D. sissoo* and *T. undulata* showed better collar diameter growth as compared to the other species (Fig. 1b).

Crops yield: Crop yield recorded in terms of dry matter (straw) and grain showed variations due to crop type. rabi crops of 2021 failed due to non-availability of supplemental irrigation from the canal and hence crop yield could not be recorded in 2021-22. During kharif seasons, dry matter and grain yields of clusterbean did not differ (p>0.05) between the tree integrated system and the control plots in both 2021-22 and 2022-23 (Table 3). Contribution of dry matter and grain yields in total yield was 82.6% and 17.4% in 2021-22 and 75.0% and 25.0% in 2022-23, respectively in agri-silvi system. The reduction in the yields of dry matter and grain in the tree integrated plots was insignificant as compared to those in the control plots in 2021-22. However, the reduction in dry matter and grain yield of cluster bean was by 2.5% and 7.6% in Khejri-based system, and by 0.63% and 3.77% in Rohida-based system respectively as compared to the yields in sole crop plot in 2022-23. Likewise, dry matter and grain yield of Isabgol showed a decrease by 5.1% and 9.1% in Khejri-based system, and by 1.6% and 9.1% in Rohida-based system.

In Agri-Horti system, dry matter and grain yields of clusterbean as well as Isabgol both did not differ significantly due to tree species and the control plots in both the years. Average yields of dry matter and grain of clusterbean were 0.71 Mg ha-1 and 0.23 Mg ha-1 with their contribution by 75.5% and 24.5% respectively in 2021-22. In 2022-23, dry matter and grain yields were higher (p<0.05) than those in 2021-22 and contribution of these components were 74.6% and 25.4% of the total yield respectively. Reduction in grain yields of clusterbean was 9.1% and 3.6% in grafted Ber and Gundabased system than the yield in control plot in 2022-23. Contribution of dry matter and grain yields in total yield of Isabgol was 75.4% and 24.5% respectively in rabi season of 2022-23. Though not significant, but yield was relatively higher in the control plots than those in the tree integrated plots. The reduction in dry matter and grain yield were by 4.7% and 9.7% in grafted Ber system, and by 4.2% and 8.1%

in Gunda-based system, when compared with those in the sole crop plot (Table 3).

Fruit yields of Ber and Gunda: Fruit yield of grafted *Z. mauritiana* ranged between 0.60 kg plant⁻¹ to 2.5 kg plant⁻¹ in the second year (i.e. 2022-23) with an average yield of 1.45 kg plant⁻¹. In grafted *Cordia myxa*, the fruit yield was 0.78 kg plant⁻¹ that varied from 0.50 kg plant⁻¹ to 1.50 kg plant⁻¹.

Correlations: Annual rainfall showed positive correlation with dry matter ($r^2 = 0.99$, p<0.01) and grain (r^2 = 0.95, p<0.05) yields of Cluster bean in kharif season.

Harsh climatic conditions and low rainfall caused heat and water stresses and affected plant survival and establishment. It was further aggravated by reduced water availability in the nearest canal system disturbing supplemental irrigation to the plants as well as agricultural crops during rabi season. It was also substantiated by relatively low plant survival in boundary plantation, i.e. seedlings of *D. sissoo* and C. carandas as compared to the seedlings integrated in farmlands. Poor seedlings survival particularly in south-west side (direction) of the boundary plantation of Agri-Silvi system was because of sand blasting caused by wind-blown sand particles during summer season of the first year (Armbrust and Rett, 2000). Low soil water availability and resources appeared key driving factor influencing seedling survival and its establishment in the arid region (Singh and Singh, 2003; Masek et al., 2021). It was supported by low rainfall, i.e. 139 mm annual rainfall in 2021-22 and high temperature that induced water and heat stress and affected survival and growth of the integrated tree species.

Height and collar diameter growth of both silviculture and horticulture tree species increased with advancement in time in the present study. However, initial growth and development of tree species is generally poor owing to the poor soil resources and long dry spells despite of providing supplement irrigation to the planted seedlings (Bhadouria *et al.*, 2016). Significantly (p<0.05) greater growth in height and collar diameter of *T. undulata* as compared to *P. cineraria* seedlings in Agri-Silvi model, *Z. mauritiana* as compared to *C. myxa* seedlings in Agri-Horti model, and *D. sissoo* as compared to *C. carandas* and *C. myxa* seedlings in boundary plantations was because of species

characteristics and their responses to the available soil resources and climatic conditions (Cadotte et al., 2011; Tumber-Davila et al., 2022). We observed relatively greater growth in T. undulata seedling than P. cineraria seedlings in initial year under supplemental irrigation (limited by canal water availability), but contrasting result also observed on 5-year-old plants of *P. cineraria*, which showed marginally high growth in latter species under rainfed agroforestry system (Singh, 2004). Relatively greater height and collar diameter growth in D. sissoo seedlings as compared to the other tree species was similar to the existing literature (Kaushik et al., 2014). This enhanced growth of D. sissoo seedlings was because of efficient use of available soil resources like soil water and nutrient that makes this species effective in shelterbelt plantation on farm lands to check wind velocity and hence soil erosion (Mertia et al., 2006). Zhang et al. (2021) observed positive effects of water availability and growth form that greatly influenced shoot size and productivity in dry region. Lateral root systems in D. sissoo and T. undulata probably provided environment for enhanced resource use potential and hence plant growth as compared to *P. cineraria* and *Z.* mauritiana in irrigated condition (Gupta et al., 1995; Odhiambo et al., 1999; Singh et al., 2014; Upadhyaya et al., 1991).

Non-significant (p>0.05) differences in crop yield between tree integrated plots and the sole crop plots was because of insignificant competition between tree seedlings and the associated crops (Swieter et al., 2021). During early growth and development phase, young trees acquire soil water and nutrient from the upper soil layer (i.e., cropping zone), which may result in yield losses in drier environments (Luedeling et al., 2016). However, relatively greater difference in the dry matter and grain yields of the crops in control and tree integrated plots during both kharif and rabi seasons of 2022-23 was certainly due to increase in competitive stress for soil water and nutrient (Singh et al., 2014). However, differences due to reduced effective crop area due to tree integration cannot be ruled out. Frequency and amount of rainwater is major determining factor influencing crop yield and establishment of the planted seedlings. Only two rain days in monsoon season of 2021 resulting in 63 mm rain and 22 rain days

with 451 mm rain during monsoon season of 2022 appeared strongest factor enhancing yield of Cluster bean in 2022-23 (Singh, 2010). It was also shown by positive correlation (r^2 = 0.99 and 0.95, p<0.001, respectively) between annual rainfall and dry matter and grain yield of Cluster bean. Furthermore, root architecture differs between tree species which influence competitive effects for soil resources between tree species and the companion crops owing to overlapping root systems and their associated rhizospheres (Livesley et al., 2000; Singh et al., 2014) and hence affects crop yield (Kaushik et al., 2017). However, non-significant difference indicates least competition between the planted seedlings and the associated agricultural crops during initial phase of plant establishment.

Conclusion

Prevailing environmental conditions appears important factor influencing plant establishment and crop yields. Growth of the planted tree seedlings depended not only on the genetic characteristics of the species but also on the available soil resources. Integration of *T*. undulata in Agri-Silvi system and Z. mauritiana in Agri-Horti system appeared relatively better for irrigated agroforestry systems as compared to the other species in initial two years. Likewise, *D. sissoo* appeared better species for boundary plantation as compared to *C. carandas* and C. myxa and may be useful in erecting shelterbelt/boundary plantation in arid region of Rajasthan. However, further data recording and analysis will be more advantageous for effectual conclusion and recommendation.

Acknowledgements

Authors are grateful to Director, AFRI, Jodhpur for providing required facilities and encouragement for completing this research work. We wish to express our sincere thanks to all the associated farmers for consenting to carry out this work on their farmlands and help during the experimental period.

References

- Armbrust, D.V. and Retta A. 2000. Wind and Sandblast damage to growing vegetation. *Annals of Arid Zone* 39(3): 273-284.
- Bhadouria, R., Singh R., Srivastava P. and Raghubanshi A.S. 2016. Understanding the ecology of tree seedling growth in dry tropical

- environment. Energy Ecology Environ DOI 10.1007/s40974-016-0038-3
- Cadotte, M.W., Carscadden, K. and Mirotchnick, N. 2011. Beyond species: functional diversity and the maintenance of ecological processes and services. *Journal of Applied Ecology* 48: 1079-1087. doi: 10.1111/j.1365-2664.2011.02048.x.
- Gupta, G.N., PremLal, Mishra, A.K. and Kacchawaha, G.R. 1995. Irrigation water management in *Dalbergia sissoo* during its establishment in the Indian desert. *Indian Forester* 2: 143-152.
- Harsh, L.N., Tewari, J.C., Burman, U. and Sharma, S.K. 1992. Agroforestry in arid regions. *Indian Farming* 42: 32-37.
- Islam, S., Reza, M.N., Ahmed, S., Samsuzzaman, Cho Y.J. and Chung, S. 2024. Seedling growth stress quantification based on environmental factors using sensor fusion and image processing. *Horticulturae* 10(2): 186; https://doi.org/10.3390/horticulturae10020186
- IWMI (International Water Management Institute) 2007. Groundwater Externalities of Large Surface Irrigation Transfers: Lessons from Indira Gandhi Nahar Pariyojana, Rajasthan, India. pp 107-121. https://publications.iwmi.org/pdf/H042689.pdf.
- Jodha, N.S. 1997. Trends in tree management in arid land use in Western Rajasthan. In: *Farms, Trees and Farmers: Response to Agricultural Intensification* (Eds. J.E.M. Arnold and P.A. Dewees), pp. 43-64. Earthscan Publications Ltd. London
- Kaushik, N., Kumari, S., Singh, S. and Kaushik, J.C. 2014. Productivity and economics of different agri-silvi-horti systems under drip irrigation. *Indian Journal of Agricultural Science* 84 (10): 1166-1171.
- Kaushik, N., Tikkoo, A., Yadav, P.K., Deswal, R.P.S. and Singh, S. 2017.Agri-Silvi-Horti systems for semiarid regions of North-West India. *Agricultural Research* 6(2): 150-158.
- Livesley, S., Gregory, P. and Buresh, R. 2000. Competition in tree row agro-forestry systems. 1. Distribution and dynamics of fine root length and biomass. *Plant and Soil* 227: 149-161. https://doi.org/10.1023/A:1026551616754
- Luedeling, E., Smethurst, P.J., Baudron, F., Bayala, J., Huth, N.I., van Noordwijk, M., Ong, C.K., Mulia, R., Lusiana, B., Muthuri, C., Sinclair, F. 2016. Field-scale modeling of tree-crop interactions: Challenges and development needs. *Agricultural System* 142: 51-69. https://doi.org/10.1016/j.agsy.2015.11.005
- Masek, J., Tumajer J., Rydval M., Lange J. and Treml V. 2021. Age and size outperform topographic effects on growth-climate responses of trees in two Central European coniferous forest types. *Dendrochronologia* 68: 125845.

- Mertia, R.S., Prasad, R., Gajja, B.L., Samra, J.S. and Narain, P. 2006. Impact of Shelterbelts in arid Region of Western Rajasthan. Central Arid Zone research Institute, Regional Research Station, Jaisalmer. pp 13-15.
- Odhiambo, H.O., Ong C., Wilson J., Deans J.D., Broadhead J. and Black C. 1999. Tee-crop interaction for below-ground resources in drylands: Root structure and function. *Annals of Arid Zone* 38(3): 221-238.
- Ong, C.K., Corlett J.E., Singh R.P. and Black C.R. 1991. Above and below ground interactions in agroforestry systems. *Forest Ecology Management* 45(1-4): 45-57.
- Primicia, I., Camarero J.J., Janda P., Cada V., Morrissey R.C., Trotsiuk V., Bače R., Teodosiu M. and Svoboda M. 2015. Age, competition, disturbance and elevation effects on tree and stand growth response of primary *Picea abies* forest to climate. *Forest Ecology Management* 354: 77-86.
- Rizvi, R.H., Ram N., Chaturvedi O.P., Prasad R., Handa A.K. and Badre A. 2019. Carbon sequestration and CO₂ absorption by agroforestry systems: An assessment for Central Plateau and Hill region of India. *Journal of Earth System Science*, doi: 10.1007/s12040-019-1071-3.
- Sileshi, G.W., Mafongoya P.L. and Nath A.J. 2020. Agroforestry systems for improving nutrient tecycling and soil fertility on degraded lands. In: *Agroforestry for Degraded Landscapes* (Eds. J.C. Dagar, S.R. Gupta, and D. Teketay), pp. 225-253. Springer, Singapore. https://doi.org/10.1007/978-981-15-4136-0_8.
- Singh, B. 2020. "Project concluding Report" of the project entitle "Study on the effects of tree on soil fertility and crop production in Rajasthan" submitted to Rajasthan Forest Department, Jaipur, India. pp. 224.
- Singh, B. and Singh G. 2003. Biomass partitioning and gas exchange in *Dalbergia sissoo* seedlings under water stress. *Photosynthetica* 41(3): 407-414.
- Singh, B., Bishnoi M., Baloch M.R. and Singh G. 2014. Tree biomass, resource use and crop productivity in agri-horti-silvi systems in the dry region of Rajasthan, India. *Archives of Agronomy and Soil Sci*, 60 8,1031-1049,DOI:10.1080/03650340.2013.864386.
- Singh, B., Bishnoi M., Chouhan A.S., Parihar K.L. and Singh G. 2024. Climatic variations influenced distribution and productivity of different agroforestry systems in Rajasthan, India. *Annals* of *Arid Zone* 63(3): 1-18.
- Singh, G. 2004. "Project concluding Report" of the project entitle "Agroforestry research for sustainable production in arid and semi-arid region of Rajasthan. AFRI, Jodhpur, India. pp. 43.

- Singh, G. 2010. Rainfall dependent competition effected productivity of *V. radiata* in *Hardwickia binata* agroforestry in Indian Desert. *Indian Forester* 136: 301-315.
- Singh, G., Gupta, G.N. and Kuppusamy V. 2000. Seasonal variations in organic carbon and nutrient availability in arid zone agroforestry system. *Tropical Ecology* 41: 17-23.
- Stahl, L., Nyberg G., Hogberg P. and Buresh R.J. 2002. Effects of planted tree fallows on soil nitrogen dynamics, above-ground and root biomass, N₂-fixation and subsequent maize crop productivity in Kenya. *Plant and Soil* 243: 103-117.
- Swieter, A., Langhof M. and Lamerre J. 2021. Competition, stress and benefits: Trees and crops in the transition zone of a temperate short rotation alley cropping agroforestry system. *Journal of Agronomy and Soil Science*. https://doi.org/10.1111/jac.12553
- Syano, N.M., Nyangito M.M., Kironchi G. and Wasonga O.V. 2023. Agroforestry practices impacts on soil properties in the drylands of Eastern Kenya. Trees, Forests and People 14: 100437.
- Tewari, J.C., Ram, M., Roy, M.M. and Dagar, J.C. 2014. Livelihood improvements and climate change adaptations through agroforestry in hot arid environments. Agroforestry systems in India: Livelihood Security and Ecosystem Services (Eds. J. C. Dagar *et al.* (eds.), *Advance in Agroforestry*, 10, DOI: 10.1007/978-81-322-1662-9_6, _ Springer India 2014
- Toky, O.P. and Bisht R.P. 1992. Observations on the rooting patterns of some agroforestry trees in an arid region of north-western India. *Agroforestry Systems* 18: 245-263.
- Tumber-Davila, S.J., Schenk H.J., Du E. and Jackson R.B. 2022. Plant sizes and shapes above and belowground and their interactions with climate. *New Phytologist* 235: 1032-1056. doi: 10.1111/nph.18031
- Udawatta, R.P., Walter, D. and Jose, S. 2023 Carbon sequestration by forests and agroforests: A reality check for the United States. *Carbon Footprints* 2: 2. https://dx.doi.org/10.20517/cf.2022.06
- Upadhyaya, A.K., Soni, R.G. and Mathur, S.P. 1991. Initial growth rate of irrigated plantation in Stage-II area of Indira Gandhi Nahar Project. Current Agriculture 15: 15.21.
- Upadhyaya, K., Ram, A., Dev, I., Kumar, N., Upadhyaya, S., Gautam, K. and Arunachalam, A. 2021. Above- and below-ground interactions in teak-barley agroforestry system in the Bundelkhand region of Central India. *Ind J Agrofor* 23(1): 41-47.
- van Noordwijk, M., Lawson, G., Hairiah, K. and Wilson, J. 2015. Root distribution of trees and crops: Competition and/or complementarity. In:

Tree-crop Interactions: Agroforestry in a Changing Climate (Eds. C.K. Ong, C. Black and J. Wilson), pp. 221-257. CAB International.

- Varghese, N. and Singh, N.P. 2016. Linkages between land use changes, desertification and human development in the Thar Desert Region of India. *Land Use Policy* 51: 18-25.
- Yadav, R.S., Yadav B.L. and Chhipa B.R. 2008. Litter dynamics and soil properties under different tree species in a semi-arid region of Rajasthan, India. *Agroforty System* 73: 1-12.
- Yadava, N.D., Soni M.L., Nathawat N.S. and Birbal 2013. Productivity and Growth Indices of

- Intercrops in Agri-Horti-Silvi System in Arid Rajasthan. *Annals of Arid Zone* 52(1): 61-65.
- Yadava, N.D., Soni M.L., Rathore V.S. and Nathawat N.S. 2018. Agri-horti-silvi system. for production stability in arid zone. *Indian Farming* 68(09): 33-37.
- Zhang, J., Gou, X., Alexander, M.R., Xia J., Wang, F., Zhang, F., Man, Z. and Pederson, N. 2021. Drought limits wood production of *Juniperus przewalskii* even as growing seasons lengthens in a cold and arid environment. *CATENA* 196, Article104936.

Printed in December 2024