Seed Germination Enhancement of Ziziphus spina-christi (L.) Willd. and Ziziphus mucronata Willd. (Rhamnaceae) Using Different Presowing Treatments in Ethiopia

Mohammed Adefa Seid^{1*}, Tigist Wondimu², Asfaw Degu² and Awol Assefa²

¹Ethiopian Forestry Development (EFD), Addis Ababa, Ethiopia ²Department of Plant Biology and Biodiversity Management, Addis Ababa University, P.O. Box 1176, Addis Ababa, Ethiopia

Received: July 25, 2024 Accepted: September 19, 2024

OPEN ACCESS

Editor-in-Chief Praveen Kumar

Associate Editor

V.S. Rathore P. Santra R.K. Solanki

Managing Editor N.R. Panwar

Editors

R.S. Tripathi S. Soondarmurthy U.R. Ahuja R. Sharma P.P. Rohilla Raj Singh

Guest Editors

Mahesh Kumar M.L. Dotaniya Archana Verma

*Correspondence

Mohammed Adefa Seid mohammed.adefa.seid@gmail.com

Citation

Seid, M.A., Wondimu, T., Degu, A. and Assefa, A. 2024. Seed germination enhancement of Ziziphus spina-christi (L.) Willd. and Ziziphus mucronata Willd. (Rhamnaceae) using different presowing treatments in Ethiopia. Annals of Arid Zone 63(4): 159-169

doi.org/10.56093/aaz.v63i4.154240 https://epubs.icar.org.in/index.php/AAZ/ article/view/154240

Abstract: The stony endocarp and impermeable seed coat of Ziziphus, including fleshy mesocarp inhibit seed germination in both genera. In present study effects of different presowing treatments on seed germination of Z. spina-christi and Z. mucronata was studied. Seeds of each species were collected from the Central and Southern Rift Valley and Northeast Ethiopia. Seeds of each Ziziphus species, after being divided into cracked and uncracked seed-stone groups were subjected to eight different pre-sowing treatments and planted in pots. The mean germination percentage (GP), mean daily germination (GD), mean germination time (GT), and mean germination index (GI), as well as two-way ANOVA and Tukey's Honestly Significant Difference (THSD), were computed. The two-way ANOVA showed that there exists a significant mean difference among treatment groups under all germination parameters at p<0.05 for both species. The THSD for *Z. spina-christi* showed that the highest GP was achieved by cracked seed stones soaked in cold water for 48 hours at a room temperature of 25°C (52.7±6), control (48.5±3), soaked in cold water for 24 hours at a room temperature of 25°C (46.5±5.7), and rubbed with sandpaper (41±12.1), which are significantly different at p<0.05, while the highest GI was recorded by cracked seed stones soaked in cold water for 48 hours at a room temperature of 25°C (1.3±0.2), which is significantly different at p<0.05. The THSD for Z. mucronata indicated that the highest GP, along with the highest GI, was achieved by cracked seed stones soaked in 98% H₂SO₄ for 20 minutes and subsequently rinsed with water (28.5±6), which is significantly different at p<0.05. Overall, the findings of this study will contribute to potential seed enhancement technologies for Ziziphus, with greater implications for the propagation, conservation, and sustainable utilization of the species in the agricultural and pastoral communities of Ethiopia.

Key words: Dormancy, germination enhancement, Ziziphus spp.

Most tree species including the study plants of this research propagate with seeds. Yet, knowledge about information that hinders or accelerates the rate of seed germination is scanty. Tree seeds often exhibit dormancy, which causes delays and irregularities of germination in nurseries and on forest floors (Maiden *et al.*, 1990; Oyewole and Adedamola, 2015). Understanding the seed physiology of plants can enhance conservation efforts through afforestation. Thus, knowledge of seed germination behavior is crucial for successful utilization and conservation planning (Zobel and Talbert, 2003).

Ziziphus is a multipurpose shrub or tree with orthodox seed storage behavior, distributed in arid and semi-arid ecosystems of Ethiopia (Bekele-Tesemma, 1993 and 2007; Orwa et al., 2009). Members of the genus Ziziphus are usually cross-pollinated and are propagated by seed (Vashishtha and Pareek, 1979; Sudhersan and Hussain, 2003; Saied et al., 2008; El Maaiden et al., 2020). Similar to many other tropical and subtropical species, Ziziphus species has been reported to have issues with seed dormancy, which inhibits uniform seed germination in nurseries (Schmidt, 2000; Gebretsadik, 2013). The establishment of Ziziphus plantations is generally hindered by poor germination and seedling emergence due to a stony endocarp and seed dormancy related to the impermeability of the seed coat. This can be addressed through the gradual softening of the seed coat or by scarification or acid treatment to free the

seeds from the pericarp (El-Siddig et al., 2001; Schmidt, 2000; Saied et al., 2008). Additionally, mechanical removal of the endocarp and soaking of kernels in water has been found to significantly improve seed germination for several Ziziphus species, including Z. mauritania and Z. abyssinica (Krishnan and Kulasekaran, 1984; Murthy and Reddy, 1989; Sheoran et al., 2018). However, there is no documented information on the seed germination behavior of Ethiopian species of Ziziphus using different germination treatments. Effective propagation and seedling establishment are the basic requirements for sustainable management for species with notable seed dormancy profiles. In this regard, understanding the seed germination biology of Ziziphus species is essential for better forestry practices. The study was aimed at investigating the seed germination responses of Z. spina-christ and Z. mucronata under different pre-sowing treatments and identifying the best seed treatment techniques suitable to maximize the seed germinations of the species. Therefore, it was hypothesized that pre-sowing seed treatments could enhance seed germination.

Materials and Methods

Seed collection and processing

Seed collection was done between February 2022 and February 2023. Seed samples were collected from the Northern, Central and Southern Rift valley and northeast Ethiopia (Fig. 1). Hence, the seed for *Z. spina-christi* from Asayta district in Afar region (i.e., 41.470555°E,

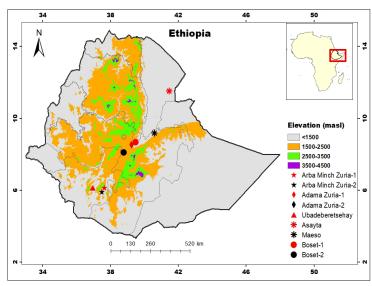


Fig. 1. Map of Ethiopia showing seed collection sites of Z. spina-christi and Z. mucronata.

Table 1. Pre-sowing treatments employed study the seed germination Ziziphus species

No.	Seed treatment types	
1	Control, i.e., received no prior seed treatment	Ctrl
2	Rubbed with sandpaper	RuSP
3	Soaked with cold normal water for 24 hours at room temperature of 25°C	CW24h
4	Soaked with cold normal water for 48 hours at room temperature of 25°C	CW48h
5	Soaking with hot normal water at 65°C for 10 minutes, and left to cool for 12 hours at room temperature of 25°C	HW65d
6	Soaked with hot normal water at 75°C for 10 minutes, and left to cool for 12 hours at room temperature of 25°C	HW75d
7	Soaked with 98% H ₂ SO ₄ for 10 minutes and subsequent rinsed with water	98HSO10m
8	Soaked with 98% H ₂ SO ₄ for 20 minutes and subsequent rinsed with water	98HSO20m

11.526388°N), Adama Zuria district-1 and 2 (i.e., 39.20774°E, 8.54799°N; 39.2293°E, 8.53156°N) and Boset district (i.e., 39.489722°E, 8.6775) in Oromia region; and *Z. mucronata* from Arba Minch Zuria district-1 and 2 (i.e., 37.62743°E, 6.12204°N; 37.492368°E, 5.894401°N) and Ubadeberetsehay district (i.e., 36.9503°E, 6.11977°N) in SNNPR, Boset district-2 (i.e., 38.77472°E, 8.105833°N) and Maeso district (i.e., 40.58287°E, 9.17381°N) in Oromia. Seeds were collected from conspicuous superior (mother) trees of *Z. spina-christi* and *Z. mucronata*.

About 30-40 seeds per mother tree (about 200 seeds per population) were collected and mixed up to represent the population. The seeds were collected from different populations of each species and thoroughly mixed up and homogenized to represent the species. The homogenized seeds were further processed, cleaned, and purified from inert and unwanted materials. The seeds were dried and the moisture content (MC) of Z. mucronata = 4.65%, Z. spina-christi = 5.1% was adjusted and checked using the moisture meter (KERN, DBS60-3 German-made moisture tester). All experimental activities were carried out in the nursery house of the Ethiopian Forestry Development (EFD), Addis Ababa, Ethiopia.

Preparations of seed treatments and experimental layout

For this study, seed treatments were prepared based on literature and ISTA protocols (Schmidt, 2000, Hassen *et al*, 2005; ISTA, 2005; Orwa *et al*, 2009; Gebretsadik, 2013). Accordingly, including the control, eight presowing treatments were prepared (Table 1).

Each experiment was laid out in a Completely Randomized Design-CRD following the random

tables of Gomez and Gomez (1984) with four replications each. Hence, 36 seed stones per replication (i.e., 144 seed stones per treatment) were tested following the protocol suggested by the International Seed Testing Association (ISTA) (ISTA, 1976 and 2018).

Each Ziziphus species was subjected to 16 treatments: seed coat nature (2 levels, i.e., cracked and uncracked) and pre-sowing treatments (8 levels) with 4 replications each having a total of 64 treatment units. The germinations were done in the germination substrate of topsoil, manure, and sand with a ratio of 3:2:1, respectively. The mixture was placed in polyethylene plastic pots with 16 cm diameter. The seeds were then sown on each pot and covered with a transparent plastic polythene sheet to optimize and regulate the moisture and temperature. Germination counting was taken starting from the first week of germination observation after sowing, every two days for two to three months, based on the species, until no new seedlings emerged for two successive weeks' laps. In this study, a seed was considered germinated when the radicle emerged (Bewley and Black, 1994; Zietsman and Botha, 1987).

Statistical data analysis

was data analysis based untransformed seed germination The dataset was checked with histogram and has a normal distribution. The nineteen germination measurements (or parameters) were generated of which four parameters, namely the mean germination percentage (GP), mean daily germination percentage (GD), mean germination time (GT), and mean germination index (GI) were analysed and presented for this study. The GP, which is an estimate of the

germinability of the population of seeds, was calculated as follows:

$$GP = \frac{\sum_{i=1}^{k} ni}{N} \times 100$$
1

where; n_i = number of seeds germinated in the ith time, and N= total number of seeds used.

The GD, which is the mean number of seeds germinated per day (i.e., the number of seeds germinated daily relative to the maximum number of germinated seeds), was also calculated following Adams and Farrish (1992):

$$GD = \frac{CP}{Tn} \qquad ...2$$

where CP = final cumulative germination percentage and T_n = total number of intervals required for final germination.

Following Ellis and Roberts (1981), the GT, a measure of the rate and time spread of the germination, of each treatment was calculated using the formula:

$$GT = \frac{\sum (n \times d)}{N}$$
 ...3

where "n" = number of seeds germinated on each day, "d" = number of days from the beginning of the test, and "N" = total number of seeds germinated at the termination of the experiment.

Furthermore, the GI, which is a measure of the percentage and speed of germination, was calculated following the following formula (AOSA, 1983):

The higher values for this measure indicate a greater rate of germination (Benech-Arnold *et al.*, 1991).

Moreover, two-way ANOVA was computed to see the level of significance difference among the treatments means for the germination parameters at p \leq 0.05. Moreover, Tukey's Honestly Significant Difference (THSD) was computed to assess the significance of difference between pairs of treatments at p \leq 0.05 (Steel *et al.*, 1997), allowing all possible pairwise comparisons while keeping the family-wise error rate low.

Results and Discussion

Seed germination tests of Z. spina-christi using different treatments

Germination tests of *Z. spina-christi* for cracked and uncracked seed stones showed that cracked seed stones remarkably germinated much faster than the uncracked seed stones (Fig. 2 and Fig. 3).

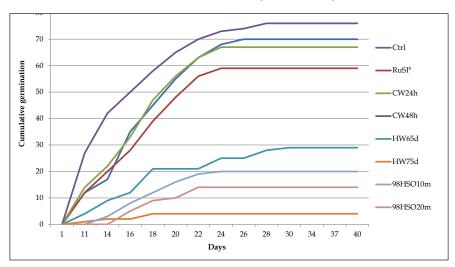


Fig. 2. The cumulative germination and patterns of seed germination of cracked seed stones Z. spina-christi; Ctrl = control, RuSP = Rubbed with sandpaper, CW24h = Soaked in cold water for 24 hours at room temperature of 25°C, CVV48h = Soaked in cold water for 48 hours at room temperature of 25°C, HW65d = Soaked in hot water at 65°C for 10 minutes, and left to cool for 12 hours at room temperature of 25°C, HW75d = Soaked in hot water at 75°C for 10 minutes, and left to cool for 12 hours at room temperature of 25°C, 98HSO10m = Soaked in 98% H₂SO₄ for 10 minutes and subsequent rinsed with water, and 98HSO20m = Soaked in 98% H₂SO₄ for 20 minutes and subsequent rinsed with water.

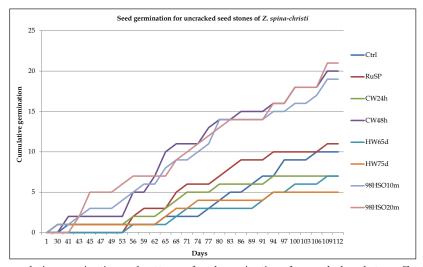


Fig. 3. The cumulative germination and patterns of seed germination of uncracked seed stones Z. spina-christi.

The shorter germination duration (<30 days) was recorded for cracked seed stones regardless of treatment types compared to uncracked seed stones (>3 months). No new germination was observed in all treatment types for cracked seed stones of *Z. spina-christi* while new germinations were observed up to 3 months for uncracked seed stones of *Z. spina-christi* (Fig. 3).

For cracked seed stones of *Z. spina-christi*, the highest cumulative germination (i.e., 76) was recorded by CW48h, followed by Ctrl (70), and CW24h (67) (Fig. 2). However, for uncracked seed stones of *Z. spina-christi*, the highest cumulative germination (i.e., 21) was achieved by 98HSO20m, followed by CW48h (20), and 98HSO10m (19) (Fig. 3).

Table 2. Two-way ANOVA of the mean significance difference among treatment groups for their effect on germination percentage (GP), daily germination percentage (GD), germination time (GT), and germination index (GI) of Z. spina-christi, involving two factors, i.e., the pre-sowing treatments with eight levels, and cracking treatments with two levels (i.e., cracked and uncracked seed stones)

·	Df	Sum sq.	Mean sq.	F-value	Pr(>F)			
Mean germination percentage (GP)								
Pre-sowing	7	12163	1738	38.95	<2e-16***			
Cracking	1	17424	17424	390.55	<2e-16***			
Pre-sowing: Cracking	7	11957	1708	38.29	<2e-16***			
Residuals	48	2141	45					
		Mean daily germina	tion percentage (GI	D)				
Pre-sowing	7	7.385	1.055	50.38	<2e-16***			
Cracking	1	15.035	15.035	717.91	<2e-16***			
Pre-sowing: Cracking	7	7.383	1.055	50.36	<2e-16***			
Residuals	48	1.005	0.021					
		Mean germina	ation time (GT)					
Pre-sowing	7	2668	381	1.127	0.36			
Cracking	1	43436	43436	128.407	3.6e-15***			
Pre-sowing: Cracking	7	1520	217	0.642	0.719			
Residuals	48	16237	338					
	Mean germination index (GI)							
Pre-sowing	7	3.115	0.445	49.13	<2e-16***			
Cracking	1	6.126	6.126	676.32	<2e-16***			
Pre-sowing: Cracking	7	3.132	0.447	49.40	<2e-16***			
Residuals	48	0.435	0.009					

Table 3. Summary of GP, GD, standard deviation (SD) and standard error (SE) of the germination parameters for Z. spina-christi. The significance difference between pairs of treatments at p≤0.05 is calculated using Tukey's HSD test

Pre-sowing	Mean germination percentage (GP)		Mean daily germination percentage (GD)	
treatments	Cracked	<i>Uncra</i> cked	Cracked	Uncracked
	$\bar{x}\pm SD$	$\bar{x}\pm SD$	$\bar{x}\pm SD$	$\bar{x}\pm SD$
Ctrl	48.5±3ª	7±8.0 ^{bc}	1.75±0.1ab	0.06±0.08 ^d
RuSP	41±12.1a	7.8 ± 4.6^{bc}	1.48 ± 0.43^{b}	0.07 ± 0.04^{d}
CW24h	46.5±5.7a	5±4.69bc	1.68±0.21ab	0.04 ± 0.04^{d}
CW48h	52.7±6 ^a	14±2.24 ^{bc}	1.90±0.22a	0.12±0.03 ^d
HW65d	17 ± 0.0^{b}	5±4.69bc	0.60 ± 0.0^{c}	0.04 ± 0.04^{d}
HW75d	2.7±3.7°	3.5±3.3bc	0.10 ± 0.14^{d}	0.03 ± 0.03^{d}
98HSO10m	14±0.0bc	13.3±2.87bc	0.50 ± 0.0^{c}	0.12 ± 0.02^{d}
98HSO20m	9.5±3.0bc	14.5±6.14 ^{bc}	0.35 ± 0.1^{cd}	0.13 ± 0.06^{d}

The two-way ANOVA for the germination of *Z. spina-christi* showed that, except among presowing treatments and the interactions factor (presowing treatment and cracking of seed stones) of the germination time (GT), there exist a significant mean difference among treatment groups under all other germination parameters (i.e., GP, GD, and GI) at *p*<0.05 (Table 2).

The THSD test for *Z. spina-christi* showed that the highest GP was achieved by cracked seed stones treated with CW48h (52.7±6), followed by Ctrl (48.5±3), CW24h (46.5±5.7), and RuSP (41±12.1) that were significantly different at p<0.05 compared to the other treatment groups under both cracked and uncracked seed stones (Table 3). But no significant GP difference was observed among CW48h, Ctrl, CW24h and RuSP at $p \le 0.05$. The highest GD was recorded by cracked seed stones treated with CW48h (1.90±0.22), except with cracked seed stones of the Ctrl (1.75±0.1) and CW24h (1.68±0.21), that is significantly difference at p < 0.05 compared to

the other treatment groups under both cracked and uncracked seed stones (Table 3). The shorter GT under the germination test of cracked seed stones was observed by cracked seed stones treated with HW75d (8.1±9.5), followed by CW48h (15.6±0.7), CW24h (16.8±0.6), and RuSP (16.9±0.7) that were significantly different at p<0.05 compared to the other treatment groups under both cracked and uncracked seed stones. But no significant GT difference was observed among HW75d, CW48h, Ctrl, CW24h and RuSP at p≤0.05. Furthermore, the highest GI was recorded by cracked seed stones treated with CW48h (1.3±0.2) that is significantly different at p<0.05 compared to the other treatment groups under both cracked and uncracked seed stones (Table 4).

Seed germination tests of Z. mucronata using different treatments

The seed germination tests for *Z. mucronata* under different treatments showed no new

Table 4. Summary of GT, GI, standard deviation (SD) and standard error (SE) of the germination parameters for Z. spinachristi. The significance difference between pairs of treatments at p≤0.05 is calculated using Tukey's HSD test

Pre-sowing	Mean germina	ation time (GT)	Mean germina	ation index (GI)
treatments	Cracked	Uncracked	Cracked	Uncracked
	$\bar{x}\pm SD$	$\overline{x}\pm SD$	\bar{x} ±SD	\bar{x} ±SD
Ctrl	17.4±0.6 ^{bc}	80.8±19.3 ^a	1.1±0.1 ^b	0.0±0.0e
RuSP	16.9±0.7°	74.9±6.6a	0.9 ± 0.3^{b}	0.0 ± 0.0^{de}
CW24h	16.8±0.6°	48.1 ± 32.8^{abc}	1.1±0.1 ^b	0.0 ± 0.0^{de}
CW48h	15.6±0.7°	73.8±7.4a	1.3 ± 0.2^{a}	0.1 ± 0.0^{de}
HW65d	18.5±0.3bc	64.3±44.6ab	0.4 ± 0.0^{c}	$0.0\pm0.0^{\rm e}$
HW75d	8.1±9.5°	54.1±39.4 ^{abc}	$0.1\pm0.1^{\mathrm{cde}}$	$0.0\pm0.0^{\rm e}$
98HSO10m	18.2±1.3bc	74.5±7.9a	0.3 ± 0.0^{cd}	0.1 ± 0.0^{de}
98HSO20m	18.6 ± 0.1^{bc}	76.6±13.0 ^a	$0.2\pm0.1^{\rm cde}$	$0.1 \pm 0.0^{\text{de}}$

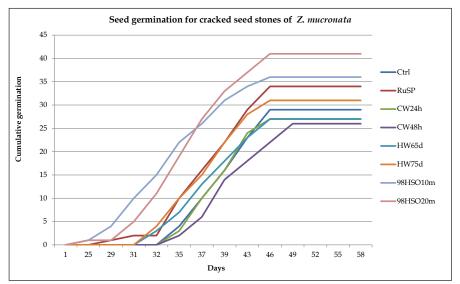


Fig. 4. The cumulative germination and patterns of seed germination of cracked seed stones Z. mucronata.

germinations after six weeks (45 days) for most cracked seed stones (Fig. 4). However, the uncracked seed stones of *Z. mucronata* required longer germination duration (>3 months) yet with lower germination percentages (Fig. 5). The highest cumulative germination record (i.e. 41) was attained by cracked seed stones treated with 98HSO20m (Fig. 4), followed by 98HSO10m (36), and RuSP (34). Generally, however, the germination of uncracked seed stones of *Z. mucronata* was very low (i.e. <20) regardless of treatment types (Fig. 5) even if the highest possible total germination record (i.e. 13) was scored by RuSP, followed by HW65d and HW75d.

The two-way ANOVA for the germination of *Z. mucronata* showed that there exists a significant mean difference among treatment groups, having interaction effects, under all germination parameters (i.e., GP, GD, GT and GI) at p<0.05 (Table 5).

The THSD test indicated that the highest GP was achieved by cracked seed stones of *Z. mucronata* treated with 98HSO20m (28.5±6) that is significantly different at p<0.05 compared to the other treatment groups under both cracked and uncracked seed stones (Table 6), except with cracked seed stones treated by 98HSO10m (25±4.9), RuSP (23.5±3), and HW75d (21.2±2.8). Similarly, the highest GD was achieved by cracked seed stones of *Z.*

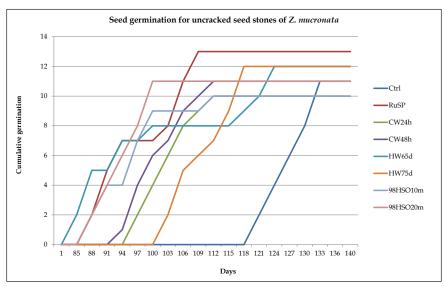


Fig. 5. The cumulative germination and patterns of seed germination of uncracked seed stones Z. mucronata.

Table 5. Two-way ANOVA of the mean significance difference among treatment group for their effect on germination percentage (GP), daily germination percentage (GD), germination time (GT), and germination index (GI) of Z. mucronata, involving two factors, i.e., the pre-sowing treatments with eight levels, and cracking treatments with two levels (i.e., cracked and uncracked seed stones)

	Df	Sum sq.	Mean sq.	F-value	<i>Pr</i> (> <i>F</i>)
		Mean germinatio	n percentage (GP)		
Pre-sowing	7	397	57	3.856	0.00210**
Cracking	1	8860	8860	602.560	< 2e-16***
Pre-sowing: Cracking	7	391	56	3.800	0.00234**
Residuals	48	706	15		
		Mean daily germina	tion percentage (Gl	D)	
Pre-sowing	7	0.119	0.017	4.890	0.00032***
Cracking	1	3.730	3.730	1070.895	< 2e-16***
Pre-sowing: Cracking	7	0.119	0.017	4.883	0.0003***
Residuals	48	0.167	0.003		
		Mean germina	ation time (GT)		
Pre-sowing	7	1950	279	22.07	5.27e-13***
Cracking	1	68572	68572	5432.85	< 2e-16***
Pre-sowing: Cracking	7	1334	191	15.10	3.08e-10***
Residuals	48	606	13		
		Mean germina	ation index (GI)		
Pre-sowing	7	0.0278	0.0040	8.045	1.92e-06***
Cracking	1	0.5166	0.5166	1045.179	< 2e-16***
Pre-sowing: Cracking	7	0.0275	0.0039	7.944	2.22e-06***
Residuals	48	0.0237	0.0005		

mucronata treated with 98HSO20m (0.7±0.1) that is significantly different at p<0.05 compared to the other treatment groups under both cracked and uncracked seed stones (Table 6), except with cracked seed stones treated by 98HSO10m (0.6±0.1) and RuSP (0.6±0.1). The shortest GT was scored by cracked seed stones treated

with 98HSO10m (35.1 \pm 1) and 98HSO20m (36.7 \pm 1.7) that is significantly different at p<0.05 compared to the other treatment groups under uncracked seed stones, but not significant at p≤0.05 compared to the other treatment groups under cracked seed stones (Table 7). Furthermore, the highest GI was achieved by

Table 6. Summary of germination percentage (GP), Mean daily germination percentage (GD), standard deviation (SD) and standard error (SE) of the germination parameters for Z. mucronata. The significance difference between pairs of treatments at $p \le 0.05$ is calculated using Tukey's HSD test. The values denoted with the same alphabet (s) along the vertical column ($\bar{x}\pm SD$) of each germination parameter are not significantly different at $p \le 0.05$, and vice versa

Pre-sowing	Mean germination	n percentage (GP)	Mean daily germination percentage (GD)		
treatments	Cracked	Uncracked	Cracked	Uncracked	
	$\bar{x}\pm SD$	$\bar{x}\pm SD$	$\bar{x}\pm SD$	$\bar{x}\pm SD$	
Ctrl	20.0±2.4 ^b	7.8±2.4°	0.5±0.1°	0.1±0.0 ^d	
RuSP	23.5±3.0ab	9.0±3.5°	0.6 ± 0.1^{ab}	0.1 ± 0.0^{d}	
CW24h	18.7±2.3 ^b	7.0±1.2°	0.5 ± 0.1^{c}	0.1 ± 0.0^{d}	
CW48h	18.0±1.1 ^b	7.8±3.9°	0.4 ± 0.0^{c}	0.1 ± 0.0^{d}	
HW65d	18.5±3.3 ^b	$8.3 \pm 4.5^{\circ}$	0.5 ± 0.1^{c}	0.1 ± 0.0^{d}	
HW75d	21.2±2.8ab	8.3±2.1°	0.5 ± 0.1^{c}	0.1 ± 0.0^{d}	
98HSO10m	25 ± 4.9^{ab}	7.0±1.2°	0.6 ± 0.1^{ab}	0.1 ± 0.0^{d}	
98HSO20m	28.5±6.0 ^a	7.8±2.4°	0.7 ± 0.1^{a}	0.1 ± 0.0^{d}	

Table 7. Summary of germination time (GT), germination index (GI), standard deviation (SD) and standard error (SE) of the germination parameters for Z. mucronata. The significance difference between pairs of treatments at $p \le 0.05$ is calculated using Tukey's HSD test. The values denoted with the same alphabet (s) along the vertical column ($x \pm SD$) of each germination parameter are not significantly different at $p \le 0.05$, and vice versa

•	,	0, , ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
Pre-sowing	Mean germina	Mean germination time (GT))		ation index (GI)
treatments	Cracked	Uncracked	Cracked	Uncracked
	$\bar{x}\pm SD$	$\bar{x}\pm SD$	$\bar{x}\pm SD$	$\bar{x}\pm SD$
Ctrl	40.4±0.4 ^d	127.3±1.3ª	0.2±0.0°	0.0±0.0 ^d
RuSP	39.1±0.8d	98.0±1.2°	0.2 ± 0.0^{c}	0.0 ± 0.0^{d}
CW24h	$40.0\pm0.6^{\rm d}$	103.1±3.2 ^{bc}	0.2 ± 0.0^{c}	0.0 ± 0.0^{d}
CW48h	39.0±0.6 ^d	102.3±3.6bc	0.2 ± 0.0^{c}	0.0 ± 0.0^{d}
HW65d	38.8 ± 1.5^{d}	98.1±11.4°	0.2 ± 0.0^{c}	0.0 ± 0.0^{d}
HW75d	38.4±1.4 ^d	110.9±2.1 ^b	0.2 ± 0.0^{c}	0.0 ± 0.0^{d}
98HSO10m	35.1±1.0 ^d	96.6±5.3°	0.3 ± 0.0^{ab}	0.0 ± 0.0^{d}
98HSO20m	36.7±1.2 ^d	95.0±2.4°	0.3 ± 0.0^{ab}	0.0 ± 0.0^{d}

cracked seed stones treated with 98HSO20m (0.3±0.0) and 98HSO10m (0.3±0.0) that is significantly different at p<0.05 compared to the other treatment groups under both cracked and uncracked seed stones (Table 7).

The findings of this study revealed that seed germination of Ziziphus species (Z. spinachristi and Z. mucronata) is significantly affected by the method of pre-sowing seed treatment employed. In this regard, cracked seed stones showed a higher germination percentage and faster germination time in comparison to batches with uncracked seed stones, even when both batches were given a similar pre-sowing treatment. Ziziphus species generally possess hard seed stones (endocarp), a harder inner layer of fruits covering the seed germplasms, which can make it difficult for the embryo to receive the oxygen and moisture necessary for germination. Hence, it is important to apply mechanical and biochemical treatments to the seed (or fruit) in order to improve its ability to germinate in a shorter period of time. In other words, cracking (or breaking), nicking, and opening the harder seed stones are effective ways to improve the rate of germination. It is likely that the natural dormancy of Ziziphus seeds is reduced when the fleshy fruit part (mesocarp) is often eaten mainly by humans, birds, and primates. This exposes it to mechanical injuries, which in turn creates an environment conducive to germination by allowing oxygen and moisture to enter the seed's endosperm.

The application of extended soaking to seeds (or fruits) has been proven to facilitate the permeability of moisture and oxygen necessary for germination. In this study, the cracking of seeds stones along with soaking with chemical mainly water (cold and hot) significantly improved the mean germination percentage of Z. spina-christi. Saied et al. (2008) reported that cracking seed coats, scarification with sandpaper, and soaking in acid generally improve the seed emergence of *Z. spina-christi*. A study report by Gebretsadik (2013) also showed that higher germination percentage was achieved from seeds treated with hot water at 85°C left to cool at room temperature (25°C) for 12 hours, and soaked with 98% H₂SO₄ for 30 minutes.

Similarly, batches with cracked seed stones of Z. mucronata tend to have about 6 weeks of germination duration whereas uncracked seed stones result in greater than 3 months of duration. In relation to this, though a very low germination percentage (<20%) was observed, soaking of cracked seed stones with 98% H₂SO₄ as well as rubbing with sandpaper improved the germination capacity of *Z. mucronata*. These findings agree with the report by Hassen et al. (2005) that scarification with sandpaper and soaking with Sulphuric acid for up to 20 minutes were the most effective techniques in breaking the seed dormancy of Z. mucronata. Moreover, rubbing with sandpaper and soaking in cold water for 48 hours are also suggested to improve the germination capacity of batches with uncracked stones of Z. mucronata.

Similarly, Zietsman and Botha (1987) reported that only about 10% germination was observed for uncracked seed stones (endocarp) while more than 70% (<80%) germination for cracked seed stones and partly removed seeds. Bekele-Tesemma (1993) also reported that cracking the seed stones and subsequently soaking them in cold water for at least six hours is suggested to improve the germination of Z. mucronata. In other study by Hassen et al. (2005), hot water treatment was also reported to reduce the seed germination of *Z. mucronata*, but not apparently observed in the current study. In this study, compared to Z. spina-christi, the seeds of Z. mucronata were generally observed to be less sensitive to water stress without exhibiting noticeable marks of soaking impairment even after an extensive soaking period. This is possibly an adaptation strategy for species adapted to arid and semi-arid ecosystems helping the seed dispersal along drainage lines after flash floods (Zietsman & Botha, 1987).

Conclusions

This study identified the best possible seed dormancy-breaking techniques for Ziziphus species (Z. spina-christi and Z. mucronata). The coupling of mechanical and chemical treatments (e.g., cracking seed stone + soaking with water) generally enhance the germination of Z. spina-christi as well as Z. mucronata. It is, therefore, essential to first crack so as to open the seed stones, or totally extract the seed germplasms, and subsequent scarification (e.g. abrasion with sandpaper) and soaking with biochemical reagents mainly water for 24 to 48 hours and/or using concentrated Sulfuric acid for 10 to 20 minutes. The study has also proven that Z. spina-christi can be easily propagated and planted, compared to Z. mucronata. The findings of this study have greater implications for wider large-scale propagation and production of the seedlings of Ziziphus in forestry development works including restoration, rehabilitations as well as domestication and conservation projects in Ethiopia. Overall, the findings of this study will contribute to the conservation and sustainable utilization of the species in the agricultural and pastoral communities of Ethiopia. Furthermore, for large-scale propagation, the application of recommendable pretreatment outputs from the current and other studies could also be employed for cultivation and domestication

as well as commercialization of the species to meet many social and economic objectives.

Acknowledgements

We are very much grateful to the Vice President for Research and Technology Transfer and the Research Director of Addis Ababa University for financial support through Thematic Research (AAU, TR 18 - Round 9), run by Dr. Tigist Wondimu as the principal investigator. The Department of Plant Biology and Biodiversity Management (DPBBM) of Addis Ababa University is also acknowledged for providing additional financial support to conduct the project. Furthermore, the Central Ethiopia Forestry Development Center of the Ethiopian Forestry Development (EFD) is duly acknowledged for providing nurseries to carry out these experimental works.

References

- AOSA 1983. Association of Official Seed Analysts. Seed Vigor Testing Handbook. 1st edition, AOSA, East Lasing, 88 p.
- Bekele-Tesemma, A. 1993. Useful trees and shrubs for Ethiopia: Identification, propagation and management for agricultural and pastoral communities. Technical handbook No 5. Regional Soil Conservation Unit (RSCU) Swedish International Development Authority (SIDA), Embassy of Sweden, Kenya, 486 p.
- Bekele-Tesemma, A. 2007. Useful trees of Ethiopia: Identification, propagation and management in 17 agroecological zones. Nairobi: RELMA in ICRAF Project, 552 p.
- Benech-Arnold, R.L., Fenner, M. and Edwards, P.J. 1991. Changes in germinability, ABA content and ABA embryonic sensitivity in developing seeds of *Sorghum bicolor* (L.) Moench. induced by water stress during grain filling. *New Phytologist* 118: 339-347. https://doi.org/10.1111/j.1469-8137.1991.tb00986.x.
- Bewley, J.D. and Black, M. 1994. *Seeds*. Physiology of development and germination. Plenum, London. 445 p. https://doi.org/10.1007/978-1-4899-1002-8.
- El Maaiden, E., El Kharrassi, Y., Qarah, N.A.S., Essamadi, A.K., Moustaid, K. and Nasser, B. 2020. Genus Ziziphus: A comprehensive review on ethnopharmacological, phytochemical and pharmacological properties. *Journal of Ethnopharmacology* 259: 112950. https://doi.org/10.1016/j.jep.2020.112950.
- Ellis, R.H. and Roberts, E.H. 1981. The quantification of ageing and survival in orthodox seeds. *Seed Science and Technology* 9: 373-409.

- El-Siddig, K., Ebert, G. and Lüdders, P. 2001. A comparison of pretreatment methods for scarification and germination of *Tamarindus indica* L. seeds. *Seed Science and Technology* 29(1): 271-274.
- Gebretsadik, W. 2013. Effect of seed pretreatments on *Ziziphus spina-christi* germination. *Seed Technology* 35(1): 145-149. http://www.jstor.org/stable/24642248.
- Gomez, K.A. and Gomez, A.A. 1984. Statistical Procedures for Agricultural Research. 2nd Edition. Wiley & Sons. Canada. 690 p.
- Hassen, A., Rethman, N.F.G. and Van Niekerk, W.A. 2005. Effect of different seed treatment options on dormancy breaking, germination and emergence of *Ziziphus mucronata* (buffalo thorn) seed. *Tropical Grassland* 39(2): 124-128.
- ISTA 1976. International rules for seed testing. Seed Science and Technology 4: 51-177.
- ISTA 2005. International Seed Testing Association. International Rules for Seed Testing. Edition 2005. International Seed Testing Association, Bassersdorf, Switzerland.
- ISTA 2018. International Seed Testing Association. Chapter 5: The Germination Test. In: *International Rules for Seed Testing*, International Seed Testing Association: Bassersdorf, Switzerland.
- Krishnan, B.M. and Kulasekaran, M. 1984. Studies on seed germination in wild ber (*Ziziphus rotundifolia*). South Indian Horticulture 32(3): 153-154.
- Maiden, S.K., Jacqueline, A.S. and Vinaya Rai, R.S. 1990. Presowing chemical treatment to hasten germination of *Casuarinas equisetifolia*. *International Tree Crops Journal* 6 (2-3): 173-181. https://doi.org/10.1080/01435698.1990.9752882.
- Murthy, B.N.S. and Reddy, Y.N. 1989. Effect of different methods on seed germination in ber. *Journal of the Maharashtra Agricultural Universities* 14(3): 296-298.
- Orwa, C., Mutua, A., Kindt, R., Jamnadass, R. and Anthony, S. 2009. Agroforestree Database: a tree

- reference and selection guide version 4.0. http://www.worldagroforestry.org/sites/treedbs/treedatabases.asp.
- Oyewole, A.L. and Adedamola, A. 2015. Influence of Temperature Differentials on Germination and Growth of *Terminalia ivorensis* (A. Chev). *Science Research*, 3(6): 296-299. https://doi.org/10.11648/j.sr.20150306.15.
- Saied, A.S., Gebauer, J. and Buerkert, A. 2008. Effects of different scarification methods on germination of *Ziziphus spina-christi* seeds. *Seed Science and Technology* 36(1): 201-205. https://doi.org/10.15258/sst.2008.36.1.22.
- Schmidt, L. 2000. Guide to Handling of Tropical and Subtropical Forest Seeds. Humlebaek (Denmark) Danida Forest Seed Centre. 532 p.
- Sheoran, V., Kumar, M., Sharma, S.V. and Pathak, D.V. 2018. Effect of seed scarification treatments on ber (*Ziziphus rotundifolia* Lamk.) seedling biomass. *International Journal of Current Microbiology and Applied Sciences* 7(12): 2591-2596. https://doi.org/10.20546/ijcmas.2018.712.294.
- Steel, R.G.D., Torrie, J.H. and Dickey, D.A. 1997. Principles and procedures of statistics: A biometrical approach, 3rd Ed. New York: McGraw-Hill, 666 p.
- Sudhersan, C. and Hussain, J. 2003. *In vitro* propagation of a multipurpose tree, *Ziziphus spina-christi* (L.) Willd. *Turkish Journal of Botany* 27: 167-171.
- Vashishtha, B.B and Pareek, O.P. 1979. Flower morphology, fruit set and fruit drop in some Ber (*Ziziphus mauritiana* Lam.) cultivars. *Annals of Arid Zone* 18(3): 165-169.
- Zietsman, P.C. and Botha, F.C. 1987. Seed germination of *Ziziphus mucronata subsp. mucronata. South African Journal of Botany* 53(5): 341-344. https://doi.org/10.1016/S0254-6299(16)31394-1.
- Zobel, B. and Talbert, J. 2003. Applied Forest Tree Improvement. The Blackburn Press, 505 p. https://blackburnpress.stores.yahoo.net/ apfotrim.html.