Quantitative and Qualitative Losses Inflicted by Caryedon serratus in Stored Groundnut Pods

Man Mohan Sundria*, Akhil Kumar¹ and D.B. Ahuja²

Agricultural Research Station, Mandor, Jodhpur 342 304, India ¹Department of Agricultural Zoology & Entomology, RCA, Udaipur 313 001, India ²NCIPM, LBS Building, IARI, New Delhi 110 012, India

Received: July 2011

Abstract: Studies on the qualitative and quantitative losses inflicted by *C. serratus* in stored groundnut pod during three to nine months of storage under fluctuating laboratory conditions revealed that pod weight loss (from 2.23 to 27.39%) and seed damage (from 29.52 to 96.02%) increased due to multiplication of bruchid population with the period of storage. Storage period coupled with insect infestation play vital role in decreasing the protein and carbohydrate (total soluble sugar) contents and in increasing oil content in the pods.

Key words: Groundnut, Caryedon serratus, qualitative losses, quantitative losses.

The groundnut, Arachis hypogea L., is grown extensively in India, and is generally stored for 6 to 9 months from harvest to next sowing season in unshelled form to avoid pest infestation. Groundnut gets infested due to an array of insect pests. Among them, bruchid (Caryedon serratus) causes considerable damage to groundnut during storage. The C. serratus is reported to damage different crops including groundnut (Dick, 1987), paddy (Arora and Singal, 1978), tamarind (Mital and Khanna, 1967), Acacia nilotica (Satyavir et al., 1996), Bauhinia variegata (Nilsson and Johnson, 1992). Very little work has been done on the effect of feeding of this species on groundnut. The present investigations were, therefore, undertaken to find out the quantitative and qualitative losses during storage caused by this bruchid.

Materials and Methods

Experiments were laid out at the Stored Product Section, Division of Entomology, IARI, New Delhi, from August, 2002 to May, 2003. The groundnut pods, procured from local market, were cleaned of inert material and subjected to a temperature of 50±2°C for overnight to eliminate any hidden pest infestation. To find out the losses caused by this bruchid, 500 g of groundnut pods were taken in plastic container of 2 kg capacity and five pairs of newly emerged (0-24 hrs.) adults

were released in each container. Separate jars were taken to record observations after 3, 6 and 9 months of storage. Four replications were maintained for each month. The jars were kept at room conditions.

Per cent weight loss: After removing the bruchid from each jar, weight of pods was taken on analytical balance after 3, 6 and 9 months of storage. The loss (%) in weight was calculated as per formula:

% weight loss=
$$\frac{\text{I-F}}{\text{I}} \times 100$$

where, I = initial weight of pods; F = final weight of pods.

Per cent damage: Groundnut pods weighing 50 g were taken from each replication and counted. The damaged pods were separated from the lot and damage (%) was worked out for each replication. The same procedure was adopted for the observations taken each for 3, 6 and 9 months after the storage. The damage (%) was calculated (Adams and Schulten, 1978).

Biochemical changes: The nitrogen content in the groundnut samples was determined by AOAC (1970) method using 0.2 g samples. Protein content was ascertained by multiplying the percentage nitrogen by 5.46. The oil content was estimated by cold percolation method (Kartha and Sethi, 1957). Total soluble sugar was estimated by the Anthrone method (Sadasivam and Manickam, 1992). The biochemical analyses

^{*}E-mail: manu2015@rediffmail.com

SUNDRIA et al. 58

groundnut	pods at varying	g storage periods			_
Storage period (months)	Per cent protein*	Per cent oil content*	Per cent carbohydrate (total soluble sugar)*	Per cent damage*	Per cent weight loss*
Initial	25.57 (30.38)bc	42.79 (40.86) ^b	13.22 (21.32)a	00.00	00.00

13.08

 $(21.21)^a$

12.83

(20.99)ab

12.36

 $(20.59)^{b}$

0.19

Table 1. Effect of C. serratus infestation on % protein, oil, carbohydrate (total sugar), pod damage and weight loss in

46.30

 $(42.88)^a$

47.26

 $(43.43)^a$

44.76

(41.99)ab

0.55

were done at Division of Biochemistry, IARI, New Delhi. The data obtained were analyzed statistically.

28.42

(32.22)a

27.18

24.29

(29.53)°

0.51

(31.42)ab

Results and Discussion

Three

Six

Nine

S. Em ±

The extent of losses caused by a particular species varied from host to host, depending upon the host suitability of oviposition and development (Singh, 1962). The density of insects ultimately reflects not merely the quantitative, but qualitative losses as well. Interestingly, C. serratus larvae were observed making holes in plastic containers with their biting and chewing type of mouth part.

Per cent weight loss: The bruchid grub, feeding inside the groundnut pods, caused the loss in weight, which was 2.23% after three month of storage. Due to fast multiplication of the bruchid population in subsequent storage period, the loss to groundnut pods eventually increased to 27.39% after 9 months of storage (Table 1). These findings were supported by Dick (1987), who reported that C. serratus was responsible for approximately 20% weight loss in groundnut kernel after five months of storage. This pest resulted in 22.51% weight loss in seeds of Acacia nilotica (Satyavir et al., 1996) and 22.93% in stored groundnut pods (RVB-1) after three months (Ghorpade et al., 1998) of storage.

Per cent damage: Damage to the pods, the ultimate effect of the bruchid infestation, was more or less parallel to the population of the bruchid, C. serratus in groundnut pod. The findings (Table 1) revealed that the initial damage after 3 months was 29.53%, which

increased abruptly to 71.35% after six months of storage due to fast population build up of bruchid. After nine-months of storage, 96.02% damage was observed. Similarly, Ghorpade et al. (1998) also recorded per cent pod damaged from 64.40 (ICGS-11) to 92.82 (RVB-1) by C. serratus in stored groundnut. Singh and Bhandari (1987) recorded 100% loss of the seeds of acacias due to C. serratus, while Singh and Toky (1990) reported 6.8% pod damage in A. nilotica by C. serratus in the field. Doharey et al. (1987) also observed same trend in seed loss in stored green gram caused by Callosobruchus chinensis with an initial loss of 1.35%, which increased gradually up to 99.91% after 120 days of storage.

29.53

(32.92)

71.34

(57.63)

96.02

(78.50)

1.07

3.42

2.23

(8.59)

13.12

(21.24)

27.39

(31.56)

1.16

3.71

Protein content: Decrease in protein content has been reported in seeds of peanut (Jiang and Sung, 1994; Dudu et al., 1996), sunflower (Dadlani et al., 1995). In the present study, increased protein content was found up to six months. However, the increase was more profound due to C. serratus infestation and accelerates aging. The initial protein content was 25.57%, which reached 24.29% after nine months of storage with slight decrease (Table 1). Dudu et al. (1996) also reported slight decrease in protein content in groundnut from 24.5 to 23.4% after nine months of storage, due to merchant beetle (Oryzaephilus mercator).

Oil content: A slight increase was observed in oil content after nine months of storage (Table 1). The initial oil content was 42.79%, which increased to 44.76% in groundnut after nine months of storage. Dudu et al., 1996 also recorded increase in oil content in groundnut

CD at 5% 1.57 1.69 0.58 * Mean of four replications, Figures in parenthesis are arc sine values.

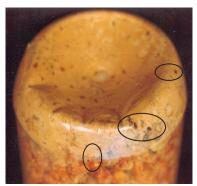


Fig. 1. Holes made by larvae of groundnut bruchid, Caryedon serratus (ol.) in plastic container.

from due to merchant beetle (*O. mercator*) 43.0 to 46.2% after nine months of storage.

Carbohydrate content: There was significant variation in per cent carbohydrate content of groundnut after 9 months of storage. The carbohydrate reduced from 13.22 to 12.36% after 9 months of storage (Table 1). Similar reports was made by Vijay (2000), who recorded slight decrease in total soluble sugar in maize and soybean after 15 months of storage. The present findings are in conformity with the investigation made by Singh *et al.* (1982) in stored green gram infested with *Callosobruchus maculatus* F. where the reducing sugars increased up to four months of storage (1325 mg of maltose/100 g of seed) followed by a decrease in the fifth month (1085 mg of maltose/100 g of seed).

It was inferred from these findings that storage duration and insect infestation play a vital role in decreasing protein and carbohydrate (Total soluble sugar) and increase in oil content in stored groundnut. Over and above, the grub of this bruchid is capable to make hole in plastic containers during the experimentation (Fig. 1).

Acknowledgements

The authors are thankful to Dr. S.C. Khanna, Principal Scientist, Division of Entomology, for nice cooperation and providing necessary facilities for conducting experiments and Dr. S.P. Singh, Principal Scientist, Division of Biochemistry, IARI, New Delhi, for assistance in biotechnical analysis.

References

Adams, J.M. and Schulten, G.G.M. 1978. Losses caused by insects, mites and microorganism. In *Post Harvest Grain Loss Assessment Methods*, (Eds. K.L. Harris and C.J. Lindblad) *Am. Assoc. Cereal Chem.*, pp. 83-95. St. Paul. Minnesota, USA.

- AOAC 1970. Official Methods of Analysis. 11th Ed. 815 p.
- Arora, G.L. and Singal, S.K. 1978. *Oryza sativa* Linn. (Paddy) as a new host-plants record of *Caryedon serratus* (Olivier) (Coleoptera: Bruchidae) from India. *Indian Journal of Entomology* 40(1): 86.
- Dadlani, M., Mathur, R., Choudhury, D., Varier, A. and Choudhury, D. 1995. Manifestation of seed vigour in sunflower hybrid under accelerated ageing. *Plant Physiology and Biochemistry* 22(1): 17-20.
- Dick, K.M. 1987. Losses caused by insects to groundnut stored in a warehouse in India. *Tropical Science* 27(2): 65-75.
- Doharey, R.B., Katiyar, R.N. and Singh, K.M. 1987. Entomological studies on pulse beetle infesting green gram. I. Studies on seed damage, weight and germination loss caused by pulse beetle in green gram, *Vigna radiata* L. Wilczek. *Bulletin of Grain Technology* 25(1): 12-16.
- Dudu, P., Lale, N.E.S. and Okiwelu, S.N. 1996. Susceptibility of three physical forms of three oil seeds to *Oryzaephilus mercator* and the effect of infestation on seed quality. *Post Harvest Biology Technology* 7(3): 277-283.
- Ghorpade, S.A., Ghule, S.L. and Thakur, S.G. 1998. Relative susceptibility of some groundnut cultivars to pod borer, *Caryedon serratus* (Ol.) in storage. *Seed Research* 26(2): 174-177.
- Jiang, T.L. and Sung, J.M. 1994. Hydration effect of lipid peroxidation and peroxide scavenging enzyme activity of artificial aged peanut seed. *Seed Science Technology* 22: 531-539.
- Kartha, A.R.S. and Sethi, A.S. 1957. A cold percolation method or rapid gravimataic estamation of oil in small quantity of oil seeds. *Indian Journal of Agriculture Science* 27: 211.
- Mital, V.P. and Khanna, S.S. 1967. A note on tamarind bruchid, *Caryedon serratus* F. (Bruchidae: Coleoptera), a serious pest of stored tamarind (*Tamarindus indica* L.) and other leguminous seeds of economic importance. *Agra University Journal Res*earch 16(2): 99-101.
- Nilsson, J.A. and Johnson, C.D. 1992. New host, Bauhina variegata L. and new locality records for Caryedon serratus (Ol.) in the new record (Coleoptera: Bruchidae: pachymerinae). Pan-Pacific Entomologist 68(1): 62-63.
- Sadasivam, S. and Manickem, A. 1992. Determination of total carbohydrate by anthrone method. In *Biochemical Methods for Agricultural Sciences*. pp. 6-7. Wiley Eastern Limit, New Delhi.
- Satyavir and Jindal, S.K. 1996. Field infestation of *Caryedon serratus* (Ol.) (Coleoptera: Bruchidae) on the pods and seeds of *Acacia nilotica* in the Thar desert of India. *Journal of Tropical Forest Science* 9(2): 189-193.

60 SUNDRIA et al.

- Singal, S.K. and Toky, O.P. 1990. Carry over of bruchid, *Caryedon serratus* (Ol.) (Coleoptera) from field to stores through seeds of *Acacia nilotica* (L.) Willd. in India. *Tropical Pest Management* 36(1): 66-67.
- Singh, D.P., Sharma, S.S. and Thapar, V.K. 1982. Biochemical changes in stored moong and mash varieties due to infestation of *Callosobruchus* maculatus F. (Coleoptera: Bruchidae). *Journal of* Research Punjab Agriculture University 19(2): 130-135
- Singh, H. 1962. Biology of *Pachyamerus chinensis* Linnaeus on different food material. *Indian Journal of Ent*omology 24: 287-289.
- Singh, Pratap and Bhandari, R.S. 1987. Insect-pests of *Acacia tortilis* in India. *Indian Forester* 113(11): 734-743.
- Vijay, D. 2000. Relationship between physiochemical parameters and the deterioration mechanism in maize and soybean seeds. *M.Sc. Thesis*, IARI, New Delhi.

Printed in April 2013