Effect of Zinc Application on the Nutrient Content of Wheat (*Triticum aestivum* L.) Irrigated with Different Saline Waters

Prerna Dogra^{1*}, B.L. Yadav¹ and F.M. Qureshi²

¹ SKN College of Agriculture, Johner 303 329, India

² Rajasthan College of Agriculture, MPUAT, Udaipur 313 001, India

Received: December 2012

Abstract: The efficiency of zinc application on the performance of wheat (*Triticum aestivum L.*) irrigated with different saline waters was studied in pot experiment on sandy clay loam soil. The experiment was laid out in CRD with four (W_0 , W_1 , W_2 , W_3) qualities of irrigation water and four levels of zinc (0, 5, 10 and 15 mg kg⁻¹ soil). High EC_{iw} significantly reduced the grain and straw yield, phosphorus, potassium and zinc contents in grain and straw, while sodium content increased. Zn application to soil had favorable effect on grain and straw yield of wheat. The Zn increased the contents of N, K, Zn significantly in both grain and straw whereas, phosphorus content was decreased significantly. The comparative reduction in grain and straw yield of wheat as well as contents of P and Zn of grain and straw was less at higher doses of zinc sulphate when the level of EC_{iw} increased in irrigation water. Hazardous effects of saline water on wheat can be mitigated to some extent by applying zinc sulphate at the rate of 15 mg Zn kg⁻¹ soil.

Key words: Saline water, zinc, wheat, yield.

Salt affected soils adversely affect the livelihood security of the people in more than 100 countries, occupying about 831 Mha across the Globe. Out of the total (831 Mha) salt affected soils, 397 Mha (47.8%) are saline, while 434 Mha (52.2%) are sodic in nature. In the Indian context, salt affected soils occupy about 6.73 Mha area affecting production and productivity across number of states. Saline and brackish groundwater also pose serious threat to land and water productivity as these constitute about 25% of the total groundwater resource of the country. Certain states like Rajasthan and Haryana having 84 and 62% of poor quality ground waters are the worst hit on this account (Salinity News, 2010). Salinity limits the water uptake of plants by reducing the osmotic potential and thus the total soil water potential (Corwin and Lesch, 2003; Sheldon et al., 2004). As soil dries, the concentration of salts in the soil solution increases, further decreasing the osmotic potential (Sheldon et al., 2004). In dryland regions with annual rainfall between 250 and 600 mm, saline subsoils having EC values between 2 and 16 dS m⁻¹ can dramatically affect crop production through osmotic effects during dry periods. The combination of poor water storage and osmotic stress increase water

stress of crops in such areas (Rengasamy, 2002). Salinity affects both vegetative growth and reproductive development while the more obvious effects are on the rate of leaf appearance and the number of shoots capable of producing fertile ears; the reproductive process itself can be affected (Munns and Rawson, 1999). Physiologically, many processes are affected, but the most notable are reduced cell growth and decreased leaf area, biomass and yield (Acevedo *et al.*, 2005).

Wheat (*Triticum* spp.) is one of the cereals extensively grown throughout the world in more than 50 countries. In terms of production wheat occupies the prime position amongst the food crops and is next to rice. Wheat is a staple crop, but its production potential is limited by adverse environmental stress namely drought, salinity and extremes of temperature. Zinc deficiency is most widespread micronutrient deficiency worldwide (Graham et al., 1992; Welch et al., 1991). Phytoavailability of Zn in calcareous and salt affected soils is low (Khoshgoftarmanesh et al., 2004) hence needs to be investigated. Moreover a large number of studies have demonstrated differential Zn efficiency among wheat genotypes (Cakmak et al., 1997; Kalayci et al., 1999) in calcareous soils, but limited information is available on

^{*}E-mail: dograprerna@yahoo.com

22 DOGRA et al.

Zn efficiency on wheat genotype under saline conditions (Khoshgoftarmanesh *et al.*, 2004). This study was therefore, conducted to study the performance of wheat crop fertilized with Zn and irrigated with saline water to see the effect of Zn fertilization in alleviating the deleterious effects of saline water irrigation.

Materials and Methods

The experiment was conducted in the greenhouse of the Department of Agricultural Chemistry and Soil Science, Rajasthan College of Agriculture, Udaipur, in sandy clay loam soil (Typic Ustocrepts) having pH (8.12), EC (1.8 dS m⁻¹). In soil organic carbon (0.51%) was determind according to Walkley and Black (1947) method; ESP (5.13%) and SAR (3.60) on the basis of methods given by Richards (1954); CaCO₃ (3.10%) by Piper (1950) and available nitrogen (279.28 kg ha⁻¹), phosphorus (26.22 kg ha⁻¹), potassium (318.52 kg ha⁻¹) and zinc (0.71 mg kg⁻¹) analyzed using standard methods given by Subbiah and Asija (1956), Olsen et al. (1954), Richards (1954) and Lindsay and Norvell (1978), respectively. Chemical characteristics of water were also analyzed for pH, EC, RSC and SAR using standard methods of analysis. Chemical characteristics of water used in the study are given in Table 1. The region falls under Agro-climatic zone IV-A of Rajasthan with a typical sub-tropical climate.

Table 1. Chemical characteristics of water used under study

Characteristics	Irrigation water				
	W_0	W_1	W_2	W_3	
рН	7.35	7.42	7.68	7.80	
EC (dS m ⁻¹)	2.25	4.00	8.00	12.00	
RSC	1	-	-	-	
SAR	6.86	7.3	8.2	9.92	

The experiment was laid out in completely randomized design (CRD) with three replications. 8 kg of air dried soil was placed in lysimeter pots over washed gravel at the bottom. The treatments consisted of four levels of EC_{iw} (W₀, W₁, W₂, W₃) four levels of zinc (0, 5, 10, and 15 mg Zn kg⁻¹ soil). Basal dose of N @ 60 mg N kg⁻¹, P @ 20 mg P₂O₅ kg⁻¹ and K @ 15 mg K₂O kg⁻¹ were applied at the time of sowing. Seven seeds of wheat (Raj-4037) were sown per pot and three seedlings in each pot were maintained after ten days of sowing. The

crop was harvested at maturity. Plant and soil samples were collected after crop harvest. Plant (grain and straw) samples were rinsed with glass-distilled water and dried in hot air oven at 65°C and processed for analysis of nitrogen (Snell and Snell, 1955); sodium and potassium (Jackson, 1973); phosphorus (Jackson, 1973); calcium and magnesium (Richards, 1954) and zinc (Lindsay and Norvell, 1978).

Results and Discussion

Nutrient content of plant

Nitrogen content of grain and straw was not affected due to high EC of irrigation water. However, the application of Zn₂ and Zn₃ (10 and 15 mg Zn kg-1 soil) increased the nitrogen content in grain to the extent of 5.35 and 6.59%, while that in straw increased by 2.42 and 6.59%, respectively, as compared to Zn₀ (control), while Zn₁ and Zn₀ were at par in their influence on nitrogen content in grain and straw (Table 2). Nitrogen content in wheat increased with the application of zinc up to 15 mg Zn kg⁻¹ soil (Table 2) since zinc is an essential component of certain enzymes of nitrogen assimilation hence application of various levels of zinc might have increased the activity of the enzymes leading to more assimilation of nitrogen by the wheat plant resulting in increased content and uptake of nitrogen. Choudhary et al. (1997) also observed an increase in nitrogen content of grain and straw by wheat with increasing levels of zinc.

Phosphorus content reduced with the order of 2.75, 8.53 and 14.67% in grain due to W₁, W_2 and W_3 , respectively, as compared to W_0 . In straw reduction was 4.83 and 10.77% due to W₂ and W₃ as compared to W₀ while W₁ and W₀ were at par in their influence on total phosphorus content (Table 2). Application of 10 and 15 mg Zn kg-1 soil (Zn₂ and Zn₃) decreased the phosphorus content in grain by 4.14 and 7.05% and 3.01 and 5.70% in straw, respectively, as compared to no application of zinc (Zn₀). While Zn₁ and Zn₀ were at par in their influence on phosphorus content in grain and straw (Table 2). Reduction in phosphorus availability in saline soils was suggested to be a result of ionic strength effects that reduce the activity of phosphate, the tight control of phosphorus (concentrations by sorption processes and by the low solubility of Ca-P minerals). Phosphorus content of grain and

Table 2. Effect of ECiw and zinc on nitrogen, phosphorus and potassium content (%) in grain and straw of wheat

Treatment	Nitrogen content (%)		Phosphorus	Phosphorus content (%)		Potassium content (%)	
	Grain	Straw	Grain	Straw	Grain	Straw	
EC _{iw} levels							
W_0	1.843	0.6872	0.3455	0.2525	0.426	1.431	
W_1	1.840	0.6860	0.3360	0.2480	0.424	1.427	
W_2	1.833	0.6832	0.3160	0.2403	0.413	1.409	
W_3	1.831	0.6827	0.2948	0.2253	0.399	1.383	
SEm±	0.017	0.0065	0.0031	0.0023	0.004	0.008	
CD at 5%	NS	NS	0.0088	0.0066	0.010	0.024	
Zn levels							
Zn_0	1.773	0.6611	0.3333	0.2490	0.407	1.394	
Zn_1	1.816	0.6771	0.3298	0.2448	0.413	1.411	
Zn_2	1.868	0.6964	0.3195	0.2415	0.422	1.428	
Zn_3	1.890	0.7047	0.3098	0.2308	0.418	1.417	
SEm±	0.017	0.0065	0.0031	0.0023	0.004	0.008	
CD at 5%	0.050	0.019	0.0088	0.0066	0.010	0.024	

straw decreased significantly with increasing level of zinc in the soil (Table 2) probably due to their antagonistic effect on phosphorus.

Potassium content decreased significantly with higher level of EC of irrigation waters. The application of W_1 quality water decreased the potassium content in grain by 2.58 and 6.33% and in straw by 1.53 and 3.35%, respectively, as compared to W_0 (control) while W_1 and W_0 were at par in their influence on potassium content in grain and straw, while the application of zinc at levels of Zn_2 and Zn_3 (10, 15 mg Zn kg⁻¹ soil) increased the potassium content of

grain to the extent of 3.68 and 2.70%, while that of straw to the extent of 2.43 and 1.65%, respectively, as compared to Zn_0 (control) while Zn_1 and Zn_0 were at par in their influence on total potassium content in grain and straw. The potassium content of grain and straw as well as its uptake by wheat (Table 2) decreased with increasing level of EC_{iw} of irrigation water due to adverse effect of excessive sodium on the absorption of potassium by plant.

Calcium and magnesium contents of grain and straw were not affected with increasing levels of EC_{iw} and different doses of zinc (Table 3).

Table 3. Effect of ECiw and zinc on calcium, magnesium, sodium and zinc contents in grain and straw of wheat

Treatments	Calcium (%)		Magnesium (%)		Sodium (%)		Zinc (mg kg-1)	
	Grain	Straw	Grain	Straw	Grain	Straw	Grain	Straw
EC _{iw} levels								
W_0	0.0728	0.1742	0.0439	0.1069	0.221	0.503	34.46	23.29
W_1	0.0734	0.1754	0.0440	0.1071	0.234	0.526	33.76	22.58
W_2	0.0741	0.1759	0.0444	0.1074	0.250	0.549	32.97	21.82
W_3	0.0739	0.1762	0.0446	0.1077	0.296	0.595	32.37	20.66
SEm±	0.0006	0.0016	0.0008	0.0010	0.003	0.005	0.314	0.208
CD at 5%	NS	NS	NS	NS	0.008	0.016	0.905	0.600
Zn levels								
Zn_0	0.0748	0.1756	0.0445	0.1072	0.252	0.545	31.98	21.71
Zn_1	0.0732	0.1754	0.0440	0.1071	0.252	0.545	32.94	21.72
Zn_2	0.0729	0.1753	0.0442	0.1073	0.250	0.544	33.72	22.32
Zn_3	0.0733	0.1754	0.0443	0.1074	0.248	0.539	34.92	22.60
SEm±	0.0006	0.0016	0.0008	0.0010	0.003	0.005	0.314	0.208
CD at 5%	NS	NS	NS	NS	NS	NS	0.905	0.600

24 DOGRA et al.

While rise in EC level of irrigation water from W₀ to W₃ significantly increased the sodium content of both grain and straw. The increase in sodium content of grain due to the application of W₁, W₂ and W₃ was 5.88, 13.12 and 33.93% and in straw 4.57, 9.14 and 18.29%, respectively, as compared to well water (W₀). Higher sodium content may be because high EC water supplied excessive quantity of soluble salts in soil which could result in increased Na content. The data further revealed that various levels of zinc had no significant influence on the accumulation of Na in grain or straw. The higher ECiw of irrigation water significantly decreased the zinc content of both grain and straw. The decrease in zinc content of straw due to application of W₁, W₂ and W₃ quality irrigation water was of the order of 3.01, 6.31 and 11.29%, respectively, as compared to well water irrigation. Babaian et al. (2003) suggested that in saline soils, some elements such as Mg, Ca and Na have antagonistic effects with micronutrients for uptake by roots. Thus, the solubility and availability of zinc cation to plants could decrease with increase in salinity level of the soil under high EC_{iw} irrigation. The increase in zinc content of grain due to application of Zn₁, Zn₂ and Zn₃ (5, 10 and 15 mg Zn kg⁻¹ soil) was 3.00, 5.44 and 9.19%, respectively, while that in straw was 0.046, 2.81 and 4.09%, respectively, as compared to control. The highest content of zinc in grain and straw was recorded under Zn₃ as 34.92 and 22.6 mg kg⁻¹, respectively.

Conclusions

The grain and straw yield as well as phosphorus, potassium and zinc contents in both grain and straw decreased, but sodium content increased with EC of irrigation water. Application of zinc to the soil has favorable effect on the grain and straw yield as well as contents of nitrogen, phosphorus, potassium, calcium, magnesium, sodium and zinc in both grain and straw increased significantly. Phosphorus content of both grain and straw decreased with increasing application of zinc to the soil. The magnitude of addition of Zn to soils and use of saline waters for crop production is of special significance. Though combined use of organic and chemical amendments depending upon the local needs and resources available must be made use of in managing soils irrigated with saline waters, but soils badly suffer from the deficiency of micronutrients like Zn, which

may be mitigated by adopting suitable form and doses of these nutrients. The results of the present study showed that deleterious effects of saline water could be alleviated to some extent by making use of suitable doses (15 mg kg⁻¹ soil) of Zn.

Reference

- Acevedo, E., Silva, P. and Silva, H. 2005. Wheat growth and physiology. http://www.fao.org/documents/show_cdr.asp?url_file=/DOCREP/006/Y4011E/y011e0.htm. Updated on 15 October, 2005.
- Babaian, Jolodar, N. and Tabar Ahmadi, M.K.Z. 2002. *Plant Growth in Saline Condition*. Mazanderan University Publication, Babolsar, Iran.
- Cakmak, I., Ekiz, H., Yilmag, A., Torum, B., Koleli, N., Gultekin, I., Alkan, A. and Ekern, S. 1997. Differential response of rye, bread and durum wheats to zinc deficiency in calcareous soils. *Plant and Soil* 188: 1-10.
- Choudhary, N.R., Vyas, A.K. and Singh, A.K. 1997. Growth and nutrient uptake in wheat as influenced by nitrogen, phosphorus and zinc fertilization. *Annals of Agriculture Research* 18(3): 365-366.
- Corwin, D.L. and Lesch, S.M. 2003. Application of soil electrical conductivity to precision agriculture: Theory, principles, and guidelines. *Agronomy Journal* 95: 455-471.
- Graham, R.D., Ascher, J.S. and Hyner, S.C. 1992. Selecting zinc-efficient varieties for soils of low zinc status. *Plant and Soil* 146: 241-250.
- Jackson, M.L. 1973. Soil Chemical Analysis. Prentice Hall of India (P) Ltd., New Delhi.
- Kalayci, M.B., Tarun, S., Eker, M., Aydin, L., Ozturn, and Cakmak, 1999. Grain yield, zinc efficiency and zinc concentration of wheat cultivation grown in a zinc-defecient calcareous soil in field and greenhouse. *Field Crops Research* 63: 87-98.
- Khoshgoftarmanesh, A.H., Shariatmadari, H., Kalbasi, M., Karimian, N. and Khajehpour, M.R. 2004. Zinc efficiency of wheat cultivars grown on a saline calcareous soil. *Journal of Plant Nutrition* 27: 1953-1962.
- Lindsay, W.L. and Norwell, W.A. 1978. Development of DTPA soil test for Zn, Fe, Mn and Cu. *Soil Science Society American Journal* 42: 421.
- Munns, R. and Rawson, H.M. 1999. Effect of salinity on salt accumulation and reproductive development in the apical meristem of wheat and barley. *Australian Journal of Plant Physiology* 26(5): 459-464.
- Olsen, S.R., Cole, C.V., Watanable, F.S. and Dean, L.A. 1954. Estimation of available phosphorus

- in soil by extraction with sodium bicarbonate. *Circular*, USDA, Washington, DC. 939.
- Piper, C.S. 1950. Soil and Plant Analysis. The University of Adelaide, Australia.
- Rengasamy 2002. Transient salinity and subsoil constraints to dryland farming in Australian sodic soils: An overview. *Australian Journal of Experimental Agriculture* 42: 351-361.
- Richards, L.A. 1954. *Diagnosis and Improvement of Saline and Alkali Soils*. USDA Hand Book No. 60, Department of Agriculture, Washington, DC.
- Salinity News 2010. Central Soil Salinity Research Institute, Karnal 16(2).
- Sheldon, A., Menzies, N.W., Bing So, H. and Dalal, R. 2004. The effect of salinity on plant available water. *Proceedings of SuperSoil* 2004: 3rd Australian

- New Zealand Soils Conference, 5-9 December 2004, University of Sydney, Australia.
- Snell, F.D. and Snell, C.T. 1959. *Colorimetric Methods of Analysis* 3rd Ed. Vol. IID. van Nostrand Inc., New York.
- Subbiah, B.V. and Asija, G.L. 1956. A rapid procedure for the estimation of available nitrogen in soils. *Current Science* 25: 259-260.
- Walkley, A. and Black, L.A. 1947. Rapid titration method for organic carbon of soils. *Soil Science* 37: 29-33.
- Welch, R.M., Alloway, W.H., House, W.A. and Kubata, J. 1991. Geographic distribution of trace element problem. In *Micronutrients in Agriculture*, 2nd ed. (Eds. J.J. Mortvedi, F.R. Cox, L.M. Shuman and R.M. Welch), pp. 31-57. Madison, WI, USA.

Printed in March 2015