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Abstract: Livestock grazing changes landscape functionality, nutrient availability and
soil structure, and surface conditions in dryland rangelands. A piosphere is a zone of
interaction among vegetation, watering point and livestock. This study uses landscape
and soil indicators to evaluate the condition of the soil surface in Lajaneh piosphere,
Shahrood, Iran. Lajaneh is in an arid region, with predominant land cover of Zygophyllum
eurypterum, and grazed by camels, goats and sheep. We used landscape function analysis
(LFA) and trigger-transfer-reserve-pulse (TTRP) to derive eleven soil surface indicators
which were measured and combined to calculate the three indices of infiltration, stability
and nutrient cycling. One-way ANOVA and Tukey’s post hoc tests were used to find
the differences in infiltration, stability and nutrient cycling indicators among three
distances 10, 100 and 1000 m. Significant differences were found in infiltration, stability
and nutrient cycling among at 10 m, 100 m and 1000 m from watering point. The three
indices of nutrient cycling, infiltration and stability increased with increasing distance
from watering point. Our study showed the importance of vegetation patches and
runoff/runon processes in soil surface condition, and showed the results of grazing
pressure on soil health centered on the “sacrifice zone” closest to the watering point
and decreasing with distance. We show that the LFA method is an effective measure
for monitoring soil surface health around watering points and piosphere, balancing the

feedbacks and offtakes based on the condition of soil surface indices.
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Water controls the growth and vitality of
plant and animal species in arid zones. Where
mineral (salt) licks and water are supplied in
rangelands in arid zones, the distribution of
livestock is changed and this makes the mineral
block sites and watering holes foci of livestock
congregation (Danckwerts et al., 1993). Osborn
et al. (1932) in Australia and Valentine (1947)
in the Chihuahuan Desert, USA were the first
researchers who reported grazing intensity
around watering point. Lange (1969) completed
his research on sheep track and dung patterns
on Lincoln Gap Station, west of Port Augusta,
South Awustralia and introduced the term
piosphere: a combination of livestock, watering
point and grazing lands. Pios in Greek means
“to drink” (Lange, 1969). Patterns of soil and
vegetation disturbance around piospheres will
show evidence of localized pressure on soil and
plant species (Heshmati et al., 2002). Intensive
grazing in arid lands kills plant species, erodes
soil nutrients and increases the rate of soil
erosion (Eze et al., 2018; Parsons et al., 2017).
Piosphere-associated grazing changes the size

*E-mail: eshahriary@miners.utep.edu

of vegetation patches and density (Havstad et
al., 2017; Jawuoro et al., 2017), height (Shahriary
et al., 2012), tree-grass ratio (Thrash and Derry,
1999) and sex ratio of shrubs (Graetz, 1976,
1978).

Ludwig and Tongway (1997, 2000)
introduced a Trigger-Transfer-Reserve-Pulse
(TTRP) framework to show the landscape
function of arid land soil and vegetation in
response to water and erosion (Fig. 1). Rainfall
and wind trigger the erosion and transfer
resources such as litter, water and seed from
the bare patch/interpatch to a vegetation patch
(sink). Thus begins a pulse of growth in the
vegetation patch, improving the function and
structure of the landscape. Fire and grazing
remove pulse production from landscape and
vegetation patches are not able to capture the
resources (Ludwig, 2005). Ludwig et al. (1999)
and Ludwig and Tongway (2000) stated that
when landscape losses and input are equivalent,
it can be maintained in balance.

In the present work, we aim to study
landscape functionality by using landscape
function analysis (LFA) (Tongway and Hindley,
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Fig. 1. Trigger-transfer-reserve-pulse (TTRP) framework
(Ludwig and Tongway, 1997, 2000) (John A. Ludwig,
Disturbances and landscapes: The little things count. In John
A. Wiens, Michael R. Moss (Eds.), pp. 42-51. Issues and
Perspectives in Landscape Ecology © Cambridge University
Press 2005).
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2004) at the Lajaneh piosphere in the arid
climate zone of Shahrood, Semnan province,
Iran (Shahriary et al., 2012). A companion study
(Shahriary et al., 2018) has also been conducted
at the Mojen piosphere in the steppe zone of
Iran.

Landscape function analysis (LFA) methods
combine eleven soil surface indicators (Tongway,

SHAHRIARY et al.

2010) and provide three indices of stability,
nutrient cycling and infiltration (Tongway and
Hindley, 2004). The index of stability indicates
the soil resistance to erosion and its potential
to recover after disturbance. The index of
infiltration indicates the runoff lost and water
availability for vegetation and the index of
nutrient cycling indicates the decomposition of
organic matter. We aim to assess the landscape
functionality along transects radial to watering
points using eleven soil surface indicators and
calculation of three indices of stability, nutrient
cycling and infiltration.

Materials and Methods

The location of the study was in Lajaneh,
in an arid-climate zone of Semnan province,
northeast Iran (55°01'30”E, 36°10'30”N) (Fig.
2). Lajaneh has a mean annual precipitation
of 973 mm. The maximum temperature
recorded in this region is 42°C in June and
the minimum temperature is - 8.4°C in
December. The primary plant cover is of
the species Zygophyllum eurypterum. Other
vegetation species in this region are Salsola
vermiculata, Tamarix aphylla, Peganum harmala,
Alhaji camelorum and Atraphaxis spinose. The
vegetation in this arid region is under grazing
by camel, goat and sheep.
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Fig. 2. Location of Lajaneh, Iran, where data collected around the watering point.
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Fig. 3. Combination of the scores of 11 soil surface condition
indicators to calculate stability, infiltration and nutrient
cycling indices (Copyright © CSIRO Australia) (Tongway
and Hindley, 2004).

The area around the Lajaneh watering point
was classified into three different distances
10 m, 100 m and 1000 m. Eleven soil surface
condition indicators (Fig. 3) for LFA were
measured at five replicates of Zygophyllum
patches and interpatches using 50 m transects
(Fig. 4) according to the guidelines of soil
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surface assessment method (Tongway and
Hindley, 2004). Each soil surface condition
indicator shows the condition of processes
at soil surface (Tongway and Hindley, 2004).
Eleven soil surface condition indicators
combined to derive three indices of stability,
infiltration and nutrient cycling with a Microsoft
Excel worksheet (Landscape Function data
entry V3.0) developed by CSIRO Sustainable
Ecosystems (2003). One-way ANOVA (P <0.05)
and Tukey’s post hoc tests (Quinn and Keough,
2002) were used to find the differences in
infiltration, stability and nutrient cycling among
three distances 10, 100 and 1000 m using AOV
and HSD test functions and agricolae package
[version 1.2-8 (de Mendiburu, 2012)] in the R
software (R Core Team, 2018).

Results and Discussion

The stability, infiltration and nutrient
cycling indices of Zygophyllum patches and
interpatches improved with increase in
distance from watering points (Table 1). We
found statistically significant differences in
each index; stability, infiltration and nutrient
cycling, among the three distances 10, 100 and
1000 m (P<0.05) (Table 1). Grazing intensity
caused the significant differences in infiltration
indices, for example indices in Zygophyllum
patches at 10, 100 and 1000 m from watering
point were 22, 24 and 46 and in interpatches
16, 20 and 25, respectively.
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Fig. 4. Illustration of transect for LEA monitoring, showing patches and interpatches (from Restoring
Disturbed Landscapes by David ]. Tongway and John A. Ludwig. Copyright © 2011 by the authors.
Reproduced by permission of Island Press, Washington, DC) (Tongway and Ludwig, 2011).
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Grazing intensity has an inverse relationship
with soil infiltration rate (Gross et al., 2015;
Kneller et al., 2018). The “sacrifice area”
immediately around the watering point is
highly overgrazed, resulting in trampling, loss
of vegetation and soil disturbance (Graetz and
Ludwig, 1976, Travers et al., 2018). Intensive
grazing around watering points removes the
protective cover of vegetation and compacts
the soil surface (Evans, 1998). Intensive grazing
decreases water infiltration and vegetation
production pulses and increases water and wind
erosion (Fynn et al., 2017; Santos et al., 2017;
Erickson, 2017; Li et al., 2017; Magliano et al.,
2017; Gaitan et al., 2017). Cox and Amador
(2018) and Concostrina-Zubiri et al. (2017)
found a significant relationship between the
grazing gradient along the watering point and
soil infiltration.

Decrease in patch length, density and
width reduces the resources capturing and
intensifies the rate of erosion (Frank et al., 2018;
Peri et al., 2017). Overgrazing in the sacrifice
area adjacent to the watering point prevents
production pulses. The indices of stability of
Zygophyllum patches were 44 (10 m distance),
47 (100 m distance) and 50 (1000 m distance)
and in interpatches were 33 (10 m distance),
41 (100 m distance) and 48 (1000 m distance)
(Table 1). The Zygophyllum patches act as sinks,
capturing water and nutrients and entrapping
materials from sources resulting in areas with
high grazing pressure depicted as Fig. 5a.

Table 1. Soil surface condition indices, stability, infiltration
and nutrient cycling along watering point in arid
zone Lajaneh (Mean + SD)

Soil surface Distance Zygophyllum Interpatch

condition (m) patch
indices
Stability 10 44+015c 33+029c
100 47+036b 41+0.18b
1000 50+0.18a 48+030a
Infiltration 10 22+0.73c 16+039c
100 24+041b 20+034b
1000 46+0.14a 25+096a
Nutrient cycling 10 8+014c 7+038c¢
100  11+£029b 10+£020Db
1000 39+011a 14+0.26a

Means of Indices in each columns with different letters
are statistically different according to a Tukey’s means
separation test (P<0.05).

Nutrient cycling condition index of
Zygophyllum patches at 10 m from the watering
point was 8, 11 at 100 m and 39 at 1000 m
distance. In interpatches the nutrient cycling
condition index was 7 (10 m distance), 10
(100 m distance) and 14 (1000 m distance).
Intensive overgrazing in the area close to
watering point (sacrifice area) reduces the litter
decomposition, nutrient cycling and biological
crusts (Whitney ef al., 2017). Areas under high
intensity grazing lose their resources to areas
under low intensity grazing, giving them
low vegetation cover and lower soil surface
condition indices. Ludwig and Tongway (2000)
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Fig. 5. The role

of livestock grazing in the balance between feedbacks and off-takes in arid zone Lajaneh

(a) high offtakes - low feedbacks, (b)low offtakes - high feedbacks and (c) balanced (Copyright © CSIRO Australia)
(modified after Ludwig and Freudenberger, 1997).
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termed this process as the reversed Robin Hood
effect (takes from poor and gives to the rich).
Decreases in length, density and width of
vegetation patches and biological crusts shows
the high grazing pressure and dysfunctional
landscape (Fernandes et al., 2018; Abdalla et
al., 2018) (Fig. 5a).

Heavy grazing can eradicate plant species
(Shahriary et al., 2012) and decreases the length,
width and number of vegetation patches (Abedi
et al., 2007). A poorly functioning landscape
loses its resources; water, nutrients and seeds
(Ludwig and Tongway, 1997, Arzani et al.,
2007). The extreme soil disturbance “sacrifice
area” around the watering point indicates that
livestock spent more time in the vicinity of
water, compacting soil and eventually affecting
soil surface indices, so stability, infiltration
and nutrient cycling are the lowest for the
Zygophyllum patches and interpatches close
to watering point (Table 1). Severe grazing
removes plant species and litter, so that seeds
and water cannot be trapped in vegetation
patches consequently pulses of production
and replacement do not occur. Subsequently,
soil erosion occurs and the landscape will be
in a degraded condition (Nadal-Romero et al.,
2018; Wilson et al., 2018; Fig. 5a). An opposite
condition is illustrated at the greater distance:
vegetation patches trap resources from water
and wind erosion (Hille et al., 2018) and act
as habitats if feedbacks enrich them (Fig. 5b).
Higher vegetation cover protects the soil from
the action of wind and water and increase the
rate of infiltration: at the Lajaneh piosphere,
this is indicated by the index of infiltration of
46 for the Zygophyllum patch at the distance of
1000 m from watering point.

Our results are in accordance with those of
previous studies such as those of Hille et al.
(2018) and Gaitan et al. (2017), demonstrating
that LFA is an easily applied method to study
landscape functionality in arid and semi-arid
rangelands and demonstrate potential land
degradation. Our LFA analysis of the Lajaneh
piosphere system demonstrated the meaningful
role of grazing in arid and semi-arid rangeland
landscapes especially along watering points
and also suggested the importance of vegetation
patches and runoff/runon processes on the soil
surface condition of piospheres.

Livestock grazing changes the cover of
plant species and patch size around watering
points, as shown worldwide in the examples of
the Nama-Karoo shrublands of Africa (Todd,
2006), Victoria River District of northern
Australia (Ludwig et al., 1999) and semi-arid
rangelands of Argentina (Peldez et al., 2017).
Our findings at the Lajaneh piosphere are in
agreement with these other studies: differences
in soil surface condition indices were shown
at different distances from the piosphere and
Zygophyllum patches and interpatches showed
the role of livestock grazing. Severe grazing
degraded the ‘sacrifice area” and the part of the
landscape closest to water. A companion study
at the Mojen piosphere, Iran with a different
vegetation community and slightly different
grazing conditions reported similar (Shahiary
et al., 2018).

Sustainable land management needs soil and
water conservation (Hruska et al., 2017) and it is
difficult to replace these resources when severe
erosion and resource leakage occur (Briske et
al., 2005; Chartier and Rostagno, 2006). Soil
and water conservation is always preferred
for restoring a degraded landscape. Improving
landscape and ecosystem health in arid and
semi-arid grazing lands through development
of the vegetation patches and trapping of the
resources is recommended (Wilson et al., 2018;
Favretto et al., 2016). In piospheres, provision of
new watering points and grazing practices will
be important landscape restoration practices if
land managers aim for the pulses of growth
and regulated transfer and reserve processes
to work effectively (Bean et al, 2017). We
recommend land managers should monitor
watering points using LFA methodology and
balance the offtakes and feedbacks (Fig. 5c)
based on the condition of soil surface indices to
maintain the health and stability of piosphere
systems.
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