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Abstract: Assessment of soil salinization in irrigated agriculture is important for evaluation of 
the long term sustainability of agricultural production. Development of salinity in the Indira 
Gandhi Nahar Pariyojana (IGNP) stage-I irrigation command of Rajasthan is emerging as a 
serious problem. Reliable estimates of spatial distribution of soil salinity is necessary from the 
crop management point of view. Soil pH and EC (Electrical Conductivity) were measured in 
380 samples collected from various locations in the IGNP stage-I command. The data on pH 
and EC were interpolated with various semi-variogram models viz., linear, spherical, circular, 
exponential and Gaussian by ordinary kriging method. Among all the models evaluated, the 
exponential model showed the best result for the spatial variability in salinity. The semi-
variogram maps prepared can be used for the identification of soil sampling locations precisely 
while mapping at the cadastral level/large scale. The study also demonstrated the possibility 
of mapping soil salinity using ordinary kriging methods.
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The assessment of soil salinization in irrigated 
agriculture is of critical importance for the 
evaluation of soil degradation and the sustainability 
of agricultural production (Soil and Plant Analysis 
Council, 1992). Conventionally, soil salinity is 
determined by laboratory analysis (Electrical 
conductivity of the saturated soil paste extract, ECe). 
The classical soil survey methods of field sampling, 
laboratory analysis and interpolation of these field 
data for mapping, especially in large areas are 
relatively expensive and time consuming. Remote 
sensing data can be used as a tool to overcome some 
of these problems (Fagbami, 1986). Dwivedi (1992) 
used LANDSAT MSS and TM data for detailed 
mapping and monitoring of salt affected soils in 
the frame of the reconnaissance soil map of India. 
Effects of image scale on the delineation of salt-
affected soils were studied by visually interpreting 
the standard FCC prints of TM data at the 1:250000 
scale and for the same area at the 1:50000 scale, 
and refinement of the boundaries of salt affected 
soils delineated at the 1:250000 scale, was achieved. 
De Dapper and Goossens (1996) used the GIS and 
remote sensing for monitoring and predicting soil 
salinity in the Nile delta fringes of Egypt. Studies 
related to spatial variability of soil properties are 
gaining momentum. Adhikari et al. (2011) highlight 
spatial variability of EC in desert soils. Spatial 
variability of exchangeable sodium, EC, soil pH 

and boron content was studied by Ardahanlioglua 
et al. (2003) and soil properties in general including 
soil pH, organic carbon and total nitrogen for 
Ethiopian soils by Tesfahunegna et al. (2011). These 
studies used various geostatistical interpolation 
techniques and found different regions of spatial 
variability from observed data.

Creating maps typically involves sampling, 
measuring the variable of interest and estimating 
values at unsampled locations through some form 
of interpolation, plain regression, data aggregation, 
or other prediction techniques (McBratney 
et al., 2003). Geostatistics offers a collection 
of deterministic and statistical tools aimed at 
understanding and modeling spatial variability. 
Kriging provides an unbiased optimal solution 
to the problem of estimating values at unknown 
locations. 

IGNP is one of the most gigantic irrigation 
projects in the world aiming at transforming vast 
areas of desert in Rajasthan, primarily covered 
with aeolian sands and undulated terrain, into 
agriculturally productive area. Development of 
soil salinity has become the major problem in IGNP 
stage-I irrigation commands of Rajasthan. Multi 
band optical satellite data have potential to map part 
of these degraded areas rapidly. These degraded 
areas (manifested at surface) can be identified 
from IRS 1D LISS III images using digital image 
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processing. These saline soils appear dull white/
bluish white to white on satellite imagery (False 
Colour Composite). These are secondary salinized 
lands caused due to excessive irrigation, rise of 
water table, presence of inherent salts in alluvium, 
in pockets having thick zone of lime/gypsiferous 
material in sub strata and lack of adequate drainage. 
As such the EC values of such soils are >4 dS m-1 

and pH values less than 8.5. Salt affected lands are 
sometimes occurring around waterlogged areas. 
Spatial estimation and prediction of salinity is 
necessary for land evaluation in order to develop 
and determine leaching factor and the precise 
management for maximum production.

This study has been undertaken with the 
objective of mapping spatial variability in soil 
salinity in IGNP stage-I using kriging, GIS 
and remote sensing techniques. Various semi-
variogram models are also evaluated.

Materials and Methods
The study area, IGNP stage-I, lies between 

25°1’38.85” N to 29°29’52.31” N latitudes and 
72°16’22.78” E to 75°24’5.51” E longitudes, 
covering a total area of approximately 843988 ha 
(Fig. 1). The area falls under hot arid climate. The 
mean annual rainfall is 281 mm with a coefficient 
of variation of 50%. The mean maximum and 
minimum temperatures are 43.03°C and 5.05°C, 
respectively. Soils of this region are deep to very 
deep with fine to coarse texture mostly belonging 
to Entisols. Northern irrigated Ghaggar plain is 

dominated by fine and moderately fine textured 
soils. In southern rainfed zone the major soil groups 
are sandy to loamy sand at places underlained by 
lime concretion and gypsiferous substrata. The soils 
are low in nitrogen, organic carbon and phosphorus 
contents. 

IRS 1D LISS III data of 2003-04 (Zaid and 
Kharif seasons) were used for the study. Sites for 
soil sample collection were selected judiciously 
based upon spectral characteristics of the area 
over satellite image mainly during summer 
season and other ancillary information like soil 
survey report published by National Bureau of 
Soil Survey & Land Use Planning (Shyampura 
and Sehgal, 1995).

Soil samples were collected randomly from 
surface soils (0-15 cm depth) from 380 locations 
across the study area. The exact location of the 
soil samples were precisely defined in the field by 
using GPS and plotted on the map (Fig. 2). Simple 
random sampling method is more precise and less 
subject to the bias of the sampler than the judgment 
sampling method. Sampling units were selected 
randomly and independently and were irrespective 
of any judgment regarding spots previously taken 
(Pleysier, 1995; Petersen and Calvin, 1965).

Soil pH and EC were measured in the 
laboratory in 1:2 soil water suspensions (Jackson, 
1973; Rhoades and Schilfgaarde, 1976). The 
coordinates of sampling points were transferred 
onto base map and spatial variability analysis was 

Fig. 1. FCC of study area (LISS III data).
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performed to visualize the continuous surface of 
pH and EC variation. 

Kriging technique weights the surrounding 
measured values to derive a prediction for an 
unmeasured location. The general formula for this 
interpolators is formed as a weighted sum of the 
data (Pierre, 1997; Goovaerts, 1997; Oliver, 2010):

where, Z(si) = the measured value at the ith location; 
λi = an unknown weight for the measured value at 
the ith location; S0 = the prediction location; and N = 
the number of measured values.

However, with the kriging method, the 
weights are based not only on the distance between 
the measured points and the prediction locations, 
but also on the overall spatial arrangement of the 
measured points. To use the spatial arrangement 
in the weights, the spatial autocorrelation must be 
quantified. Thus, in ordinary kriging, the weight, 
λi, depends on a fitted model to the measured 
points, the distance to the location to be predicted, 
and the spatial relationships among the measured 
values around the predicted location. 

Semi-variogram modeling is a key step between 
spatial description and spatial prediction. The 
empirical semi-variogram provides information on 
the spatial autocorrelation of datasets. However, 
it does not provide information for all possible 
directions and distances. For this reason, and 
to ensure that kriging predictions have positive 
kriging variances, it is necessary to fit a model 
which is a continuous function or curve and to 
the empirical semi-variogram. Abstractly, this is 

similar to regression analysis, in which a continuous 
line or curve is fitted to the data points. Various semi-
variogram models like linear, spherical, circular, 
exponential and Gaussian were attempted. The Arc 
info and ArcGIS 9.2 softwares were used for analysis.

In this study different semi-variogram models 
were evaluated based on statistical performance 
parameters of coefficient of determination (R2) 
and mean square error (MSE). Coefficient of 
determination is the proportion of variability in a 
data set that is accounted for by a model. The MSE 
is a frequently used measure of the differences 
between values predicted by a model or an 
estimator and the values actually observed. These 
models of spatial correlation are then used along 
with kriging to develop large scale maps showing 
the spatial pattern of soil pH and soil EC status in 
the selected study area.

Results and Discussion

pH and EC variations have been mapped 
through ordinary kriging interpolation technique 
using several empirical models. However, 
variability was highlighted better through 
exponential model (Fig. 3 and 4). From these 
maps we grouped soil pH and EC variability and 
subsequently identified areas prone to salinity. 
The exchangeable sodium percentage (ESP) values 
were also examined and found below 15. Hence, 
sodicity problem is not present in this area.

EC varied from 0.05 to 19.44 dS m-1 with an 
average and standard deviation of 0.51 and 1.6443, 
respectively, across all the samples collected. The 
variation in pH was from 6.96 to 10.96, mean and 
standard deviation values were found to be 8.31 

Fig. 2. Soil sample location map of study area.
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and 0.4414, respectively. All the models showed 
a strong spatial variability in respect of pH and 
EC. All the models were evaluated based on 
statistical performance parameters of coefficient of 
determination and mean square error. Results of 
evaluation of various semi-variogram models are 
shown in Table 1. 

Results from Table 1 reveal that exponential 
model was among the best for this analysis because 
it explained maximum variability in the data set. 
For both pH and EC, coefficient of determination 
was found highest for the exponential model and 
it was lowest for Gaussian model. Mean square 
error was lowest with value of 0.1089 and 2.0252, 
respectively, for pH and EC in case of exponential 
model. Performance of Gaussian model was found 
worst with highest values of MSE. The prior 
knowledge of this salinity distribution in the area 
played a vital role in fitting the exponential model. 

From the spatial variability maps generated 
areas under various pH and EC categories were 

calculated (Table 2). Similar study of variability 
in pH and soil salinity representing horizontal 
distribution in continuous model was mapped 
earlier using appropriate interpolation techniques 
(Darwish, 1998).

Ordinary kriging method has been used in 
this study for data generated from small scale 
mapping. But for large scale or cadastral level 
mapping the spatial variability has been taken 
from above semi-variogram maps. Based on 
above maps a particular area was delineated with 
spatial variability and analyzed for detailed soil 

Fig. 3. pH variation mapped through ordinary kriging interpolation method using exponential 
model.

Table 1. Coefficient of determination (R2) and mean square 
error (MSE) for different semi-variogram models

Model pH EC
R2 MSE R2 MSE

Linear 0.404 0.1193 0.227 2.1957
Spherical 0.428 0.1154 0.268 2.1226
Exponential 0.468 0.1089 0.326 2.0252
Gaussian 0.288 0.1395 0.062 2.5682
Circular 0.433 0.1146 0.246 2.1680

Fig. 4. EC variation mapped through ordinary kriging interpolation method using exponential 
model.
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properties. This variogram can also be used in 
small study areas to identify the locations very 
accurately by spatial and geo statistical methods. 
The semi-variograms showed the zones of higher 
variability which indirectly helped in identification 
of soil sample locations precisely. Therefore, the 
kriging outputs (semi-variogram maps) are very 
much useful for mapping spatial variability in 
large scale/cadastral level.
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Table 2. Area under different pH and EC values 

pH range Area (ha) EC range Area (ha)
7.8-8.2 196326 0.1-0.5 649477
8.3-8.4 302629 0.5-1.0 40875
8.5-8.6 208446 1.0-1.5 63256
8.7-8.9 109418 1.5-2.0 60097
9.0-9.4 27169 2.1-2.5 21609

2.6-3.0 6102
3.1-3.5 2229
3.6-4.0 343

Total 843988 Total 843988


