Opinion paper

Biodegradation: A Priority Research Area in Sustainable Development Goals Perspective

Pooja Thathola1* and Anita Pandey2*

CSIR-Center Salt and Marine Chemicals Research Institute, Bhavnagar 364 002, India

²Graphic Era (Deemed to be University), Bell Road, Clement Town, Dehradun 248 002, India

Received: June 9, 2025 Accepted: June 9, 2025

In the present climate change adaptation scenario, it will be important to prioritize the research areas for present and the times ahead. While prioritizing research areas in developing countries in sustainable development goals perspective, focus should be on the issues like health, food security, clean water, renewable energy, air pollution etc. Further, the emphasis should be on strengthening the local research capacity and the locally relevant research initiatives. It is more pertinent in developing countries where the funds and technologies are limited. In India, one of the major challenges in prioritized research will be the management of waste materials. The preference to the use of plastics has generated serious environmental and human health problems.

Microbes have been our companions since ages, both as friends or foes. They have been taking care of the overall ecology through biogeochemical cycling and biodegradation in all the environmental conditions. Their applied value in medicine, agriculture, and industry is well recognized. The challenges in microbiology over the next few decades are tightly intertwined with the pressing global need for sustainable waste management and environmental conservation. One of the most critical areas in this context will undoubtedly be biodegradation. As human societies continue to generate vast amounts of solid wastes, including a wide range of chemically complex and often non-biodegradable materials, soil microbes will play an increasingly vital role in addressing these issues (Abdel-Shafy and Mansour, 2018).

Solid wastes contain diverse components that pose significant challenges to microbial degradation. Plastics, for instance, are among the most persistent pollutants in the environment due to their strong chemical structures and resistance to natural decomposition. Common plastics like polyethylene (PE) and polypropylene (PP) feature simple yet highly durable carboncarbon backbones, making them particularly difficult for microbes to break down. Polyethylene terephthalate (PET), used extensively in bottles and packaging, has ester bonds that are theoretically biodegradable but require specific enzymes to hydrolyze effectively (Gilani *et al.*, 2023). Even more complex are materials like polyvinyl chloride (PVC), which not only resist degradation but can also release toxic chlorine

OPEN ACCESS

Editor-in-Chief
Praveen Kumar

Editors (India)

Anita Pandey Hema Yadav Neena Singla Ritu Mawar Sanjana Reddy Surendra Poonia R.K. Solanki P.S. Khapte

Editors (International)

M. Faci, Algeria M. Janmohammadi, Iran

*Correspondence

Pooja Thathola poojathathola29@gmail.com Anita Pandey anita.pandey@geu.ac.in, anitapandey333@gmail.com

Citation

Thathola, P. and Pandey, A. 2025. Biodegradation: A priority research area in sustainable development goals perspective. Annals of Arid Zone 64(2): 139-143

> https://doi.org/10.56093/aaz. v64i2.167686

https://epubs.icar.org.in/index.php/AAZ/ article/view/167686

Table 1. Challenges vs. potential solutions in soil biodegradation

Major challenges	Description	Potential solution	
Microbial adaptation & variability	Natural genetic changes can impact degradation efficiency.	Use of synthetic biology to enhance microbial degradation potential.	
Environmental stressors	Temperature, pH, and pollutants affect microbial activity.	Isolation of extremophiles and genetic modifications for resilience.	
Horizontal gene transfer	Spontaneous genetic exchange may alter biodegradation efficiency.	CRISPR-based control of gene transfer for stability.	
Biotechnological limitations	Current tools (synthetic biology, CRISPR) have practical constraints.	AI-driven optimization and predictive modeling.	
Detection & monitoring challenges	Difficulty in tracking microbial populations and degradation efficiency.	Multi-omics approaches (metagenomics, proteomics, metabolomics).	
Regulatory and policy constraints	Strict environmental policies may limit bioremediation applications.	Development of improved regulatory frameworks and policies.	
Field application limitations	Lab-based success does not always translate to field performance.	Advanced bioreactor technologies and <i>in-situ</i> biostimulation.	

compounds, further complicating microbial intervention. Alongside plastics, synthetic chemicals (all types of persistent organic pollutants) such as pesticides, dyes, and flame retardants also present challenges (Table 1) due to their stable molecular structures, aromatic rings, and halogenated compounds, which are often toxic to soil microbial communities.

The solutions to these challenges lie in leveraging advancements in microbial biotechnology and soil microbiology. Recent discoveries have identified microbial enzymes like PETase, which specifically targets PET, and other hydrolases that can degrade similar polymeric materials. Developing microbial *Table 2. Potential of microorganisms in biodegradation*

of microbes consortia groups working synergistically to tackle different steps in the breakdown process can enhance degradation efficiency for complex materials (Table 2). Genetic engineering offers another promising avenue, where microbes can be tailored to produce specific enzymes or adapt to degrading recalcitrant compounds. otherwise engineered systems could also help overcome limitations in natural soil environments, where factors like nutrient availability, pH, and competing organisms might restrict microbial activity.

Beyond plastics and synthetic compounds, the broader issue of solid waste management

Microorganisms	Degraded compound(s)	Source/Environment	Reference
Pseudomonas putida	Aromatic hydrocarbons, BPA	Contaminated soils, wastewater	(Ratheesh and Shibli, 2024)
Bacillus subtilis	Pesticides, phenols Agricultural soil, wastewater		Chen et al., 2023
Rhodococcus erythropolis	Alkanes, PAHs	Oil-contaminated sites	Liu et al., 2011
Sphingomonas sp.	Polychlorinated biphenyls (PCBs)	Polluted sediments, soil	Abraham et al., 2002
Deinococcus radiodurans	Heavy metals, radiation- resistant degradation	Extreme environments	Liu et al., 2023
Mycobacterium sp.	Petroleum hydrocarbons	Crude oil spills, soil	Aziz et al., 2024
Acinetobacter sp.	Pharmaceutical pollutants	Hospital wastewater	Męcik et al., 2024
Phanerochaete chrysosporium	Lignin, PAHs, dyes	Decaying wood, soil	Pozdnyakova, 2012
Novosphingobium sp.	Pharmaceutical compounds	Contaminated water, soil	Liu et al., 2023
Comamonas testosterone	Steroid hormones, BPA	Activated sludge, soil	Li et al., 2024
Achromobacter xylosoxidans	Pesticides, heavy metals	Industrial wastewater	Muhammad et al., 2024
Alcaligenes faecalis	Naphthalene, phenol	Wastewater, soil	Essam et al., 2010
Cupriavidus necator	Polychlorinated compounds	Contaminated groundwater	Wittich and Wolff 2007
Methylibium petroleiphilum	Petroleum hydrocarbons	Oil spills, contaminated sites	Nakatsu et al., 2006
Burkholderia cepacia	Herbicides, pesticides	Agricultural runoff	Maharana et al., 2025

includes organic waste materials like agricultural residues, food waste, and lignocellulosic biomass. These are more biodegradable but still require efficient microbial processing sustainable recycling into bioenergy or biofertilizers. Harnessing microbial communities capable of breaking down cellulose, hemicellulose, and lignin into usable components will be critical (Fig. 1). Composting and bioreactor technologies already utilize such processes, but optimization for scale, efficiency, and integration with other waste streams remains an active area of research.

Plastic degradation deserves special attention due to the sheer scale of the problem and its implications for both soil health and global ecosystems. While natural degradation rates for plastics in soil are negligible, advances in bioformulations could offer transformative solutions. Bioformulations are engineered blends of microbes, enzymes, and carriers that can be applied to soils or waste dumps to enhance biodegradation processes (Khan *et al.*, 2023). These formulations could be optimized for specific environments or waste types,

ensuring targeted action while minimizing unintended ecological impacts. Additionally, promoting biodegradation in natural settings will require a deep understanding of microbial ecology, as the interactions between native and introduced microbes can significantly affect outcomes.

Looking forward, soil microbiology must integrate with other disciplines, such as materials and environmental engineering, to develop comprehensive strategies for waste degradation. For example, producing biodegradable plastics that are more compatible with microbial enzymes or designing hybrid systems combining mechanical recycling and microbial degradation could accelerate waste management solutions. Furthermore, research into naturally occurring plastic-degrading microbes, particularly in extreme environments such as landfills or deep-ocean sediments, could uncover novel mechanisms and enzymes with broad applicability.

Climate change and soil degradation further complicate the role of microbes in

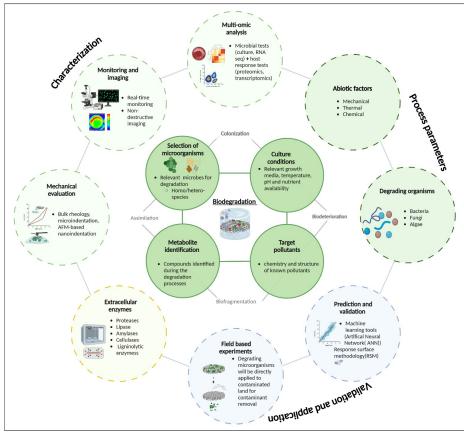


Fig. 1. Processes involved in biodegradation.

biodegradation. As soil environments become increasingly stressed by rising temperatures, altered moisture levels, and pollution, microbial activity may decline or shift, potentially reducing the efficiency of natural biodegradation processes. Adaptive strategies, such as engineering resilient microbial strains or protecting soil health through better land management practices, will be essential to maintain biodegradation capacity under changing conditions.

The path forward in addressing these challenges is multifaceted. Biodegradation research must not only focus on identifying efficient microbial solutions but also ensure their scalability, safety, and environmental Bioformulations, compatibility. consortia, and enzyme engineering hold immense promise, but their success will depend on sustained investment in research, interdisciplinary collaboration, and global supporting policies sustainable waste management practices. By rising to these challenges, soil microbiology can play a pivotal role in restoring balance to Earth's ecosystems while addressing one of humanity's most pressing environmental crises.

References

- Abdel-Shafy, H.I. and Mansour, M.S. 2018. Solid waste issue: Sources, composition, disposal, recycling, and valorization. *Egyptian Journal of Petroleum* 1;27(4):1275-90.
- Abraham, W.R., Nogales, B., Golyshin, P.N., Pieper, D.H. and Timmis, K.N. 2002. Polychlorinated biphenyl-degrading microbial communities in soils and sediments. *Current Opinion in Microbiology* 2002 Jun 1;5(3):246-53.
- Aziz, Z.S., Jazaa, S.H., Dageem, H.N., Banoon, S.R., Balboul, B.A. and Abdelzaher, M,A. 2024. Bacterial biodegradation of oil-contaminated soil for pollutant abatement contributing to achieve sustainable development goals: A comprehensive review. *Results in Engineering* 3:102083.
- Chen, W., Wu, Z., Liu, C., Zhang, Z. and Liu, X. 2023. Biochar combined with *Bacillus subtilis* SL-44 as an eco-friendly strategy to improve soil fertility, reduce *Fusarium* wilt, and promote radish growth. *Ecotoxicology and Environmental Safety* 1;251:114509.
- Essam, T., Amin, M.A., Tayeb, O.E.I., Mattiasson, B. and Guieysse, B. 2010. Kinetics and metabolic versatility of highly tolerant phenol degrading *Alcaligenes* strain TW1. *Journal of Hazardous Materials*. 15;173(1-3):783-8.

- Gilani, I.E., Sayadi, S., Zouari, N. and Al-Ghouti, MA. 2023. Plastic waste impact and biotechnology: Exploring polymer degradation, microbial role, and sustainable development implications. *Bioresource Technology Reports* 1;24:101606.
- Khan, A., Singh, A.V., Gautam, S.S., Agarwal, A., Punetha, A., Upadhayay, V.K., Kukreti, B., Bundela, V., Jugran, A.K. and Goel, R. 2023. Microbial bioformulation: a microbial assisted biostimulating fertilization technique for sustainable agriculture. *Frontiers in Plant Science* 12;14:1270039.
- Li, Y., Fan, H., Li, B. and Liu, X. 2024. Environmental impact of xenobiotic aromatic compounds and their biodegradation potential in *Comamonas testosteroni*. *International Journal of Molecular Sciences* 12;25(24):13317.
- Liu, C.W. and Liu, H.S. 2011. *Rhodococcus erythropolis* strain NTU-1 efficiently degrades and traps diesel and crude oil in batch and fed-batch bioreactors. *Process Biochemistry* 1;46(1):202-9.
- Liu, Z.S., Wang, K.H., Cai, M., Yang, M.L., Wang, X.K., Ma, H.L., Yuan, Y.H., Wu, L.H., Li, D.F. and Liu, S.J. 2023. Agromyces chromiiresistens sp. nov., Novosphingobium album sp. nov., Sphingobium arseniciresistens sp. nov., Sphingomonas pollutisoli sp. nov., and Salinibacterium metalliresistens sp. nov.: five new members of Microbacteriaceae and Sphingomonadaceae from polluted soil. Frontiers in Microbiology 28;14:1289110.
- Maharana, B., Mahalle, S., Bhende, R. and Dafale, N.A. 2025. Repercussions of prolonged pesticide use on natural soil microbiome dynamics using metagenomics approach. *Applied Biochemistry and Biotechnology* 197(1):73-93.
- Męcik, M., Stefaniak, K., Harnisz, M. and Korzeniewska, E. 2024. Hospital and municipal wastewater as a source of carbapenem-resistant *Acinetobacter baumannii* and *Pseudomonas aeruginosa* in the environment: a review. *Environmental Science and Pollution Research* 31(36):48813-38.
- Muhammad, J.B., Jagaba, A.H., Yusuf, F., Usman, S., Yakubu, N.S., Birniwa, A.H., Yakasai, H.M. and Shehu, D. 2024. Achromobacter xylosoxidans bacteria isolated from contaminated agricultural environment for a sustainable 2, 4-dichlorophenoxyacetic acid herbicide degradation: an experimental study. Case Studies in Chemical and Environmental Engineering 1:9·100604
- Nakatsu, C.H., Hristova, K., Hanada, S., Meng, X.Y., Hanson, J.R., Scow, K.M. and Kamagata, Y. 2006. *Methylibium petroleiphilum* gen. nov., sp. nov., a novel methyl tert-butyl ether-degrading methylotroph of the Betaproteobacteria. *International Journal of Systematic and Evolutionary Microbiology* 56(5):983-9.
- Pozdnyakova, N.N. 2012. Involvement of the ligninolytic system of white-rot and litter-

decomposing fungi in the degradation of polycyclic aromatic hydrocarbons. *Biotechnology Research International* 1:243217.

Ratheesh, A. and Shibli, S.M. 2024. Biochar supported *Pseudomonas putida* based globules for

effective removal of bisphenol A with a practical approach. *Chemosphere* 1;361:142496.

Wittich, R.M. and Wolff, P. 2007. Growth of the genetically engineered strain *Cupriavidus necator* RW112 with chlorobenzoates and technical chlorobiphenyls. *Microbiology* 153(1):186-95.

Printed in June 2025