Size Selectivity of 40 mm Square Mesh Codend with respect to Yellowstriped Goatfish, *Upeneus vittatus* (Forsskal, 1775) and Orangefin Ponyfish, *Leiognathus bindus* (Valenciennes, 1835)

R. Raghu Prakash, G. Rajeswari and U. Sreedhar

Research Centre of Central Institute of Fisheries Technology Ocean View Layout, Pandurangapuram Visakhapatnam - 530 003, Andhra Pradesh, India

Yellowstriped goatfish, *Upeneus vittatus* (Forsskål, 1775) and Orangefin Ponyfish, *Leiognathus bindus* (Valenciennes, 1835) are widely exploited by the trawl fishery. Due to the use of codends with conventional small diamond mesh in the trawl nets, large quantities of juveniles of these species are landed along the east coast of India. The size selectivity of 40 mm square mesh codend for *Upeneus vittatus* and *Leiognathus bindus* was studied with a 30 m demersal trawl, following covered codend method. The L25, L50 and L75 values for *Upeneus vittatus* were 10.0, 11.22 and 12.4 cm respectively. Selection factor, selection range and selection ratio for *Upeneus vittatus* were 2.8 and 2.43 and 0.6 respectively. The L25, L50 ,L75 values for *Leiognathus bindus* were 5.52, 7.7 and 9.88 cm respectively. Selection factor, selection range and selection ratio for *Leiognathus bindus* were 1.92, 4.36 and 1.09 respectively.

Key words: Trawl codend selectivity, square mesh selectivity, Mean selection length, Selection factor, Upeneus vittatus, Leiognathus bindus

Gear selectivity plays a vital role in the development of a sustainable and economically viable fishery. The results of selectivity experiments allow gear technologists to isolate the elements of the gear or the harvesting procedures that permit the escapement of unwanted catch. Selectivity experiments also indicate the size and the species that are removed from the marine environment as well as those species that escape with the use of a particular configuration or a harvest method. This type of information is used by resource biologists to improve stock assessments, make recommendations on exploitation levels, regulate mesh size, minimum landing size and to predict the long term effects of regulatory change on resource and the economic viability of harvesting operations. (Wileman et al., 1996).

Goat fishes form a major component of the catch from trawls from Visakhapatnam which is available throughout the year and the fishery is sustained by *Upeneus vittatus* (65.1%), *U. sulphureus* (26.5 %) and *U. moluccensis* (8.3%) (Hamsa and Rao, 1997). *Upeneus vittatus* constitutes about 4.5 % of the total catch from small trawlers operating along the east coast (Hamsa and Rao, 1997). Majority of the catch comprises of immature individuals, a considerable amount of which is discarded at sea or is used for fish meal. Larger sized species which reach the domestic market form a cheap source of protein for the poor.

The fishes of the family Leiognathidae, known as *karalu* in Telugu language, form an important group of finfishes in the marine fisheries of India. In the year, 2001-02, the estimated landing of this group in India was

62,100 t, which formed 2.35% of the total marine landings (CMFRI 2003). Along the East coast the species, *Leiognathus bindus* is predominant in the trawl catches. They are principally shallow water fishes with a distribution up to 40 m depth. These fishes have little demand in the fresh condition, but there is considerable market for sun-drying and for fishmeal production.

Large quantitities of immature fishes of both the species are landed by trawlers at Visakhpapatnam, due to the use of codends with small diamond mesh of 10-20 mm size. The use of diamond mesh leads to narrowing of the middle of the codend causing the mesh lumen to almost close during trawling preventing smaller fishes to escape and are retained in the codend (Varghese et al., 1996; Pillai et al., 1998; Varghese et al., 1988).

The exploitation of undersized fishes lead to the depletion of stocks. The /shape of the codend effects the selectivity of codends and the superiority of square mesh has been proven by many (Robertson *et al.* 1986; Robertson, 1983; Robertson & Stewart, 1988; Robertson and Ferrow, 1988; Robertson, 1993). In Indian waters, the superiority of square mesh codends was proven by Kunjipalu *et al.* (1994) and Varghese *et al* (1996).

Though taxonomy, biology and population dynamics of *Upeneus vittatus* and *Leiognathus bindus* in Indian waters has been reported (Murty 2003), no work has been attempted on the size selectivity parameters of trawl codend with respect to these species.

Materials and Method

Selectivity experiments were carried out onboard Research Vessel CIFTECH 1 (15.5 m LOA; 122 hp), off Visakhapatnam coast, using a 30 m demersal trawl fitted with 40 mm square mesh codend. Covered codend method was followed in the current study

(Pope, et al., 1975; Sparre et al., 1989). The square mesh codend was covered with a cover made of polyamide netting of 20 mm diamond mesh size. The codend cover was about one and half times the codend in dimensions. 50 hauls of 1 h duration were made at a depth of 30-40 m. Towing speed was about 2.3 to 2.5 knots. The length frequency data were collected for the catch in the codend and cover. Selectivity can be expressed as the proportion of fish of each length entering the net which are retained in the codend. When these proportions are plotted against the length, selection curve for the particular species is obtained.

The logistic model commonly used to describe trawl selection ogive (Sparre *et al.*, 1989) was used in the study

$$SL = 1/1 + \exp(S1-S2*L)$$

where SL is the function of the ogive defining for each length L, the fraction of fish retained in the codend. S1 and S2 are constants determined by linear least square estimation or maximum likelihood estimation for each species.

L50, L25, L75, selection range and selection factor were calculated as below:

L50 = (S1/S2)

L25 = (S1 - ln 3) / S2

L75 = (S1 + ln 3) / S2

Selection range = L75 - L25

Selection factor = L50 / Mesh size

Selection ratio = selection range / mesh size

Results and Discussion

The length frequencies of *U. vittatus* and *L. bindus* retained and excluded from 40 mm square mesh codend are given in Fig 1 and Fig 2. The selectivity curves of *U. vittatus* and *L. bindus* is given are Fig 3 and

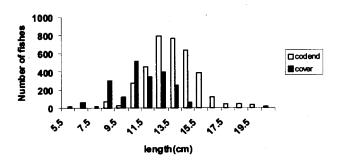


Fig. 1. Length class of Upeneus vittatus retained and escaped from 40 mm square mesh codend

Fig 4. The L.25, L50 and L.75 values for *U. vittatus* with 40 mm square mesh codend was 10.0, 11.22 and 12.4 cm respectively. Selection factor, selection range and selection ratio for *Upeneus vittatus* were 2.8 2.43 and 0.6 respectively. The L.25, L.50, L.75 values for *L. bindus* was 5.52, 7.7 and 9.88 cm, respectively. Selection factor, selection range and selection ratio for *Leiognathus bindus* were 1.92, 4.36 and 1.09 respectively.

The size at first maturity have been reported as 13.1 cms respectively for *U. vittatus* (Mayers 1991). The optimum mesh size suitable for giving protection to juveniles to sustain the fishery can be calculated from the selection factor as 4.6 cm for *U. Vittatus*. The size at first maturity for *L. bindus* have been reported as 9.9 cm (James 1984). The optimum mesh size suitable for giving protection to juveniles to sustain the fishery can be calculated from the selection factor as 5.2 cm for *L. bindus*

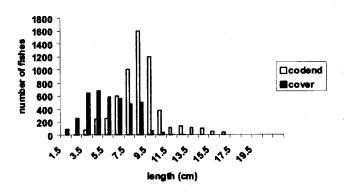


Fig. 2. Length class of Leiognathus bindus retained and escaped from 40 mm square

Smooth sigmoid curves were obtained for U. vittatus and L. bindus, which is characteristic of most mobile gears like trawls (Wileman et al., 1996). Selectivity information with respect to trawls has been reviewed. Selectivity characteristics of square mesh codend with respect to Caranx para, Dussumieria acuta, Thryssa purava, Nemipterus japonicus, Saurida tumbil, Metapenaeus dobsoni and Parapenaopsis stylifera have been reported from Indian waters (Varghese et al., 1996; Kunjipalu et al., 2001 . Boopendranath & Pravin, 2005). The factors which influence selectivity of codend meshes are haul duration, net material, contrast of background light, amount of fish in the codend and rigging of the gear as well as actual size of the codend (Isaksen et al., 1990, Isaksen and Valdemarsen, 1994).

Selectivity experiments using square mesh codends have shown that square meshes are more selective for many species than conventional diamond meshes (Robertson, 1983; Robertson & Stewart, 1988; Walsh *et al.*, 1992; Boopendranath & Pravin, 2005). The main reason for improved selectivity is that square mesh remains open all along the codend whereas diamond meshes tend to distort due to longitudinal

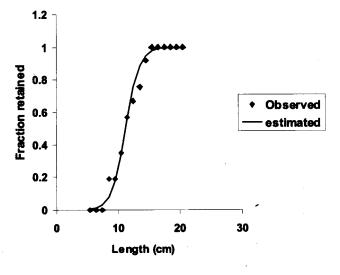


Fig. 3. Selectivity curve for 40 mm Square mesh codend for Upeneus vittatus

and transverse tension on mesh bars depending on catch size, current and other factors. However, the effect of mesh size on codend selectivity primarily depends on body shape of target species. Hence the square mesh codends have generally been found more selective than diamond shaped ones of similar mesh size for round fishes like haddock and whiting (Roberston & Stewart 1988) and Hake (Stergiou et al., In the case of flat fishes where 1994). selection is related to width of the fish rather girth, square mesh codend is seen to be less effective in releasing young ones (Walsh et al., 1992).

In the present study it was observed that the square mesh codend was selective in retaining the larger sized fishes while allowing the smaller sized fishes to escape in the case of both the species. Silvestre (1986) has provided selectivity parameters for 40 mm diamond mesh codend with respect to *Leiognathus bindus*. Mean selection length (L50) reported by him was 6.3 cm which is considerably less than that obtained with square mesh codend in the present

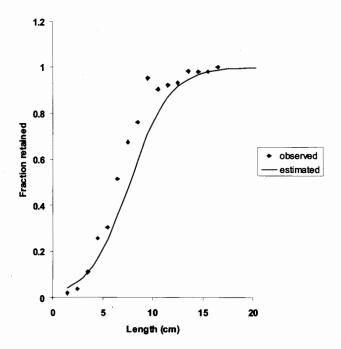


Fig 4. Selectivity curve for 40 mm Square mesh codend for Leiognathus bindus

study, supporting the efficiency of square mesh codend in excluding juveniles.

Selectivity parameters of square mesh codend with respect to *Upeneus vittatus* and *Leiognathus bindus* from Indian waters have been reported for the first time, in this paper. The effect of mesh configuration on the size selection of different species need to be investigated. The factors which effect selectivity like depth, size of codend, catch, duration of drag, and other parameters need to be investigated, further. While implementing the technical measures such as codend mesh sizes knowledge of the survival of the escaping fish, also should be considered.

The authors are thankful to the Director, CIFT for his constant encouragement in carrying out the work. Thanks are due to Dr. Boopendranath, Principal Scientist, CIFT for his valuable guidance and suggestions in carrying the work on selectivity. The help rendered by technical officers and boat crew of CIFTECH 1 during fishing operations are acknowledged.

References

Boopendranath, M.R. and Pravin, P. (2005) Selectivity of trawls. *Fish. Technol.* **42** (1) pp. 1-10

CMFRI (2002) CMFRI Annual report 2001-2002 Central marine fisheries Research Institute Cochin, India P20

Hamsa, K.M.S.A. and Rao, K.N (1997) Fishery of goatfish at Visakhaptnam with some information on the biology of *Upeneus vittatus* (Forsskal) *Indian Journal of Fisheries* 44, (3), pp. 301-304.

Isaken, B., Lisovsky, S. and Sakhno, V.A. (1990). A comparison of selectivity of cod ends used by Soviet and Norwegian trawler fleets in Barents Sea ICES CM B51 Section 23 p.

- Isaken, B. and Valdemarson, J.W. (1994) Bycatch reduction in trawls by utilizing behavioural differences In Ferno, A., Olesn, S (Eds) Marine fish behavior and capture and abundance estimation. Fishing News Books Oxford pp. 69-83
- James, P.S.B.R. (1984). Leiognathidae In FAO species identification sheets for fishery purposes - Western Indian Ocean (Fishing Area 51). Vol. 2. W. Fischer and G. Bianchi (eds.) FAO, Rome.
- Kunjipalu, K.K., Meenakumari, B., Mathai, T.J., Boopendranath, M.R. and Manoharadoss, R.S (2001) Effect of mesh size on selectivity of square mesh cod ends. *Fish. Technol.* **38**, pp. 1-7
- Mayers, R.F (1991). Micronesian reef fishes.. Second Ed. Coral Graphics, Barrigada, Guam. 298 p.
- Murty, V.S., Joshi, K.K. and Nair, R.J. (2003) Status of Exploited Marine Fishery Resources of India. CMFRI, Kochi, India pp. 127-132
- Pillai, N.S., Varghese, M.D. and Mathai, T.J (1998) Performance evaluation of different selective devices for the reduction of by-catch in shrimp In the proceedings of the Int. Symp. on Large Marine Ecosystems: Exploration and Exploitation for Sustainable Development and Conservation of Fish Stocks, Kochi (India), 25-27 Nov 1998
- Pope, J.A., Margetts, A.R., Haley, J.M. and Akyuz, E.F. (1975) Manual of Methods for Stock Assessment Part 3: Selectivity of Fishing Gear, FAO. Fish. Tech. Rep. No. 41, rev 1
- Robertson, J.H.B. (1983) Square mesh cod end selectivity experiments on Whiting (Malangius merlangus) and Haddock (Melanogrammus aeglefinus) ICES CM 1983/B25

- Robertson J.H.B. and Stewart P.A.M (1988) A comparison of size selection of Haddok and whiting by square and diamond mesh cod end. *J. Cons. Int Explor. Mer* 44. pp. 148-161
- Robertson J.H.B. and Ferrow R.S.T. (1988) Mesh size selection within cod end of trawls. The effect of narrowing the codend and shortening the extension. Scot. Fish Res Report no 34
- Robertson, J.H.B. (1993) Design and filling of square mesh windows in fish and prawn trawls and seine nets. *Scottish Fisheries Information Pamphlet* no 20
- Kunjipalu, K.K. and Varghese, M.D. and Kesavan Nair, A.K. (1994) Studies on square mesh cod end in Trawls I studies with 20 mm mesh size. *Fish. Technol.* **31**, pp. 112-117.
- Robertson J.H.B., Emslic D.C., Ballantyne K.A. and Chapman C.J (1986) Square and diamond mesh trawl cod end trials in Nephrops norvegicus. ICES council meeting Copenhagen 14 pp.
- Silvestre, G.T. (1986) Preliminary analysis of the growth, mortality and yield per recruit of ten trawl caught species from Samar Sea, Phillipines, Dept. Mar. Fish Tech. rep. 7 pp. 1-41
- Sparre, P., Ursin, E. and Venema, S.C. (1989) Introduction to tropical fish stock assessment. FAO Fish. Tech. Pap. 306/1: 337 p.
- Stergiou, K.I., Petrakin., G., Politou, C.Y., Christou, E. D., Karkani. M., Machennan, D.N. and Ferro R.S.T. (1994) Selectivity of Square and Diamond codends. Final report Contract no MPD92/20 EC) Stergiou and Co., Athens, Nov 1994, 75p
- Varghese, M.D., Manohardoss, R.S. and Rani, A.A. (1988) Selectivity of trawls with reference to Square and Diamond mesh cod ends. *Appl. Fish. Aquac.* 1, pp. 95-98.

- Varghese M.D. and Kunjipalu K.K. and Nair A.K.K. (1996) Studies on Square mesh codend in Trawls. 2. Observations with 20 mm mesh size. *Fish. Technol.* **33**, pp. 96-100
- Walsh, S.J., Millar, R.B., Copper, C.G. and Hickey, W.M. (1992) Codend selection in
- American plaice: diamond versus square mesh, *Fish. Res.* **13**: pp. 235-254
- Wileman, D.A., Ferro, R.S.T., Fonteyne, R. and R.B. Millar (Eds.) (1996) Manual of Methods of Measuring the Selectivity of Towed Fishing Gears, ICES Cooperative Research Report 215: 126 p.