Functional Properties of Fish Proteins: A Review

T.V. Sankar

Central Institute of Fisheries Technology Cochin - 682 029

Proteins possess a number of physiochemical characteristics which facilitates their varied food applications. Proteins exhibit a wide range of functionality and versatility during processing. Functional properties of proteins are mainly due to its interaction with other components within the food system. The structure of protein is highly dependent upon the environment and protein assumes different conformations depending upon the conditions of exposure. The surface hydrophobicity plays a major role in the functional properties of a protein and changes in the inherent characteristics influence protein structure which have profound influence on the functional properties of the protein.

Key words: Proteins, Functional properties, surface hydrophobicity

Proteins are endowed with a number of physiochemical characteristics, which make them suitable for varied food applications. Cells synthesize proteins by transcription from RNA sequences. When proteins are transcribed they start out as linear sequences of amino acids. Because these amino acids have varied electrostatic and mechanical properties, they fold up into a threedimensional structure, which gives the protein its functionality, both physiologically and in food applications. The intrinsic properties like amino acid composition, amino acid sequence, conformation, size, charge and intermolecular bonding are some of the important factors that determine the functional properties of a protein (Kinsella, 1976; Damodaran, 1994). The total hydrophobicity of protein molecule also plays a crucial role in determining the functional properties. (Davis et al., 1973; Horiuchi & Fukushima, 1978; Shimada & Matsushita, 1980).

Proteins exhibit a wide range of functionality and versatility during processing. Protein manifest these functionality by interacting with other components within the food involving solvent molecules, other protein molecules or substances that are dispersed in the solvent such as oil or air. Generally, proteins exist in the lowest

kinetically attainable state of free energy. The structure of protein and its different conformations depend upon the environmental conditions namely pH, temperature, dielectric constant, ionic strength, presence of other molecules including air, fat, denaturants, etc. Proteins lower the free energy through removal of hydrophobic groups from its surface. The hydrophobic bonds are very sensitive to changes in temperature and dielectric constant and therefore changes in these parameters influence protein structure.

Fish proteins are unique in nature and exhibit high degree of functional properties. Functional properties can be defined as those physico-chemical properties, which affect the processing and behavior of proteins in the food system as judged by the final quality of the product (Kinsella, 1981). Based on solubility, fish proteins are classified as myofibrillar proteins (65-75%), sarcoplasmic or enzymic proteins (20-30%) and stroma or connective tissue proteins (1-3%). The functional and textural characteristics of meat depend mainly on myofibrillar protein, (Goll et al., 1977) the protein associated with the muscle structure. For successful utilization of fish proteins in food applications, protein should ideally possess certain functional properties, which in turn is related to the composition and structure of protein and 88 SANKAR

their interaction with other substances present in the food (Colmenero & Borderias, 1983).

Protein solubility

Solubility is considered important for a protein to exhibit its functional properties (Kinsella, 1984; Kinsella & Whitehead, 1989). It is the quantity of protein that goes in to solution under specified conditions (Xiong, 1997) and is influenced by amino acid composition and sequence, conformation and the content of polar and non polar groups of amino acids in the protein (Zayas, 1997). The 3-D configuration of protein is arranged with maximum hydrophilic surfaces so as to have minimum free energy. Changes in protein solubility give direct evidence of the conformational changes of protein. Studies in L.lenjan and R. kanagurta showed increased protein extraction with increase in ionic strength up to 0.8 (Devi, 2006). Extreme pH conditions (pH 2 and 12) were also found to influence muscle protein solubility at least 5 times in comparison with extracts at pH 6-7 in M. cephalus (Mohan et al., 2007). At pH above or below the isoelectric point, the protein acquires net negative or positive charges making them more hydrophilic exhibiting protein-solvent interaction than protein-protein interaction thus increasing protein solubility (Hamm, 1960). Howgate and Ahmed (1972) suggested that insolubility of muscle protein during heat treatment is related to the formation of inter and intra molecular links. During protein denaturation, the secondary and tertiary structure of proteins get altered due to breakage of both covalent and noncovalent interactions stabilizing the protein structure (Ngarize et al., 2004).

The biochemical and biophysical changes taking place during the development of *rigor mortis* influence significantly the functional properties of muscle proteins. Significantly higher protein content, enhanced gel forming ability and extractability are associated with pre-rigor tilapia (Park *et al.*, 1990). The post mortem drop in pH of

the fish and the ensuing strong association of myosin and actins facilitate the solubility, which is markedly affected by temperature and duration of storage of the fish (Busch et al., 1967; Chaudrary et al., 1969; Shenouda, 1980; Reddy & Srikar, 1993). With increase in temperature the solubility decreases showing an inverse relation (Seki et al., 1979; Kamal et al., 1990). Alterations in solubility and functional properties have been observed during storage of fish in ice (Sarma et al, 1999; Parthiaban et al, 2005) and during frozen storage (Sarma et al., 2000; Reynolds et al., 2002). As the length of storage increases the solubility characteristics of the protein are altered and the content of both water soluble and salt soluble proteins has been decreased (Devadasan & Nair, 1971; Crupkin et al., 1979; Reddy & Srikar, 1993; Parthiban et al, 2005). Pre processing conditions (Reddy & Srikar, 1991) freezing rate and storage temperature (Doong, 1988; Jiang et al., 1988) influence the solubility of myofibrillar proteins. Moderate increase in protein solubility during the initial periods of storage in ice is attributed to the weakening of fibrous protein linkages in the structure muscle (Zayas, 1997). Insolubilisation of myofibrillar proteins is the major factor affecting the functional properties of fish protein during frozen storage (Borderias et al., 1985). Aggregation of water soluble proteins, interaction between proteins and lipid oxidation/hydrolytic products, and protein – formaldehyde interaction are some of the factors contributing to protein insolubilisation during frozen storage (Ragnarsson & Reginstein, 1989; Ang & Hultin, 1989). The loss of extractability of protein during frozen storage is mainly related to changes in the properties of myosin, actin and actomyosin system (Dyer et al., 1956; Matsumoto, 1980; Owasu-ansah and Hultin, 1992; Lin and Park, 1998). The changes in functional properties during frozen storage are attributed to increase in hydrophobicity due to unfolding of proteins as a result of storage at sub-zero temperatures (Shenouda, 1980).

Viscosity

Viscosity of proteins provides information on physico-chemical interaction among proteins indicating structural changes that may occur in the protein molecules (Kinsella, 1976; Pradipasena & Rha, 1977; Rha and Pradipasena, 1986). The measurement of viscosity provides useful information on shape and state of protein molecules (Prakash, 1982 and Shamasundar & Prakash, 1994). Viscosity by itself is not a functional property but an important intrinsic property of protein contributing to functional property. Viscosity is influenced by solubility and swelling properties of protein (Hermanson & Akesson, 1975). Highly soluble, non-swelling proteins possess low viscosity (albumin and globulins) while soluble proteins with high initial swelling show a concentration dependant decrease in viscosity (Kinsella, 1976). Change in apparent viscosity of muscle homogenates is related to changes in actomyosin (Borderias et al., 1985). This inherent property of protein decreases with increasing shear to which a protein is exposed. As shear is applied interactions between protein molecules gets weakened leading to breaking of the network thus decreasing the viscosity. Consequently any factors viz. pH, temperature, concentration and ionic strength, which unfold protein, influence their viscosity (Mohan et al 2007, Devi 2006). Viscosity is therefore considered as a more reliable index than solubility for protein denaturation (Colmenero et al., 1988).

Carp myosin is more sensitive to temperature, ionic strength and pH in comparison with chicken myosin (Nakayama et al., 1975; Okada et al., 1986). The viscosity of protein solution is directly related to protein concentration (Sarma et al., 2000). The viscosity of protein solution markedly decreased during frozen storage due to protein denaturation and aggregation of protein molecules (Oguni et al., 1987; Colmenero & Borderias, 1983; Colmenero et al., 1988; Shamasundar & Prakash, 1994).

Conformational changes in myosin molecule due to the temperature of storage expose the hydrophobic groups to the exterior resulting in sharp decline in the physicochemical properties of proteins (Roura *et al.*, 1995). The increase in apparent viscosity is an indication of protein-protein interaction and aggregation during thermal denaturation of proteins (Takashi *et al.*, 1993). There is significant correlation between viscosity and protein solubility in different fish during frozen storage (Colmenero & Borderio, 1983; Colmenero *et al.*, 1988).

Emulsion

Emulsions are thermodynamically unstable mixtures of immiscible liquids (Das & Kinsella, 1990; Zayas, 1997). Proteins capable of unfolding and exposing hydrophobic groups at the interface may exhibit this property and the ability of protein to emulsify fat is of great commercial importance (Xiong, 1997). Protein forms a thin film or coating on lipid droplet and provides an energy barrier to particle association and phase separation. When hydrophobic portions of a biological molecule particularly proteins is exposed to aqueous phase, they arrange themselves in to a form so as to have minimum exposure to water. Therefore, emulsion systems are stabilized by the interfacial protein film surrounding the fat globules leading to physical entrapment of fat within the protein matrix (Barbut, 1995).

In emulsion based food products the most important ingredient is often the emulsifier (Dickinson & Stainby, 1982; Damodaran, 1994) and the type of emulsifier largely determines overall appearance, texture and self-life of food emulsions. Myosin and actomyosin molecules by virtue of their structure and conformation due to both hydrophobic and hydrophilic residues act as excellent emulsifier (Galluzzo & Regenstein, 1978). The emulsifying properties of proteins are primarily due to their ability to reduce the interfacial energy at oil-water interphase. The emulsion capacity of a protein denotes

the maximum amount of oil that can be emulsified under specified condition (Zayas, 1997). Concentration and solubility of protein, pH of the medium, source and salt concentration affect the emulsifying capacity of proteins (Wang and Kinsella, 1976). There are reports indicating the differences in emulsion activity with size of the fish (Ramachandran et al., 2007) which may have direct relation to maturity as well. Factor such as equipment design, shape of container, rate of oil addition, and type of oil and nature of protein also influences emulsion capacity (Sasffle, 1968; Kinsella, 1976). Emulsion stabilization depends on the physicochemical properties of proteins and environmental conditions. Of the various intrinsic characteristics, surface hydrophobicity and the protein conformation have been suggested as important properties affecting protein stabilized emulsions (Kato & Nakai, 1980).

The emulsifying behavior of fish myofibrillar protein is better than that from chicken (Borderias et al., 1985) and is related to the low stroma content of fish proteins (Matsumoto, 1980). There is a highly significant correlation between protein solubility and emulsion capacity in fish (Borderias et al., 1985; Grabowska & Sikorski, 1974) and surface hydrophobicity of the myosin is the chief factor responsible for emulsion capacity (Chan et al., 1984). Storage of fish in ice unfolds proteins exposing hydrophobic residues leading to increase in emulsion capacity compared to the original; however, emulsion capacity decreases in relation to protein insolubility during further storage (Parthiban et al., 2005). The emulsion capacity of fish proteins is reported to decline during frozen storage (Careche & Tejada, 1990; Verma et al., 1995; Sarma et al., 2000) especially in species forming formaldehyde (Borderias et al., 1985; Carech & Tejada, 1990; Huidobro & Tejada, 1993) and is attributed to protein-protein interaction or the interaction of protein with other degradation products formed during frozen storage.

The saroplasmic proteins from fish exhibited a higher emulsion activity at lower concentrations compared to myofibrillar proteins (Mohan *et al.*, 2006). The emulsion capacity of myofibrillar protein decreased with increasing protein content but emulsion stability shows a reverse trend (Mohan *et al.*, 2006). This decrease in emulsion activity with increasing protein concentration is reported to be due to greater degree of unfolding of protein during the shearing involved or due to the over saturation of the system with protein (Zayas, 1997).

Foaming

The formation of foam is analogous to the formation of an emulsion. Air is essentially non-polar and hence an ordering of the water molecules adjacent to the air cells occurs. This results in high surface tension and high surface energy. A protein that is utilized to form stable foam will require the same properties as are required to form an emulsion. The protein must be able to rapidly diffuse at the interface and unfold in such a manner as to lower the interfacial tension between air and water phase.

Foaming is a two-phase system in which air is suspended by a thin continuous liquid layer (Kinsella, 1981). During foaming soluble proteins diffuse to the air water interface, reduce the surface tension, unfold at the interface with orientation of polar moieties towards the water and interact to form the film with possible partial denaturation and coagulation. Protein solubility is the key requisite for foam formation and myofibrillar proteins from certain species exhibit good foaming (Baldwin & Sinthavais, 1974; Montero and Borderias, 1990) and chemically modified fish proteins showed considerably higher foaming capacity (Miller & Groninger, 1976). The foaming property of tilapia myofibrillar protein increased up to 10 days of iced storage of the fish and it is correlated with marginal increase in the hydrophobicity (Parthiban et al., 2005)

Lipids inhibit foaming, even at low concentration (0.1 %), rupturing the protein film through increased surface tension, penetrating the inter-phase and displacing the proteins (Kinsella, 1981). The inhibitory effect of the lipids on foaming capacity diminish during frozen storage up to a certain level, perhaps as a result of changes in lipid protein interaction during storage (Careche. & Tejada, 1990). Foaming capacity is clearly affected by the formaldehyde generated during frozen storage (Huidobro & Tejada, 1992).

Water Holding Capacity

The water holding capacity of food refers to its ability to hold its own and added water during the application of forces such as pressing, centrifugation and heating. Hermansson et al. (1986) defined, Water Holding Capacity as a physical property and as the ability of a food structure to prevent water from being released from the three dimensional structure of the protein. Myofibrils are the largest water-holding filament lattices and most of the water in the meat is held within the myofibrils in the narrow channels between the filaments. Binding of water to the proteins is related to polar hydrophilic groups (Kinsella, 1982). Changes in protein conformation affect the thermodynamic property of water binding by affecting the availability of polar or hydration sites. The level of protein hydration and viscosity of liquid systems in food are interrelated. Consequently, protein water interactions determine functional properties of proteins in foods (Zayas, 1997).

The capacity of fish muscle to retain water is influenced by the species, sex and age, postmortem conditions, aging and processing conditions (Regenstein, 1984; Regenstein et al., 1984). The storage of fish in ice leads to changes in water-holding capacity (Reddy & Srikar, 1993). Decrease in water retention capacity after two hours postmortem was observed by Kijowski et al., (1982) and has been attributed to denatur-

ation of proteins. Miller et al., (1980) demonstrated a significant decline in the capacity of muscle proteins to retain water during extended frozen storage. Frozen storage decreased water holding capacity of fish protein due to denaturation and is supported by the increased thaw drip in frozen stored fish (Benjakul et al., 2004; Wang & Xiong, 1998; Chang and Regenstein, 1997; Sarma et al., 2000)

Gelation

Gelation is the association or crosslinking of protein polymer chains to form 3-D continuous networks, which immobilizes the liquid in the interstitial structure (Glicksman, 1982). Myosin or actomyosin participates in the gelling process of the meat through the formation of salt bridges, hydrogen bonds, disulfide bonds and hydrophobic interactions (Niwa, 1992). Salt solubilisation of myofibrillar proteins followed by partial denaturation by heating to form a regular network capable of immobilizing the water are the basic requirements to form good, firm and elastic gels (Suzuki, 1981; Lee, 1984; Lanier, 1986). Grinding of meat with NaCl, shift pH from isoelectric point of myosin and causes the exposure of hydrophobic groups to the protein surface resulting in loss of helical structure, creating more surfaces for protein -protein interaction. The dominant hydrophobic interaction among non-polar amino acid residues caused the myosin molecules to refold and reaggregate. Subsequently, myosin regains its helical structure with the loss of solubility (Lin & Park, 1998).

The role of disulphide bonds in gel formation has been demonstrated especially in the case of actomyosin (Itoh, et al., 1979). Over a temperature range of 35 – 50°C greater hydrophobic surface area were exposed in cod and sliver hake myosin than in herring (Chan et al., 1992). In the setting process the a-helical structure of myosin and actomyosin unfolds markedly in the temperature range of 30 - 40°C (Ogawa et al.,

1995) and the exposed sulfhydryl groups are oxidized to disulphide bond during setting process. The unfolding of myosin at higher temperature is more intense and cysteine residues are more exposed which favour disulphide bond formation (Itoh et al., 1979). Gill and Conway, (1989) showed that thermal aggregation of myosin heavy chain was a result of non-covalent interaction, which get weakened in the presence of hydrophobic non-polar substances. The relationship between exposure of aromatic amino acid residues and extent of myosin aggregation provide indirect evidence for the role played by hydrophobic interaction in the selfassociation of myosin molecule (Chan et al., 1992).

Low temperature setting of fish mince influences molding and fiber development in surimi products (Niwa, 1992). Myosin heavy cross-links chain mediated by transglutaminase enzyme through carboxamide group of glutamic acid and εamino group of lysine (Seki et al., 1990; Kimura et al., 1991) favours setting of protein gels and this property has been commercially exploited for obtaining high gel strength products (Kimura et al., 1991). High temperature setting of fish mince at 80 -90°C results in strong gel with higher water holding capacity in comparison to a gel formed without cooking (Okada, 1959; Lanier, 1986, Kamath et al., 1992). Hydrophobic interactions and non-sulphide covalent linkages play role in the development of gel network. (Niwa et al., 1981; Wu et al., 1985 a, b; Nishimoto et al., 1987; Kim et al., 1987 and Kamath et al., 1992).

Loss of gelation has been attributed to denaturation, aggregation and autolysis of myofibrillar proteins during storage of fish in ice (Haard & Warren, 1985; Parthiban et al, 2005). Freshness of raw material is known to be one of the most important factors determining the gel-forming ability of the surimi (Lee, 1986). The rate of loss in gel strength appears to vary among species. Decrease in gel strength of kamaboko made

from ice-stored lizardfish (Kurokawa, 1979) sardine (Leinot & Cheftel, 1990) threadfin bream (Yongswawatdigul & Park, 2002; Yean, 1993) hoki (MacDonald *et al.*, 1990) freshwater northern squawfish (Lin and Morrissey, 1995) and freshwater major carps (Sankar, 2000) have been reported and is related to changes in protein quality during storage.

Fish proteins have good physicochemical properties which vary depending on various parameters and play a crucial role in product development. Being labile, the structure of protein gets altered in relation to condition of exposure which in turn affect the functional properties either positively or negatively. Freshness of fish, type of processing, type and nature of storage etc. have a prominent role to play to determine the physicochemical property. The excellent physicochemical properties of the fish proteins are attributed to its unique three dimensional structures which facilitate the functional properties like solubility, water holding capacity, emulsion characteristics etc. Altering the three dimensional configuration by modifying the process and treatment can lead to changes in the inherent properties of fish proteins which help to develop high quality and high value products for human consumption.

References

- Acton, J.C. and Saffle, R.L. (1972) Emulsifying capacity of muscle protein phase volumes at emulsion collapse. *J. Food Sci.*, **37**, 904
- Ang, J.F. and Hultin, H.O. (1989) Denatuiration of cold myosin during freezing after modification with formaldehyde, *J. Food Sci*, **54**, 814-818
- Baldwin, R.C. and Sinthavais, S. (1974) Fish protein concentrate foam. *J. Food. Sci.* **39**, 880-82
- Barbut, S. (1995) Importance of fat emulsification and protein matrix characteristics in meat batter stability. *Journal of Muscle Foods.* **6**, 161

- Benjakul S, Visessanguan W, Tueksuban J, Tanaka M. (2004) Effect of some protein additives on proteolysis and gel-forming ability of lizardfish (Saurida tumbil). Food Hydrocolloids. 18, 395-401
- Borderias, A.J., Colmenero, J.F., and Tejada, M. (1985) Viscosity and emulsifying of fish and chicken muscle protein. *J.Food Technol.*, **20**, 31-42
- Busch, W.A., Parrish, F.C.J.R., and Goll, D.E. (1967) Molecular properties of post mortem muscle. 4. Effect of temperature on adenosine triphosphate degradation isometric tension parameters and shear resistance of bovine muscle. *J. Food Sci.*, **32**, 390-394
- Carech, M., and Tejada, M. (1990) The effect of neutral and oxidized lipids on the functionality in hake (Merluccius merluccius). A dimethyl amine and formaldehyde foaming species during frozen storage. *Food Chem.* **36**, 113-128
- Chan, J.K., Gill, T.A., and Paulson, A.T. (1992) Cross linking of myosin heavy chains from Cod, Herring and Silver hake during thermal setting. *J. Food Sci.* **57**, 906-912
- Chan, L.I.E., Nakai, S., Wood, S., and Wood, D.F. (1984) Hydrophobicity and solubility of meat proteins and their relationship to emulsifying property. *J. Food Sci.* **49**, 345-50
- Chang, C.C., Regenstein, J.M. (1997) Water uptake protein solubility, and protein changes of cod mince stored on ice as affected by polyphosphates. *J. Food Sci.* **62**, 305-9
- Chaudary, H.M. Parrish, F.C.J.R., and Goll D.E. (1969) Molecular properties of post mortem muscle. 6. Effect of temperature on protein solubility of rabbit and bovine muscle. *J. Food Sci.* **34**, 183-191
- Chen, C.S., Hwang, D.C., and Jiang, S.T. (1989) Effects of storage temperatures on the formation of disulfide and denaturation of milkfish myosin (Chanos chanos). *J. Agri Food .Chem.*, **37**, 1228-1231

- Colemenero, F.J., and Borderias, A. (1983) A study of effects of frozen storage on certain functional properties of meat and fish protein. *J. Food Technol.*, **18**, 731-737
- Colmenero, J.F., Tejada, M. and Borderias, A.I. (1988) Effect of seasonal variation in protein functional properties of fish during frozen storage. *J. Food Biochem.*, **12**, 159-170
- Crupkin, M., Barassi, C.A., Martone, C., and Trucco, R.W. (1979) Effect of storing Hake (*Merluccius merluccius hubbis*) in ice on the viscosity of the extract of soluble muscle protein. *J. Sci. Food Agri.*, **30**, 911-913
- Damodaran, S., (1994) Structure-function relationship of food proteins. In: Protein Functionality in Food Systems. (Hettiarachchy, N. S., and Ziegler, G. R, Ed.) pp 1-38 IFT Basic symposium series, 9, Marcel Dekker Inc. New York
- Das, K.P. and Kinsella, J.E. (1990) Stability of food emulsions. Physico chemical role of protein and non protein emulsifiers. *Adv. Food Nutr. Res*, **34**, 81
- Davis, M.A.F., Hauser, H., Leslie, R.B. and Philips, M.C. (1973) Protein hydrophobicity and lipid protein interaction. *Biochemist Biophysics Acta*, **317**, 214-218
- Devadasan, K. and Nair, M.R. (1971) Studies on the electrophoretic patterns of fish muscle myogen. *Fish. Technol.*, **8**, 80-82
- Devi, V.R. (2006) Influence of Ionic Strength on Conformation and Functional Properties of Fish Muscle Proteins. M. F. Sc. Dissertation, Submitted to Central Institute of Fisheries Education, Mumbai
- Dickinson, E., and Stainsby, G. (1982) The Oil Water Interface and Emulsion Stability. In: **Colloids in Food**. pp 107-191 Applied science publishers, London
- Doong, M.F.G. (1988) The effect of freezing and frozen storage on the statue of fish tissue. *Diss. Abst. Int. PTP SCJ and ENG.*, **48**, 188

SANKAR

Dyer, W.J., Morton, M.L., Frazer, D.I. and Bligh, E.G., (1956) Storage of frozen rose fish fillets. *J. Fish Res. Board. Cen.*, **13**, 569-579

94

- Galluzzo, S.J., and Regenstein, J.M. (1978) Role of chicken breast muscle proteins in meat emulsion formation: myosin, actin and synthetic actomyosin. *J. Food Sci.* 43, 1761-1765
- Gill, T.A., and Conway, J.T. (1989) Thermal aggregation of cod muscle protein using 1-ethy 1-3- (3- dimethylaminopropyl) carbomide as a zero length cross linker. *Agri. Biol. Chem.* **53**, 2553
- Glicksman, M. (1982) Functional properties, In: **Food Hydrocolloids**, Vol.1 (Glicksman, M. and Godavaribai, S., Eds) pp 1-47. CRC Press. London
- Goll, D.E., Robson, R.M., and Stromu, M.H. (1977) Muscle proteins, In: Food Proteins. (Whitaker, J.R. and Tannenbaum, S.R., Eds). AV1 Publishing Company, INC, Conneticut
- Grabowska, J., and Sikorski, Z. (1974) The emulsifying capacity of fish proteins. *In*: Proc. 4th Int. Congr. Food Sci. Technol. Madrid. **2,** 5-7
- Haard, N.F. and Warren J.E., (1985) Influence of holding fillets from undersized Atlantic cod (*Gadus morhua*) at 0°C or -3°C on the yield and quality of surimi. *In*: Proc. Int. Symp. Engineered seafood including surimi (Martinr, E. and Collette, R. L., Eds). pp. 92-116, National Fisheries Institute Seattle, Washington
- Hamm, R. (1960) Biochemistry of meat hydration. *Adv. Food Res.* **10**, 355–463
- Hamm, R. (1977) Changes of muscle proteins during the heating of meat, In: Physical, Chemical and Biological Changes in Food Caused by Thermal Processing. (Hoyem, T.and Kvale, O., Eds). pp. 101-135, Applied Science Publishers
- Hashimoto, Y., Shieh, T.Y., Aodyama, H., Izawa, Y. and Hayakawa, T. (1986) Isolation and characterization of type V

- collagen from human post burn granulation tissue. I. Inest. Dermatol., 87, 540
- Hermanson, A.H., and Akesson, C. (1975)
 Functional properties of added proteins correlated with the properties of meat system. Effect of concentration and temperature on water binding property of model meat system. *J. Food Sci.* 40, 595-602
- Hermansson, A.M., Harbit, O., and Langtom, M. (1986) Formation of two types of gels from bovine myosin. *J. Sci. Food Agric.* **37**, 69
- Horiuchi, T., and Fukushima, D. (1978) Studies on enzyme modified protein as a foaming agent: Effect of structure on protein stability. *Food Chem.* **3**, 35
- Howgate, P.F., and Ahmed, S.D. (1972). Chemical and bacteriological changes in fish muscle during healing and drying at 30°C. *J. Food Sci. Agric.* **23**, 23-25
- Huidobro, A. and Tejada, M. (1992) Foaming capacity fish muscle during frozen storage. In: **Quality Assurance in The Fish Industry** (Huss, H.H., *et al.*, Eds) pp 139–147, Elsevier science publication
- Huidobro, A. and Tejada, M. (1993) Emulsifying capacity of fish mince from several species during frozen storage. *J. Sci. Food Agri.*, **61**, 333-338
- Itoh, Y., Yoshinaka, R., and Ikeda, S. (1979) Effects of sulfhydryl reagents on the gel formation of carp actomyosin by heating, *Bull. Jap. Soc. Sci. Fish.* **45**, 1023-1025
- Jiang, S.T., Hwang, D.C., and Chen, C.S. (1988) Denaturation and storage at -20°C *J. Agri. Food Chem.*, **36**, 433-437
- Kamal, M., Watabe, S., and Hashimoto, K. (1990) Stability of sardine myofibrils during storage at various pH values, *Nippon Suisan Gakkaishi.*, **56**, 83-91
- Kamath, G.G., Lanier, T.C., Foegeding. and Human, D.D. (1992) Non sulphide covalent cross linking of myosin heavy chain in setting of Alaska polack and Atlantic croaker surimi. *J. Food Biochem.* **16,** 151

- Kato, A., and Nakai, S. (1980) Hydrophobicity determined by florescence probe method and its correlation with surface properties of protein. *Biochem. Biophys. Acta.*, **624**, 13-20
- Kato, S., and Konno, K. (1993) Isolation of carp myosin and its structural stability. *Nippon Suisan Gakkaishi.*, **59**, 539-544
- Kijowski, J., Niewiarowica A., and. Kujawska-Biernat, B. (1982) Biochemical and technological characteristics of hot chicken meat. *Food Technol.*, **17**, 533
- Hashimoto, Y., Shieh, T.Y., Aodyama, H., Izawa, Y. and Hayakawa, T. (1986) Isolation and characterization of type V collagen from human post burn granulation tissue. I. *Inest. Dermatol*, **87**, 540
- Kim, J.M., Lee, C.M., and Hufnagel, L.A. (1987) Textural properties and structural properties of starch reinforced surimi gels as affected by heat setting. *Food microstructure*. **6**, 81
- Kimura, I., Sugimoto, M., Toyada, K., Seki, N., Aria, K.A. and Fujita, T. (1991) A study of the cross linking reaction of myosion in komaboko, "suwari" gels. *Nippon Suisan Gakkaishi*. **57**, 1389-1396
- Kinsella, J.E. (1982) Relationship between structure and functional properties of food proteins. In: **Food Proteins**. (Fox, P.F. and Cowdon, J.J., Eds). pp 1-51, Appl. Sci. Publ. London
- Kinsella, J.E. (1984) Functional properties of food proteins thermal modification involving denaturation and gelation. In: Research in Food Science and Nutrition (Mclonghlin, J., Ed.). pp. 226, Book press, Dublin
- Kinsella, J.E., (1976) Functional properties of protein in foods: A survey. CRC. Crit. Rev. Food. Sci. Nutr. 7, 219-280
- Kinsella, J.E., (1981) Functional properties of proteins; possible relationships between structure and function in foams. *Food Chem.* 7, 273-288

- Kinsella, J.E., and Whitehead, D.M. (1989)
 Proteins in Whey: Chemical, Physical,
 and Functional Properties. *Adv Food Nutr. Res.* **33**, 343-438
- Kurokawa, T. (1979) Kamaboko-forming ability of frozen and ice stored lizard fish. *Bull. Jap. Soc. Sci. Fish.*, **45**, 1551-1555
- Lanier, T.C. (1986) Functional properties of surimi. *Food Tech.* **40**, 107-114
- Lee, C.M. (1986) Surimi manufacturing and fabrication of surimi based products. *Food Technol.* **40**, 115-124
- Lee, C.M. (1984) Surimi process technology. Food Technol. **38(**11) 69-80
- Leinot,. A., and Cheftel, J.C. (1990) Influence of fishing season and of chilled or frozen storage of sardine on the solubility and gelling properties of myofibrillar protein. In: Proceeding of the meeting of the commission C2, Chilling and Freezing of New Fish Products. pp. 37-52, IIR, Paris
- Lin, D., and Morrissey, M.T. (1995) Northern squawfish (Ptychocheilus oregonensis) for surimi production. *J. Food Sci.* **60**, 1245-1247
- Lin, T.M., and Park, J.W. (1988) Solubility of salmon myosin as affected by conformational changes at various ionic strength and pH. *J. Food Sci.* **63**, 215-218
- Lin, T.M., and Park, J.W. (1998) Solubility of Salmon Myosin as Affected by Conformational Changes at Various Ionic Strengths and pH. *J. Food Sci.* **63**, 215-18
- MacDonald, G.A., Laliever, J. and Wilson. N.D.C. (1990) Strength of gel prepared from washed and unwashed minces of hoki (Macruronus novaezelandiae) stored in ice, J. Food Sci. 55, 978-978
- Matsumotto, J.J. (1980). Chemical denaturation of fish muscle proteins during frozen storage. In: Chemical Deterioration of Protein. (Whitaker, J.R. and Fujimaki, M., Eds) pp 95-124, American chemical society, Washington

- Miller, A.J., Ackerman, S.A. and Paumbo, S.A. (1980) Effect of frozen storage on functionality of meat processing. *J. Food Sci.* **45**, 1646
- Miller, R. and Groninger, H.S. (1976). Functional properties of enzyme-modified acylated fish protein derivatives. *J. Food Sci.* 41, 268-272
- Mohan, M., Ramachandran, D. and Sankar, T.V. (2006) Functional properties of rohu (Labeo rohita) proteins during iced storage. *Food Res Int.* **39**, 847-854
- Mohan, M., Ramachandran, D., Sankar, T.V. and Anandan, R. (2007) Influence of pH on the solubility and conformational characteristics of muscle proteins from mullet (Mugil cephalus). *Proccess Biochem.* **42**, 1056-1062
- Mohan, M., Ramachandran, D., Sankar, T.V. and Anandan, R. (2008) Physicochemical characterization of muscle proteins from different regions of mackerel (*Rastrelliger kanagurta*). Food Chem. **106**, 451-475
- Montero, P. and Borderias, A.J. (1990) Emulsifying capacity of collagenous material from muscle and skin of Hake. *Food Chem.*, **41**, 251-267
- Nakayama, T., Okuda, H., Nmiwa, E. and Hamada, I. (1975) Viscosity changes in myosin solution. *Bull. Jap. Soc. Sci. Fish.* **40**, 937-940
- Ngarize, S, Herman, H, Adams, A, Howell, N. (2004) Comparison of changes in the secondary structure of unheated, heated, and high-pressure-treated beta-lactoglobulin and ovalbumin proteins using fourier transform raman spectroscopy and self-deconvolution. *J Agric Food Chem.*, **52**(21), 6470-7
- Nishimoto, S., Hashimoto, A., Seki, N., Kimurai., Toyoda, K., Fujita, T. and Aria, K. (1987) Influencing the factors on change in myosin heavy chain and jelly strength of salted paste from Alska Pollack during setting. *Nippon Suisain Gakaishi*. **53**, 2011-2020

- Niwa, E. (1992). Chemistry of surimi gelation. *In:* Surimi technology (Lanier, T. C. and Lee, C.M., Eds) pp. 389, Marcel Dekker Inc. New York
- Niwa, E., Sato, J., Suzuki, R., Nakayama, T., and Hamada, I. (1981) Flurometric study of setting properties of fish flesh. *Sol. Bull. J. Soc. Fish.* **47**, 817
- Ogawa, M., Kanamaru, J., Miyashita, H., Tamiya, T. and Tsuchiya, T. (1995) Alpha-helical structure of fish actomyosin: changes during heating. J. *Food Sci.* **60**, 419-427
- Oguni, M., Inuoue, N., Ohi, K. and Shinand, H. (1987) Denaturation of carp myosin B during frozen and super cooled storage at –8°C. *Bull. J. Soc. Sci. Fish.* **53**, 789-794
- Okada, T. (1959) Application of setting phenomenon for improving the quality of kamaboko. *Bull. Tokai. Reg. Fish. Res. Lab.* **24**, 67-72
- Okada, T., Inoue, N., and Shinand, H. (1986) An explanation of freeze denaturation of the kinetics of thermal inactivation of frozen-stored carp myosin. *Bull. J. Soc. Sci. Fish.* **52**, 1765-1770
- Owassu-ansah, J.J. and Hultin, H.O. (1992) Differential insolubilisation of Red hake muscle protein during frozen storage. J. Food Sci. 57, 265-266
- Park, J.W., Korhonen, R.W., and Lanier, T.C. (1990) Effect of rigor mortis on the gel forming properties of surimi and unwashed mince prepared from tilapia. *J. Food. Sci.* **55**, 353-355,360
- Parthiban, F., Sankar, T.V. and Anandan, R. (2005) Changes in the functional properties of Tilapia (Oreochromis mossambicus) protein during storage in ice. Fish. Technol. 42(2), 155-162
- Pradipsena, P. and Rha, C.K. (1977)
 Pseudoplastic and pheopectic properties
 of a globular protein solution. *J. Texture*Studies 8:311-25

- Prakash, V. (1982) Partial specific volume and interaction with solvent component of aglobulin from seseamum L. in urea and guanidinine hydrochloride. *J. Biosci.* 5, 347-359
- Ragnarsson, K. and Regenstein, J.M. (1989) Changes in electrophoretic patterns of gadoid and non-gadoid fish muscle during frozen storage. *J. Food. Sci.* **54**,819
- Ramachandran, D., Mohan, M. and Sankar, T.V. (2007) Physicochemical characteristics of muscle proteins from barracuda (Sphyraena jello) of different weight groups. LWT Food Sci and Tech. 40, 1418-1426
- Reddy, G.V.S., and Srikar, L.N. (1991) Preprocessing ice storage effects on functional properties of fish mince protein. *J. Food Sci.* **56**, 965 –968
- Reddy, G.V.S. and Srikar, L.N. (1993) Functional properties of ice-stored Japanese threadfin bream (Nemipterus japanicus). *Asi. Fish. Sci.* **6,** 31-37
- Regenstein, J.M. (1984) Protein-water interactions. In: **Muscle Foods**. 37th Reciprocal Meat Cont. Proc., **37**, 44-51
- Regenstein, J.M., and Regenstein, C.E. (1984)
 Food Protein Chemistry. An Introduction for Food Scientists. Academic press, New York
- Reynolds, J., Park, J.W. and Choi, Y.J. (2002) Physicochemical properties of Pacific whiting surimi as affected by various freezing and storage conditions. *J. Food Sci.* **67**, 2072-78
- Rha, C.K., and Pradipsena, P. (1986) Viscosity of proteins. In: Functional Properties of Food Macromolecules. Ed by (Mitchell, J.R., and Ledward, D.A., Eds) Elsevier applied science publishers, London
- Roura, S.I., and Crupkin, M. (1995) Biochemical and functional properties of myofibrils from pre and post spawned hake (Merluccius hubbsi Marini) stored in ice. *J. Food Sci.* **60**, 269-272

- Saffle, R.L. (1968) Meat emulsion. In: Advances in Food Research. (Chichester, C.O., Mark, E.M. and Stewart, G.F. Eds). Academic press, New York.
- Sankar, T.V. (2000) Biochemical Storage Characteristics of Myofibrillar Potein (surimi) from Fresh Water Major Carps. Ph.D. Thesis., School of Industrial Fisheries, CUSAT, Cochin
- Sarma, J., Reddy. G.V., and Srikar, L.N. (2000) Effect of frozen storage on lipids and functional properties of proteins of dressed indian oil sardine (Sardinella longiceps). *Food Res Intl.* **33**, 815-20
- Sarma, J., Srikar, L.N., and Reddy, G.V. (1999). Effect of ice storage on the functional properties of pink perch and oil sardine meat. *J. Sci. Food Agri.* **79**, 169-172
- Seki, N. (1977). Extraction of fish muscle proteins, *In:* **Fish Proteins** (Gyoniku T., Ed). pp. 7-23, Koseisha, Tokyo
- Seki, N., Ikeda, M., and Narita, N. (1979) Changes in ATPase activities of. carp myofibril during ice-storage. *Nippon Suisan Gakkaishi*. **45**, 791–799
- Seki, N., Uno, H., Lee, N., Kimura, I., Toyoda, K., Fujita, T. and Aria, K. (1990) Transglutaminase activity in Alaska Pollack muscle and surimi and its reaction with myosin B. *Fish. Sci.*, **56**, 125-132
- Shamasundar, B.A., and Prakash, V. (1994) Physicochemical and functional properties of protein from prawns (*Metapenaeus dobsoni*). *J. Agri. Food Chem.* **42**, 169-174
- Shenouda, S.Y.K. (1980) Theories of protein denaturation during frozen storage of fish flesh. *Adv. Food Res.* **26**, 275-311
- Shimada, K., and Matsushita, S. (1980) Relationship between thermo coagulation of proteins and amino acids compositions. *J. Agri. Food Chem.* **28**, 413
- Suzuki, T. (1981) Frozen minced meat (Surimi). In: **Fish and Krill Proteins: Processing Technology**. pp. 10-13, Applied Sci. Publishers Ltd, London, UK

- Takashi, R., Inque, N. and Shinand, H. (1993) Effect of storage temperature on freeze denaturation of carp myofibrils with KCl or NaCl. Nippon Suisan Gakkaishi. 59, 519-527
- Wang, B. and Xiong, Y.L. (1998) Functional stability of antioxidant washed cryoprotectant treated beef heart surimi during frozen storage. *J. Food Sci.* **63**, 293-298
- Wang, J.C. and Kinsella, J.E. (1976) Functional properties of novel proteins alphalfa leaf protein. *J. Food. Sci.* **41**, 286-292
- Wu, M.C., Lanier, T.C., and Hamann, D.D. (1985) Thermal transition of actomyosin and surimi prepared from Atlantic croacker studied by differential scanning calorimetry. *J. Food Sci.* **50**, 10-13
- Xiong, Y.L. (1997) Structure function relationships of muscle proteins. In: Food

- Proteins and Their Applications. (Damodaran, S. and Parar, A., Eds), pp 341-386, Marcel Dekker Inc., New York
- Yean, Y.S. (1993) The quality of surimi made from threadfin bream stored on ice for different periods. *Int. J. Food Sci. Technol.* **28**, 343-346
- Yongsawatdigul, J., and Park, J.W. (1999) Thermal aggregation and dynamic rheological properties of Pacific Whiting and Cod myosins as affected by heating rates. *J. Food Sci.* 64, 679-683
- Yongsawatdigul, J., and Park, J.W. (2002) Biochemical and conformation changes of actomyosin from threadfin bream stored in ice. *J. Food Sci.* **67**, 985-990
- Zayas, J.F. (1997) Functionality of Proteins in Food., pp 6-22, 310-331, 81-100, Springer-Veerlag Berlin Heidelberg