Assessing Suitability of Technosols of Varying Granulometry for Ecological Restoration using Native Atriplex lampa and Parkinsonia praecox in the Monte Desert, Argentina


32 / 21

Authors

  • Florencia del Mar Gonzalez National University of Comahue. Faculty of Environmental and Health Sciences. Laboratory for the Rehabilitation and Restoration of Arid and Semi-Arid Ecosystems (LARREA). Buenos Aires 1400, Neuquén, Argentina
  • Fernando Miguel Farinaccio National University of Comahue. Faculty of Environmental and Health Sciences. Laboratory for the Rehabilitation and Restoration of Arid and Semi-Arid Ecosystems (LARREA). Buenos Aires 1400, Neuquén, Argentina
  • Daniel Roberto Pérez National University of Comahue. Faculty of Environmental and Health Sciences. Laboratory for the Rehabilitation and Restoration of Arid and Semi-Arid Ecosystems (LARREA). Buenos Aires 1400, Neuquén, Argentina
  • Carla Montero YPF Technology. 900-1198 Argentine Petroleum Avenue, Berisso, Buenos Aires, Argentina
  • Maria Elena Oneto YPF Technology. 900-1198 Argentine Petroleum Avenue, Berisso, Buenos Aires, Argentina

https://doi.org/10.56093/aaz.v64i3.168569

Keywords:

Desertification, Seed-based restoration , Seedling , Substrate granulometry, Framework species

Abstract

Desertification is the process of land degradation in arid, semi-arid, and dry sub-humid areas, which threatens the sustainability worldwide. Sustainable and innovative management strategies for restoring these degraded lands are essential to combat desertification. Use of industrial products, which creates technosols—an artificial substrates that mimic a conducive environment for plant growth, is one of the promising approaches for controlling desertification. In the present investigation, the sand residues of varying granulometry discarded during shale gas and oil processing as potential components of technosols were evaluated for seedling emergence of Atriplex lampa and Parkinsonia praecox, two native shrubs of Monte Desert of Argentina. The experiment was conducted with coarse and fine sand granulometry substrate and under controlled photoperiod and temperature conditions. Seedling emergence of both species was significantly influenced by granulometry of technosols. A. lampa had shown the highest emergence (~60%, SE = 7.54), while P. praecox averaged ~21% (SE = 2.86). The highest emergence rates for the two species were found in coarse sand granulometry (T0), 50% CG / 50% FG (T2), and 25% CG / 75% FG (T3) (~49%, SE = 10.20). These results signify the importance granulometry of technosols for seedling establishment for restoration of degraded arid lands

Downloads

Download data is not yet available.

Author Biographies

  • Fernando Miguel Farinaccio, National University of Comahue. Faculty of Environmental and Health Sciences. Laboratory for the Rehabilitation and Restoration of Arid and Semi-Arid Ecosystems (LARREA). Buenos Aires 1400, Neuquén, Argentina

    Laboratory of Rehabilitation and Restoration of Arid and Semi-arid Ecosystems (National University of Comahue)

  • Daniel Roberto Pérez, National University of Comahue. Faculty of Environmental and Health Sciences. Laboratory for the Rehabilitation and Restoration of Arid and Semi-Arid Ecosystems (LARREA). Buenos Aires 1400, Neuquén, Argentina

    Laboratory of Rehabilitation and Restoration of Arid and Semi-arid Ecosystems (National University of Comahue)

  • Carla Montero, YPF Technology. 900-1198 Argentine Petroleum Avenue, Berisso, Buenos Aires, Argentina

    YPF Tecnología

  • Maria Elena Oneto, YPF Technology. 900-1198 Argentine Petroleum Avenue, Berisso, Buenos Aires, Argentina

    YPF Tecnología

References

Abdallah, A.M. 2019. The effect of hydrogel particle size on water retention properties and availability under water stress. International soil and water conservation research, 7(3), 275-285. https://doi.org/10.1016/j.iswcr.2019.05.001

Abedi-Koupai, J., Sohrab, F. and Swarbrick, G. 2008. Evaluation of hydrogel application on soil water retention characteristics. Journal of plant nutrition, 31(2), 317-331.https://doi.org/10.1080/01904160701853928

Abraham, EM. 2011. Desertification monitoring and assessment in Argentina. In Understanding Desertification and Land Degradation Trends. Winslow, M., Sommer, S., Bigas, H., Martius, C., Vogt, J., Akhtar-Schuster, M., Thomas, R. editors.

Agaba, H., Baguma Orikiriza, LJ., Osoto Esegu, JF., Obua, J., Kabasa, JD. and Hüttermann, A. 2010. Effects of hydrogel amendment to different soils on plant available water and survival of trees under drought conditions.Clean–Soil, Air, Water, 38(4), 328-335. https://doi.org/10.1002/clen.200900245

Akhter, JK., Mahmood, K., Malik, A., Mardan, M. and Ahmad Amp, M. 2004. Effects of hydrogel amendment on water storage of sandy loam and loam soils and seedling growth of barley, wheat and chickpea. Plant Soil Environmental. 50 (10): 463-469. https://doi.org/10.17221/4059-PSE

Al-Humaid, A. and Moftah, A. 2007. Effects of hydrophilic polymer on the survival of buttonwood seedlings grown under drought stress. Journal Plant Nutrition 30: 53–66. https://doi.org/10.1080/01904160601054973

Azevedo-Lopes, T., Queiroz, HM., Ruiz, F., Asensio, V., Ferreira, AD., Cherubin, MR. and Ferreira, TO. 2024. From waste to soil: Technosols made with construction and demolition waste as a nature-based solution for land reclamation. Waste Management, 186, 153-165. https://doi.org/10.1016/j.wasman.2024.06.010

Bainbridge, DA .2007. A guide for desert and dryland restoration. Island Press, Washington D.C.

Bisigato, AJ. and Bertiller, MB. 2004. Temporal and micro-spatial patterning of seedling establishment. Consequences for patch dynamics in the southern Monte, Argentina. Plant Ecology, 174 (2), 235-246. https://doi.org/10.1023/B:VEGE.0000049101.30809.27

Ceccon, E., Huante, P. and Campo, J. 2003. Effects of nitrogen and phosphorus fertilization on the survival and recruitment of seedlings of dominant tree species in two abandoned tropical dry forests in Yucatán, Mexico. Forest ecology and management, 182(1-3), 387-402. https://doi.org/10.1016/S0378-1127(03)00085-9

Chirino, E., Vilagrosa, A. and Vallejo, VR. 2011. Using hydrogel and clay to improve the water status of seedlings for dryland restoration. Plant and Soil 344: 99–110 https://doi.org/10.1007/s11104-011-0730-1

del Valle, H. 1998. Patagonian soils: a regional síntesis. Ecología Austral. 8: 103–123.

Di Rienzo, JA., Casanoves, F., Balzarini, MG., Tablada, L. and Robledo, YC. 2011. InfoStat versión 2011. Grupo InfoStat, FCA, Universidad Nacional de Córdoba, Argentina. URL http://www. infostat. com. ar, 8, 195-199.

Fernández, ME. 2020. Estrategias de tres especies arbustivas del Monte frente al estrés hídrico y su relevancia para la restauración. Ecología austral, 30(2), 205-219. https://doi.org/10.25260/EA.20.30.2.0.1058

Golos, PJ., Commander, LE. and Dixon, KW. 2019. The addition of mine waste rock to topsoil improves microsite potential and seedling emergence from broadcast seeds in an arid environment. Plant and Soil, 440, 71-84. https://doi.org/10.1007/s11104-019-04060-7

González, FM. and Pérez, DR. 2017. Contributions of ecological facilitation for restoring environments with high conservation value in the Argentine Patagonia. Phyton, International Journal of Experimental Botany, 86, 332–339. https://doi.org/10.32604/phyton.2017.86.332

González, FM. and Pérez, DR. 2024. How much can assisted natural regeneration contribute to ecological restoration in arid lands?. Land Degradation & Development. 35(14), 4163-4172. https://doi.org/10.1002/ldr.5212

Guevara, A., Garzarón, I., Castrillo, SA., Condori, EJ., Córdoba, GS., Méndez, M., Caro, J., Reckziegel, F. and Camardelli, MC. 2024. Sustainable dry forest management for cattle ranching: The effects of deschampado practices on the shrub layer and the light environment in comparison to roller chopping. Forest Ecology and Management, 560, 121826. https://doi.org/10.1016/j.foreco.2024.121826

Hernández, JA. and Pérez DR. 2023. Performance of five arid land shrub species in direct seeding: implications for seed‐based restoration. Restoration Ecology, 32(2), e14022. https://doi.org/10.1111/rec.14022

Huang, J., Zhang, G., Zhang, Y., Guan, X., Wei, Y. and Guo, R. 2020. Global desertification vulnerability to climate change and human activities. Land Degradation & Development, 31(11), 1380-1391. https://doi.org/10.1002/ldr.3556

Louafi, B. and Bahar, R. 2012. Sand: An additive for stabilzation of swelling clay soils. International Journal of Geosciences, 3, 719-725 http://dx.doi.org/10.4236/ijg.2012.34072

Macci, C., Vannucchi, F., Doni, S., Peruzzi, E., Lucchetti, S., Castellani, M. and Masciandaro, G. 2022. Recovery and environmental recycling of sediments: The experience of CNR-IRET Pisa. Journal of Soils and Sediments, 22(11), 2865-2872. https://doi.org/10.1007/s11368-022-03162-7.

Maestre, FT., Reynolds, JF., Huber- -Sannwald, E., Herrick, J. and Stafford Smith, M. 2006. Understanding global desertification: Biophysical and socioeconomic dimensions of hydrology. In: D'Odorico, P., Porporato, A. (eds) Dryland Ecohydrology. Springer, Dordrecht. https://doi.org/10.1007/1-4020-4260-4_18

Mazzonia, E. and Vazquez, M. 2009. Desertification in Patagonia. Developments in earth surface processes, 13, 351-377. https://doi.org/10.1016/S0928-2025(08)10017-7

Mayence, CE., Stevens, JC., Courtney, P. and Dixon, KW. 2017. Edaphic constraints on seed germination and emergence of three Acacia species for dryland restoration in Saudi Arabia. Plant ecology, 218, 55-66.Mazzonia, E., Vazquez, M. (2009). Desertification in Patagonia. Developments in earth surface processes, 13, 351-377. https://soi.org/10.1016/S0928-2025(08)10017-7

Noy-Meir, I. 1973. Desert ecosystems: Environment and producers. Annu. Rev. Ecol. Syst, 4, 25-51 https://doi.org/10.1146/annurev.es.04.110173.000325

Paredes, DA., Araujo, MR. and Pérez, DR. 2018. Germination of three Fabaceae species of interest for ecological restoration in the Southern Monte, Patagonia, Argentina. Quebracho-Revista de Ciencias Forestales, 26(2), 68-78.

Pece, MG., Acosta, MM. and Sobrero, MT. 2013. Influencia de la temperatura y la luz sobre la germinación de Cercidium praecox (Ruiz and Pav. ex Hook.) Harms subsp. praecox. La Revista Forestal Venezolana, 57(1), 29-36.

Pérez, D., Farinaccio, F. and Aronson, J. 2019a. Towards a dryland framework species approach. Research in progress in the Monte Austral of Argentina. Journal of Arid Environments 61:1-10. https://doi.org/10.1016/j.jaridenv.2018.09.001

Pérez, DR., González, F., Rodriguez Araujo, ME., Farinaccio, F. and Oneto, ME. 2019b. Utilización de recortes de perforación petrolera para la restauración ecológica de zonas áridas y semiáridas. Revista Experimentia. Instituto Argentino de Investigaciones en Zonas Áridas (IADIZA). Mendoza. Argentina. Págs. 107-157. ISSN 1853- 905x.

Pérez, DR., Pilustrelli, C., Farinaccio, FM., Sabino, G. and Aronson, J. 2020. Evaluating the success of various restorative interventions through drone- and field collected data, using six putative framework species in Argentinian Patagonia. Restoration Ecology 28: A44–A531. https://doi.org/10.1111/rec.13025

Reinoso, H., Sosa, L., Colombo, C., Ochoa, F. and Luna, V. 2000. Morphological and physiological responses of Prosopis strombulifera (Lam.) Benth. to increasing salt conditions. pp: 201-202. In: Bush D, Cosgrove D, Hangarter R, Jorgensen R, Delmer D, Springer P, Lucas W, Schnell D. (eds.). Plant biology. American Society of Plant Physiology. San Diego, CA, USA.

Reynolds, JF., Stafford-Smith DM. and L E. 2003. Do humans cause deserts? An old problem through the lens of a new framework: the Dahlem desertification paradigm. In Proceedings of the 7th international rangelands congress (Vol. 26).

Rodríguez Araujo, ME. and Pérez, DR. 2023. From seed germination to established seedlings: a comparative evaluation in five shrub species and implications for seed‐based restoration in arid lands. Restoration Ecology, 31(6), e13862. https://doi.org/10.1111/rec.13862

Roig, FA., Roig-Juñent, S. and Corbalán, V. 2009. Biogeography of the Monte desert. Journal of Arid Environments. 73(2), 164-172. https://doi.org/10.1016/j.jaridenv.2008.07.016

Romero Ovalle, PE., Bisigato, AJ. and Campanella, MV. 2021. Soil erosion facilitates shrub encroachment in Patagonian herbaceous steppes. Land Degradation & Development, 32(11), 3377-3385. https://doi.org/10.1002/ldr.4016

Ruiz, D., Pérez, D., Valfré Giorello, T. and Rodriguez Araujo, M. 2024. Effect of substrate properties on seedling emergence and its contribution to species selection for direct seeding in arid lands. Journal of Arid Environments 224 https://doi.org/10.1016/j.jaridenv.2024.105234

Saldía, R. 2025. Efecto de la escarificación química y la escarificación mecánica en la emergencia de plántulas de Parkinsonia preaecox (Chañar brea) en condiciones de vivero. Tesis de Licenciatura en Saneamiento y Protección Ambiental. Facultad de Cs. del Ambiente y la Salud. Universidad Nacional del Comahue. Argentina. 50 pp

Semla, M., Goc, Z., Martiniaková, M., Omelka, R. and Formicki, G. 2017 Acrylamide: A common food toxin related to physiological functions and health. Physiol Res. 66: 205-217. https://doi.org/10.33549/physiolres.933381

Stinco, LP. and Barredo, SP. 2014. "Vaca Muerta Formation: An Example of Shale Heterogeneities Controlling Hydrocarbon Accumulations," SEG Global Meeting Abstracts: 2854-2868. https://doi.org/10.15530/urtec-2014-1922563

Tahir, S. and Marschner, P. 2016 Clay amendment to sandy soil—effect of clay concentration and ped size on nutrient dynamics after residue addition. Journal of soils and sediments, 16, 2072-2080. https://doi.org/10.1007/s11368-016-1406-5

UNCCD. 2017. Perspectiva global de la Tierra. Primera edición. Bonn, Alemania. ISBN: 978-92-95110-52-6

U.S. Geological Survey. 2014. Industrial sand and gravel in Metals and minerals: U.S. Geological Survey Minerals Yearbooks 1990-2012, accessed July 2, 2024 http://minerals.usgs.gov/minerals/pubs/commodity/silica/.

Uselman, SM., Snyder, KA., Leger, EA. and Duke, SE. 2015. Emergence and early survival of early versus late seral species in Great Basin restoration in two different soil types. Applied Vegetation Science, 18(4), 624-636. https://doi.org/10.1111/avsc.12175

Villagra, PE., Giordano, C., Alvarez, JA., Bruno Cavagnaro, J., Guevara, A., Sartor, C., Passera, C. and Greco, S. 2011. Ser planta en el desierto: estrategias de uso de agua y resistencia al estrés hídrico en el Monte Central de Argentina. Ecología austral, 21(1), 29-42.

Villagra, PE., Passera, CB., Greco, S., Sartor, C., Aranibar, JN., Meglioli, PA. and Riveros CV. 2017. Uso de plantas nativas en la restauración y recuperación productiva de ambientes salinos de las zonas áridas de la región del Monte, Argentina. Ambientes salinos y alcalinos de la Argentina. Universidad Católica de Córdoba-Orientación Gráfica Editora, Córdoba, Argentina, 419-444.

Wenbo, Z. and Tannant, D. 2016. Frac Sand Crushing Characteristics and Morphology Changes under High Compressive Stress and Implications for Sand Pack Permeability. Canadian Geotechnical Journal, 53, 1412-1423 https://doi.org/10.1139/cgj-2016-0045

Yu, Z., Xu, Q., Dong, C., Lee, SS., Gao, L., Li, Y. and Wu, J. 2015. Self-assembling peptide nanofibrous hydrogel as a versatile drug delivery platform. Current pharmaceutical design, 21(29), 4342-4354. https://doi.org/10.2174/1381612821666150901104821

Zohourian, M. and Kabiri, K. 2008. Superabsorbent polymer materials: a review. Iranian Polymer Journal 17 (6), 2008, 451-477

Zuñiga, D. and Pérez, DR. 2014. Uso de Cercidium praecox (Fabacea) para la recuperación de sitios con disturbios severos del Monte Austral de Argentina: evaluación de supervivencia en campo y crecimiento en zonas áridas de la Patagonia. Experimentia 4: 8186.

Downloads

Submitted

04-07-2025

Published

01-10-2025

How to Cite

Gonzalez, F. del M., Fernando Miguel Farinaccio, Pérez, D. R., Montero, C., & Oneto, M. E. (2025). Assessing Suitability of Technosols of Varying Granulometry for Ecological Restoration using Native Atriplex lampa and Parkinsonia praecox in the Monte Desert, Argentina. Annals of Arid Zone, 64(3), 443-451. https://doi.org/10.56093/aaz.v64i3.168569
Citation