On the Pattern of Salmonella Serotypes in Fishery Products, Froglegs and Processing Environments*

T. S. GOPALAKRISHNA IYER

Central Institute of Fisheries Technology, Cochin-682 029

and

K. P. SHRIVASTAVA

Export Inspection Agency-Delhi, New Delhi-110 006

Thirty four different serotypes of Salmonella have been isolated from aquatic products. The number of serotypes from frozen froglegs were 22. Only four serotypes were isolated from frozen shrimps. S. weltevreden predominates in frozen shrimps and fish. S. roan and S. larochelle were isolated for the first time in India. Isolation of six rare serotypes of Salmonella has also been reported.

Over 2000 Salmonella serotypes are known to-day and every year new serotypes are being added to the list. However, comparatively fewer number of serotypes only are encountered in any particular country. The National Salmonella and Escherichia Centre, Kasauli has reported the occurrence of 161 serotypes of Salmonella in India (Saxena, 1987 personal communication). The strains figured in this report were mostly isolated from human being, animals, water and sewage. Sharma et al. (1974), Rao & Nandy (1976), Andrews et al. (1977) and Rajagopalan (1978) have carried out brief studies on Salmonella serotypes in froglegs. But, no detailed study has so far been carried out anywhere on the pattern of occurrence of Salmonella serotypes in fishery products even though serological classification has been generally found to be useful in identifying the sources of contamination of processed products with Salmonella. Detailed studies were, therefore, carried out on the incidence of Salmonella pattern in fresh and frozen fishery products, froglegs and processing environ-ments. The results of the study are presented in this paper.

Materials and Methods

Samples of the different fishery products (except fresh fish samples and dried jawala

prawns) were collected from the processing factories situated at Cochin. The fresh fish samples and the dried jawala prawns were from the retail fish markets in Bombay. In addition, a few swab samples from fish contact surfaces, water and ice were also collected from the factories at Cochin. Details showing the number of samples from different sources are as follows:

Source	No. of samples
Frozen shrimps (Headless shell-on) Frozen shrimps (peeled & deveined) Frozen shrimps (peeled undeveined) Frozen shrimps (Cooked and peeled) Frozen lobsters (Headless shell-on) Frozen cuttle fish Frozen squids Frozen red snapper Frozen cat fish Frozen seer fish Frozen froglegs Dried jawala prawns Utensils Floor Worker's palm Water	130 150 100 100 133 50 30 1 8 40 120 150 25 150 50
Ice Raw shrimps	120
Raw fish	10
Raw lobsters	2
Raw froglegs	10

^{*} Formed part of the Ph.D. thesis of the first author approved by the University of Kerala.

Fish meal	80
Poultry feed containing fish meal	1
Sea-beach sand	20

Fishery products and the sea beach samples were collected in sterile containers. The swabs from contact surfaces were separately collected in 100 ml of lactose broth. Water and ice were collected in sterile bottles. The samples were transported to the laboraunder aseptic conditions. During transportation, the samples were kept cooled using crushed ice kept out of contact with the samples. In the laboratory, the samples were analysed for the presence of Salmonella as per the method recommended by AOAC (1975). The number of Salmonella strains isolated from different sources were as follows:

_ *	
Frozen froglegs	165
Frozen shrimps	38
Frozen fish	30
Frozen lobsters	12
Raw froglegs	14
Raw shrimps	7
Raw fish	50
Raw lobsters	9
Fish meal	1
Poultry feed containing fish meal	7
Dried jawala prawn	7
Utensils	3
Floor of processing hall	5
Water	1
Sea beach sand	9

The isolated strains were serotyped at the National Salmonella and Escherichia Centre at Kasauli (India) following the methods of Edwards & Ewing (1972) and Cowan (1972).

Total

358

Results and Discussion

The salmonella serotypes isolated from different fishery products and related sources are given in Table 1. Thirty four different serotypes were isolated from these sources. The number of serotypes isolated from frozen froglegs were higher (22) compared to the number of isolates from other sources. Only four serotypes (S. weltevreden, S. bareilly, S. orion and S. virchow) were isolated from frozen shrimps. Eleven different

serotypes were isolated from fresh fishes while six serotypes were isolated from frozen fish. The serotypes isolated from miscellaneous sources were 8; these included isolates from utensils, floor, water, sea-beach sand, raw froglegs, dried prawns, fish meal and poultry feed containing fish meal.

Normally, the incidence of Salmonella in marine fish and shellfish is the result of contamination from the unhygienic surroundings in which they are handled and processed. In the case of froglegs, on the other hand, it is due to contamination from its own intestine which is known to inhabit Salmonella (Iyer et al., 1975). Recent studies have indicated the presence of a wide variety of Salmonella serotypes in the intestine of frogs (Sharma & Garg, 1976; Rajagopalan, 1978). Frogs are collected from paddy fields, canals, roadsides and similar habitats which are likely to get contaminated with sewage and faecal matter. Therefore, it is likely that the serotypes usually isolated from man and animals are isolated from frogs also. Saxena et al. (1983) have reported that, in India, S. typhimurium, S. bareilly and S. saintpaul are the most common serotypes isolated from human stool and that S. saintpaul and S. typhimurium are the dominating serotypes in animals and sewage respectively. Thus, the isolation of S. typhimurium, S. saintpaul and S. bareilly from frogs' intestine (Sharma & Garg, 1976; Rajagopalan, 1978) and from frozen froglegs in the present study are quite expected. S. arizonae was one of the major serotypes isolated from frozen froglegs (Table 1). S. arizonae has also been isolated by Sharma et al. (1974), Rao & Nandy (1976), Andrews et al. (1977) and Rajagopalan (1978) from frozen froglegs. S. arizonae is of reptile origin (Rowe, 1973) and as frogs live in almost the same natural habitats as that of reptiles, the isolation of this serotype from frozen froglegs is not unexpected. Plows et al. (1968) reported S. arizonae as the causative agent of gastroenteritis in Britain.

S. weltevreden was the dominating serotype in frozen shrimps, fresh fish, frozen fish, fresh lobsters and frozen lobsters (Table 1). In the case of fish and shrimps contamination with salmonellae appears to be mostly due to unhygienic handling practices. S. weltevreden was isolated from the floor of the processing hall and from the utensils used in the processing factories (Table 1). Thus, it is likely that the floor and the utensils might have caused contamination of fish and shrimps with S. weltevreden. As rodents and wall lizards were seen in some of the processing units, it could be assumed that the utensils used in the processing units might have got contaminated from the droppings of rodents and wall lizards. In India, S. weltevreden has often been isolated from the intestinal contents of wall lizards (Kaura & Singh, 1968; Gupta et al., 1980) and rodents (Kaura & Singh, 1968). Moreover, S. weltevreden has frequently been isolated from natural water sources (Basu et al., 1975) also. It is, therefore, evident that S. weltevreden is usually present in the environment where fish, shrimps and lobsters are handled. Basu et al. (1975) have reported that, in India, infections due to S. weltevreden have increased both in man and animals after 1970.

The isolation of S. larochelle (6, 7 eh: 1,2) and S. roan 38, lv: enx (Table 1) have not been reported previously from any source in India. Later, 8 more isolations of S. larochelle were made in India and all these were from human sources: five from stool and three from urine (Saxena et al., 1983). The role of S. larochelle in human salmonellosis is thus evident. The isolation of S. cubana, S. waycross, S. stanley, S. paratyphi B and S. heidelberg is reported for first time in frozen froglegs. \hat{S} . heidelberg has rarely been isolated in India and only two isolations have been made previously - both from human sources (Saxena et al., 1983). In India, till 1962, S. cubana had been isolated from human sources only. Later, a few isolations of this serotype were made from animals also, but still isolations from human sources predominate (Saxena et al., 1984). S. waycross, isolated from frozen froglegs, is also a rare serotype and only one strain has, so far, been isolated in this country (Saxena et al., 1980). This serotype has not been isolated from human sources. Saxena et al. (1983) have reported the isolation of this serotype from the intestines of frogs and therefore, contamination of froglegs from this source is quite possible. In India, S. saintpaul and S. bareilly have been isolated from many sources like human,

cattle, pig, poultry, frog's intestine, laboratory animals, water and sewage (Saxena et al., 1983). The wide distribution of these serotypes explains their presence in many of the products tested in the present study. Amongst the various serotypes isolated in India, S. bareilly and S. saintpaul occupy the 3rd and 4th position in the order of predominance (Saxena et al., 1984). S. bareilly has been isolated from the floor of the processing hall (Table 1). Ghosh et al. (1960) have reported an outbreak of food poisoning in Calcutta (India) due to S. newport. S. newport, S. chingola, S. anatum and S. bredeney have been isolated from frozen froglegs only (Table 1). In India, all these serotypes have been isolated from natural waters and sewage (Saxena et al., 1983). Two strains of S. poona have been isolated in the present study, one each from frozen fish and raw shrimps. In India, S. poona has been isolated from human sources only (Saxena et al., 1988). Contamination of seafoods with S. poona from human sources is, therefore, suspected. S. typhimurium was isolated from one sample of water used for shrimp processing. In India, though S. typhimurium has frequently been isolated from natural waters and sewage (Saxena et al., 1983), there is no previous record of isolation of this serotype from the water used by the seafood industry. As bird's droppings were seen inside the overhead watertank, contamination from this water source is quite likely.

In the present study, S. alachua, S. muenchen and S. eastbourne were isolated from raw fish. As per the report of the Centres for Disease Control (1981) of the U.S., S. alachua is to be classified as an uncommon and rare serotype. In India, this serotype was first isolated at Bombay by Das and Jayaraman (1955) from fowls. Dewan et al. (1976) have reported the isolation of S. alachua from sewage and water sources in India. Till recently, this serotype was thought to be mainly confined to animal But, Chaudhuri et al., (1978) sources. reported the isolation of S. alachua from human sources and pointed out its association with clinical morbidity and mortality.

According to the latest compilation on the pattern of the occurrence of Salmonella in India, S. muenchen has not been isolated from human sources in this country whereas

Table 1. Salmonella serotypes isolated from different fishery products and related sources

Serotype	Frozen froglegs	Raw fish	Nu Frozen fish	mber of s Raw shrimps	strains iso Frozen shrimps	Raw	Frozen lobsters	Other
S. tyhimurium S. arizonae S. roan* S. saintpaul S. bareilly S. newport S. anatum S. bredeney S. matopeni** S. chester S. nchanga** S. chingola** S. hvittingfoss S. heidelberg** S. waycross** S. stanley S. richmond S. salford S. virchow S. larochelle* Rough strain S. cubana S. senftenberg S. orion** S. weltevreden S. poona S. paratyphi B S. ohio S. muenchen S. alachva S. eastbourne** S. oranienberg S. subgenus III S. enteritidis	26 (15.7) 20 (12.1) 18 (11.0) 12 (7.2) 11 (6.6) 11 (6.6) 10 (6.1) 6 (3.6) 6 (3.6) 5 (3.1) 5 (3.1) 5 (3.1) 5 (3.1) 5 (3.1) 5 (3.1) 2 (1.2) 2 (1.2) 2 (1.2) 1 (0.6) — — — — — — — — — — — — — — — — — — —	2 (4)	3 (10) 2 (2.6)	1 (14.2) 1 (14.2) 1 (14.2) 1 (14.2) 2 (29) 1 (14.2) 34 1 (14.2) 34 1 (14.2)	2 (5.2)	1 (11)	1 (8.3)	2ª (4.2) 6b (12.7) 2c (4.2) 16d (34.5)
~. U101U1 111U110								. (2110)

^{*} Isolated for the first time in India; ** Rarely isolated serotype in India.

Figures in parenthesis indicate the percentage occurrence of the corresponding serotype amongst the total number of Salmonella strains isolated from the respective source.

- 2a one strain from water and one strain from floor
 6b all the strains are from raw floglegs
- 2° both the strains are from raw froglegs
- 16d six strains from poultry feed, three strains from floor and seven strains from sea-beach sand
 - 1e from raw froglegs

- 6f— one strain from floor, three strains from nutensils, and two strains from sea-beach sand
- 7g— five strains from raw FL, one strains from fish meal and one strain from poultry feed
- 7h— all strains are from dried jawala prawns

31 strains have been isolated from animals (Saxena et al., 1980). In the U.S., on the other hand, S. muenchen, in 1978, occupied 14th position in the list of the 20 most frequently reported Salmonella serotypes from human sources (Centres for Disease Control, 1981). Morris et al. (1970) reported S. muenchen as one of the serotypes commonly isolated from fish meal during 1962-64. In Iraq, Nassir Al Hindawi et al. (1979) have reported the presence of S. muenchen in 2 out of the 30 fish powder samples analysed by them. In the U.S., S. muenchen is seldom reported to be present in estuary waters and shell fish (Metcalf et al., 1973). In Australia, S. muenchen was one amongst the more frequently isolated strains from the cases of human salmonellosis during 1967-71 (Suttoon, 1973). An epidemic among infants caused by S. muenchen has been reported by Silverstolpe et al. (1961). Thus the pathogenic role of S. muenchen is quite evident.

S. eastbourne is a rarely isolated serotype in India, as only 5 strains of this serotype have so far been isolated in the country within a period of 24 years (Iyer, 1985). 4 strains have been isolated from sewage in Nagpur and one was isolated from frozen shrimps in Madras. There is no previous record of isolation of this serotype from fin fish. In the U.S. also, this serotype has been classified as an uncommon and rare serotype (Centres for Disease Control, 1981).

References

- Andrews, W. H., Wilson, C. R., Poelma, P. L. & Romero, A. (1977) Appl. Environ. Microbiol., 33, 65
- AOAC (1975) Official Methods of Analysis (Horwitz, W., Ed.) 12th edn., Association of Official Analytical Chemists, Washington
- Basu, S., Dewan, M.L. & Suri, J.C. (1975) Ind. J. Med. Res. 62, 1489
- Centres for Disease Control, U.S.A. (1981) Salmonella Surveillance Annual Summary 1978 (Issued in 1981) U.S. Department of Health and Human Services

- Chaudhuri, A.B., Ghosal, S.P. & Dutta, N. (1978) Indian J. Pathol. Microbiol. 21, 45
- Cowan, S.T. (1972) Cowan and Steel's Manual for the Identification of Medical Bacteria. Cambridge University Press, Cambridge
- Das, M.S. & Jayaraman, M.S. (1955) Poultry Science, 34, 1048
- Dewan, M.L., Basu, S. & Singh, H. (1976) Indian J. Med. Res. 64, 847
- Edwards, P.R. & Ewing, W.H. (1972) *Identification of Enterobacteriaceas*. 3rd edn., Burgess Publishing Company, Minneapolis
- Ghosh, R.H., Ghosh, D.N., Lahari, M.N. & Battacharji, L. M. (1960) *Indian J. Publ. Hlth.* 4, 61
- Gupta, S.R., Pal, S.C. & Narula, A.S. (1980) J. Com. Dis. 12, 148
- Iyer, T.S.G., Joseph, A.C. & Mathen, C. (1975) Proc. Symp. Fish Processing Industry in India, p. 147, CFTRI, Mysore
- Iyer, T.S.G. (1985) in Harvest and Postharvest Technology of Fish (Ravindran, K., Nair, N.U.K., Perigreen, P.A., Madhavan, P., Gopalakrishna Pillai, A.G. & Mary Thomas, Eds), p. 485, Society of Fisheries Technologists (India) Cochin
- Kawra, Y.K. & Singh, I.P. (1968) J. Med. Res. 56, 1174
- Mctcalf, T.G., Slanetz, L.W. & Bartley, C.M. (1973) in *Microbial Safety of Fishery Products* (Chichester, & C.O. Graham, H.D., Eds), p. 215, Academic Press, New York
- Morris, G.K., Martin, W.T., Shelton, W.H., Wells, J.G. & Brachman, P.S.(1970) Appl. Microbiol., 19, 401
- Nassir Al-Hindawi & Rihab, R. Taha (1979) Appl. Environ. Microbiol. 37, 676

- Plows, C.D., Fretwell, G. & Parry, W.H. (1968) J. Hyg. 66, 109
- Rajagopalan, D. (1978) A Study of Salmonella Strains from Processed Froglegs.
 M.Sc. thesis, University of Bombay
- Rao, M. & Nandy, S.C. (1976) *Indian J. Microbiol.*, 16, 120
- Rowe, B. (1973) in *The Microbiological Safety of Food* (Hobbs, B.C. & Christian, J.H.B., Eds) p. 165, Academic Press, London
- Saxena, S.N., Ahuja, S., Mago, M.L. & Singh, S.M. (1980) *Ind. J. Med. Res.* 72, 159
- Saxena, S.N., Mago, M.L., Bhau, I.N.R., Ahuja, S. & Singh, H. (1983) *Indian J. Med. Res.*, 77, 10

- Saxena, S.N., Jayasheela, M. & Mago, M.L. (1984) Proceedings ICMR/CRI National Workshop on Identification of Salmonella and E. coli Strains and Preparation of Diagnostic Sora, May-June, 1984
- Sharma, V.K. & Garg, D.N. (1976) Frogs as Natural Reservoirs of Salmonella, Paper presented at the annual meeting of the Association of Microbiologists of India at Manipal in 1976
- Sharma, V.K., Kaura, Y.K. & Singh, I.P. (1974) Antonie Van Leeuwenhock, 40, 17
- Silvarstolpe, L., Plazikoski, U., Kjellander, J. & Vahlne, G. (1961) J. Appl. Bact., 26, 134
- Sutton, R.G.A. (1973) in *The Microbiological Safety of Food* (Hobbs, S.C. & Christian, J.H.S., Eds) p. 153 Academic Press, London