Bacteriological Quality of Fresh and Ice-stored Farmed *Macrobrachium rosenbergii* from Central Kerala

K.V. Lalitha* and P.K. Surendran

Microbiology, Fermentation & Biotechnology Division, Central Institute Fisheries Technology, Cochin-682029, India.

Farmed freshwater Scampi (*Macrobrachium rosenbergii* de Man) collected from four different farms in central Kerala were analysed for bacteriological quality immediately after harvest and after icing for two weeks. Aerobic mesophilic bacteria (TPC), faecal streptococci, faecal coliforms, *Escherichia coli* and *Staphylococcus aureus* were enumerated. Total aerobic mesophilic bacterial counts (TPC) on fresh prawn (whole) were of the order of 10⁶ to 10⁷ cfu g⁻¹. The TPC of fresh and ice stored prawn (whole and headless) were within the acceptable limit. The levels of faecal streptococci and faecal coliforms in fresh M. rosenbergii were above the acceptable limits. However, faecal coliform and E. coli numbers were within the limit (<100 cfu g⁻¹) in deheaded prawn during iced storage. Presence of excessively high TPC and faecal streptococci numbers has been a major microbiological problem in freshwater prawn. This study revealed that *A. hydrophila*, *A. veronii biovar sobria* and Enterococci grew well at refrigerated temperatures. *A. hydrophila*, *A. veronii biovar sobria*, *S. putrefaciens* and *Pseudomonas* were identified as potent spoilers of farmed *M. rosenbergii*.

Key words: Microbial quality, spoilage flora, Fresh, iced-stored, Macrobrachium rosenbergii, Kerala.

Freshwater prawn (Macrobrachium rosenbergii de Man) commercially known as "scampi", has good demand in export and domestic market (Marine **Products** Development Authority, MPEDA, 2001). Microbial growth and activity in fresh seafood are the main factors associated with quality deterioration, spoilage and economic loss (Zhuang et. al., 1996). Therefore, identification of the spoilage associations facilitates the development of methods to improve quality and to extend shelf life of these products (Dalgaard, 2000; Leisner & Gram, 2000). It is common practice to store shrimp in ice (at 0°C) to extend the shelf-life.

Spoilage of fresh or refrigerated fish and

prawn under aerobic storage conditions is attributed largely to growth and metabolic activities of bacteria (Cann, 1977., Reilly et. al. 1984., Reilly & Dangla, 1986., Leitào & Rios, 2000., Shamshad et. al., 2000) mainly Gramnegative psychrotrophic organisms such as Pseudomonas, Shewanella and Flavobacterium spp. (Hubbs,1991). The microflora responsible for spoilage of fresh fish/shrimp changes with changes in storage temperature (Gram et. al., 1987). Farming practices such as fertilization and supplementary feeding imposes a high probability of contamination on the cultured prawn.

The microflora of farmed fresh M. rosenbergii have been reported (Surendran et. al.,

^{*}Corresponding author

1995., Jayasekharan & Ayyappan, 2002., Lalitha & Surendran 2003, 2004). The changes in biochemical and sensory quality characteristics during ice storage and shelf life have been reported on wild caught (Joseph et. al., 1992) and cultured scampi (Angel et. al., 1981, 1985., Rodrigues et. al., 2000., Ninan et. al., 2003). However, a few studies have been published on the changes in the microflora associated with ice stored cultured scampi from Israel (Angel et. al. 1981, 1985), Brazil (Leitào & Rios, 2000) and India (Lalitha &Surendran, 2006). The actual spoilage process and spoilage microflora associated with the freshwater prawn has not been extensively studied. Since the culture of the freshwater prawn is a commercial activity in Kerala and in several other parts of India, the information on the spoilage flora associated with M. rosenbergii reared in freshwater farms in Kerala is necessary in order to develop methods to control spoilage and to improve quality and to extend shelf life.

The purpose of the present study was to determine the microbial associations with fresh and ice stored farmed *M. rosenbergii* and to identify the spoilage flora to develop methods to improve the quality and to extend the shelf life.

Materials and Methods

Farmed freshwater Scampi (Macrobrachium rosenbergii) were collected (ca. 20 prawn/kg) from four different farms in central Kerala. Samples were packed in sterile polythene pouches, kept on ice in insulated boxes and transported within 3hrs after being caught. On arrival at the laboratory, each prawn sample (M. rosenbergii) was divided to two lots. First lot was kept as whole shrimp. Second lot was deheaded. The two lots were iced in two insulated boxes in 1:1 ice to fish ratio. Ice was continuously replaced and water removed. Two independent storage experiments were conducted each prawn sample. for

Bacteriological quality was analyzed for whole and deheaded prawn immediately after harvest and after icing for two weeks. On each sampling day, 4-5 prawn were analysed.

Samples of muscle tissue (10g) were aseptically taken and transferred to a stomacher bag (Seward Medical, London, UK), 90 ml of physiological saline (Nacl,0.85% w/v) was added, and the mixture was homogenized for 30s with a stomacher (Lab blender 400, Seward Medical). Samples (1ml) of serial dilutions of prawn homogenates were plated on agar or poured in to tubes for MPN method.

Samples (1ml) of serial dilutions of prawn homogenates were plated on Tryptone Soya Agar (TSA Oxoid, UK), incubated at 30°C for 2d for determination of total aerobic mesophilic counts. Counts of Faecal streptococci and *Staphylococcus aureus* were determined by the plating method and counts of total coliforms, faecal coliforms, *Escherichia coli* and *Clostridium perfringens* by the three tube MPN method (FDA,1998., West, 1989).

A total of 86 bacterial cultures were isolated from prawn. Colonies were picked from TSA plates sampled from the fresh and ice stored fish. All colonies from a sector of the plate or all colonies from a whole plate were isolated, purified and stored on TSA slants. The strains were tested for Gram reaction, catalase and oxidase reactions, motility oxidation/ fermentation test and presence of spores. They were then grouped according to the taxonomic schemes of Bergey's Manual of Systematic Bacteriology (Krieg & Holt, 1984; Sneath et. al.,1986) and further tested for the most relevant characteristics of each group and identified using the schemes proposed by Dainty et. al., (1979) and Valera & Esteve, (2002).

Results

The initial aerobic mesophilic bacterial counts (TPC) at 30°C on fresh whole and

headless prawn were in the range of 6.0-7.0 and 5.0-6.0 \log_{10} cfu g⁻¹ respectively (Fig. 1 and 2). After two weeks storage in ice, the mesophilic counts on whole and deheaded prawn were 5.7-6.3 x -10 5 cfu g⁻¹. A reduction was noticed in the TPC (80-90%) on whole shrimp, probably due to the washing effect on the surface microorganisms.

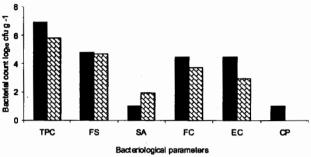


Fig. 1. Bacteriological quality of Macrobrachium rosenbergii (whole) from freshwater farms located at central Kerala

fresh Iced

TPC-Aerobic count, FS-faecal streptococci, SA-S. aureus, FC-Faecal coliforms, EC-E. coli, CP-C. perfringens

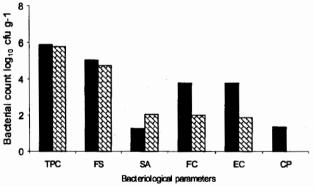


Fig. 2. Bacteriological quality of fresh and ice stored Macrobrachium rosenbergii (headless) from freshwater farms located at central Kerala

fresh

TPC-Aerobic count, FS-faecal streptococci, SA-S. aureus, FC. Faecal coliforms, EC-E. coli, CP-C. perfringens

For frozen raw shrimp, the microbiological limits proposed by the ICMSF (1998) for aerobic plate counts at 30°C are $m = 5.69 \log_{10}$ and M = 7.0log₁₀ cfu g⁻¹. The TPC values for farmed fresh prawn immediately after harvest were close to the upper limit of acceptability of frozen raw shrimp as defined by ICMSF even after keeping on ice and immediate transport to the laboratory and it is indicative of high bacterial load on fresh prawn. However, the metallic sheen, iridescence of the skin of prawn as well as glossy, bright red gills possessing shellfish odors indicate extreme freshness and good quality prawn. The high TPC values of freshwater prawn was not unusual when compared to other data from Israel (Angel et. al., 1981, 1985) and Brazil (Leitào & Rios, 2000). Scampi samples from a processing plant in Kakinada harboured high microbial load and APC was >105 cfu/g in 80% of samples of whole prawn and 50% samples of headless prawn (International Atomic Energy Agency IAEA 2005). High bacterial loads imply that the products need special handling and processing to reduce the bacterial load. Buras et. al. (1987) have shown that bacterial levels of pond-raised fish may increase considerably in edible tissues after a threshold level has been surpassed in the environment. In the present study, the aerobic mesophilic counts on prawn stored at 0°C were lower than the recommended limits (7.0 log₁₀ cfu g-1) even after 14 days storage. However, the head started to separate from the body after two weeks of storage at 0°C.

The faecal coliform and Escherichia coli counts on fresh prawn (whole and headless) ranged from 2- 4 log₁₀ cfu g⁻¹. On icing, their numbers were reduced to < 2 log₁₀ cfu g⁻¹ in headless prawn (Fig.1 and 2.). Faecal coliforms and E. coli are considered particularly useful indicators of potentially hazardous contamination and mishandling of fish and fish products . E. coli limits proposed for frozen raw shrimp by the ICMSF (1998) are m=11 and M=500 cfu g⁻¹ or cm ² and these limits are often considered as minimal reference values.

The high numbers of coliforms, faecal coliforms and E. coli in freshwater prawn samples indicated that the prawn farms were polluted. In contrast, these microorganisms were either absent or present in low numbers in marine shrimp. The high indicator bacterial load on scampi could be attributed to the application of organic manure (cow dung, poultry manure) to fertilize the pond and also to feeding with animal protein sources like clam meat and trash fish. Angel *et. al.*, (1981) reported *Enterobacteriaceae* counts of 4.7 and 4.4 log₁₀ cfu g⁻¹ for fresh and ice stored (14 days) *M. rosenbergii* from Israel ponds. However, faecal coliforms (1 log₁₀ cfu g⁻¹) were detected only on head and not in tail of fresh prawn and also in tail of ice stored prawn. *E. coli* was reported at levels of < 20 cfu/g in 50% of whole and 25% of headless Scampi samples from a processing plant in Kakinada (IAEA, 2005).

Faecal streptococci counts on prawn were not significantly reduced from 4-5 log₁₀ cfu g⁻¹ during two weeks storage at 0°C. Enterococci were identified as *Enterococcus faecalis* and *E. faecium*. Such high load of Enterococci in edible tissues of pond - raised prawn might have come from the environment after a threshold level has been surpassed as reported earlier for pond raised fish (Buras *et. al.*, 1987). Growth of these organisms in prawn becomes a safety issue if products are severely temperature abused.

Significant numbers of faecal coliforms and enterococci were previously reported in tiger prawn farms in India (Surendran et. al., 1995) and Philippines (Reilly et. al., 1984). When present in high levels in ready -to -eat foods, Enterococcus species may represent a health risk to consumers (Franz et. al., 1999). Pathogenic Staphylococci and Enterococci cause severe infections in humans (Andrew & Mitchell, 1997) and the increasing emergence of acquired antibiotic resistance among these group of grampositive cocci and transfer antibiotic resistance genes to other pathogens (Bonadio et. al., 2000) is a major concern. Enterococcus species isolated from M. rosenbergii can harbor various antimicrobial resistance and virulence traits.

Staphylococcus aureus and C.perfringens counts were 10¹ cfu g⁻¹ in whole prawn. Although staphylococci are considered mesophilic bacteria, significant growth (0.6-0.8 log increase) of these organisms in freshwater prawn during storage at 0°C were noticed as reported earlier in trout (González-Rodríguez et. al., 2001). Coagulase positive Staphylococci counts were within the limits (100 cfu g⁻¹) of acceptability of frozen raw shrimp as defined by ICMSF (1998). S. aureus count of 10¹ cfu g⁻¹ was reported earlier for farm reared M.rosenbergii (Jayasekaran & Ayyappan, 2002). C. perfringens numbers were reduced during two weeks storage in ice.

A total of 86 strains were isolated from TSA plates (30°C) sampled from the fresh and ice stored *M.rosenbergii*. Of the 36 strains from fresh prawn, majority of the isolates were gramnegative rods. *Enterobacteriaceae*, *Aeromonadaceae* and genera *Pseudomonas* and *Moraxella* were dominant (Fig. 3). Gram-positives were also represented by genera *Enterococcus*, *Micrococcus*, *Bacillus*, *Corynebacterium* and *Arthrobacter*. *Enterobacteriaceae* were identified as *Enterobacter*, *Klebsiella* and *Citrobacter*. Bacteria of *Aeromonadaceae* family, *Aeromonas hydrophila*, *A. veronii* biovar *sobria*, *A. veronii biovar veronii* and *A. jandaei* spp. were predominant in the

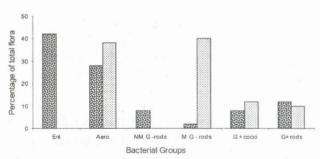


Fig. 3. Major bacterial groups on fresh and ice stored

Macrobrachium rosenbergii

Entering fresh

Iced

Ent-Enterobacteriaceae, Aeromonadaceae, N MG-rods-non motile Gram- ive rods, MG-rods-motile Gram-ive rods, G+ cocci - Gram + ive cocci, G+rods-rods-Gram + ive rods

freshwater prawn microflora. They were proteolytic, amylolytic and hemolytic as reported earlier by González et. al., (2001) in freshwater fish. A. hydrophila and A. veronii biovar sobria has been linked to gastrointestinal infections and cases of human wound infections by A. hydrophila has been reported (Kirov, 2001, Hanninen et. al., 1997). Enterobacter, Citrobacter, Enterococcus and Micrococcus strains were capable of producing low amounts of hydrogen sulphide indicating low spoiling activity. The predominance of Enterobacteriaceae and Aeromonadaceae in the microflora was reported earlier for farmed freshwater prawn (Leitào and Rios, 2000) and for farmed freshwater fish (González-Rodríguez et. al., 2001 González et. al., 2001) The influence of rearing practices (pond fertilization using animal manure and feeding clam meat) and organic matter levels in rearing ponds on the microbial load and microflora associated with the farmed fish was reported earlier (González et. al., 1999) and shrimp (Reilly et. al. 1985; Surendran et. al. 1995., Leitào & Rios, 2000).

The microbiological associations of fresh and ice stored whole prawn were found to vary considerably. Shewanella, Moraxella and Pseudomonas constituted a small proportion of the total aerobic flora of fresh prawn. Majority (78%) of the strains isolated after two week in ice were gram negative (Fig. 3). The population of Aeromonas spp. increased. However, the abundance of Enterobacteriaceae group, which represented a consistant part of the microflora of fresh prawn, decreased during ice storage. There was again a shift in the microflora after 2 weeks in ice and nearly 80% of the total flora belonging to genera Aeromonas, Shewanella, Moraxella and Pseudomonas. Of the 50 bacterial isolates identified from ice stored prawn, 19 belonged to Aeromonadaceae (A.hydrophila and A. veronii biovar sobria), 8 were identified as Shewanella putrefaciens and twelve were

identified as Pseudomonas. Motile Gram-negative rods (aeromonads, S. putrefaciens, Pseudomonas), the most prolific organisms during the ice storage of fish and pond reared P.monodon (Reilly et al., 1984., Reilly & Dangla, 1986) were found in significant numbers after two weeks storage. This may be the reason for the discolouration inside the shrimp cephalothorax and separation of the head from the body after two weeks on ice storage even when the aerobic mesophilic counts remained 106-107 cfu g-1. Those bacterial groups were psychrotrophic and proteolytic which indicates their role in the spoilage of ice stored freshwater prawn. The minimum growth temperature of A.hydrophila varied from 0.1 to + 1.2°C (Walker, 1990). Exotoxin production by A.hydrophila has been reported (Kirov, 2001) in food slurries (prawn, scallop, fish) held at refrigeration temperatures. The role of A.hydrophila in food-borne gastroenteritis is not firmly established. On the other hand, potent enzyme activity, growth at low temperature and ability to utilize sulphur containing amino acids coupled with offensive off-odours and production of H₂S establish A.hydrophila and A. veronii biovar sobria as potent spoilers of ice stored freshwater prawn. Motile aeromonads (A. hydrophila and A. veronii biovar sobria) are well established as a component of the spoilage flora of freshwater fish (González et. al., 2001) and pond reared shrimp Penaeus monodon (Reilly et. al., 1984; Reilly & Dangla, 1986) at refrigeration temperatures.

Presence of excessively high TPC, faecal streptococci, faecal coliform and *E. coli* counts has been a major microbiological quality problem in farmed freshwater prawn. However, numbers of faecal coliform and *E. coli* were within the limit (<100 cfu g⁻¹) and *C. perfringens* was significantly reduced in deheaded prawn during iced storage. The present study has shown that *A. hydrophila*, *A. veronii* biovar *sobria* and Enterococci grew well at refrigerated

temperatures and therefore, additional preservation techniques are necessary to arrest the growth of these organisms on ice storage of freshwater prawn. Our results also indicates that A. hydrophila, A. veronii biovar sobria, S. putrefaciens and Pseudomonas that are the potent spoilers of fish, are present in abundant numbers on farmed M. rosenbergii. It is noteworthy that at the end of storage period of 14 days, there was no indication of off- odors. This points to the need for a better understanding of the complex interaction between SSO and substrate, to throw more light on the spoilage pattern of M. rosenbergii.

References

- Andrew, P.W. and Mitchell, T.J. (1997). The Biology of Streptococci and Enterococci.

 Journal of Applied Bacteriology Symposium Supplement Vol. 83, The Society for Applied Bacteriology, Blackwell Science Ltd. Oxford U.K.
- Angel, S., Bhasker, D., Kanner, J. and Juven, B.J. (1981). Assessment of shelf life of Fresh water prawns stored at 0°C. *J. Food Technol.***16**, pp357-366.
- Angel, S., Weinberg, Z.G., Juven, B.J. and Lindner, P. (1985). Quality changes in freshwater prawn, *Macrobrachium rosenbergii* during storage in ice. *J:Food Technol.* **20**, pp553-560.
- Bonadio, M., Meini, M., Tagliaferri, E., Gigli, C. and Vigna, A. (2000). Enterococcal glycopeptide resistance at an Italian teaching hospital . *J. Antimicro. Chemo.* **46**, pp129-131.
- Buras, N., Duek, L., Niv, S., Hepher, B. and Sandbank, E. (1987). Microbiological aspects of fish grown in treated waste water. *Water Res.* **21**, pp 1-10.

- Cann, D.C. (1977). Bacteriology of shellfish with reference to International trade. In Proceedings of Tropical Products Institute Conference on Handling Processing and Marketing of Tropical Fish. London, Torry Research Station, 511p.
- Dainty, R.H., Shaw, B.G., Hardinger, C.D. and Michanie, S. (1979). The spoilage of vacuum packaged beef by cold tolerant bacteria, In *Cold tolerant bacteria in spoilage and the environment* (Russell & R. Fuller, Eds.). New York: Academic Press, pp83-110.
- Dalgaard, P. (2000), Fresh and Lightly Preserved Seafood. In *Shelf-life Evaluation of Foods* (Man, C.M.D. and Jones, A.A Eds.). London: Aspen Publishers, pp110-139.
- Food and Drug Administration. (1998). FDA

 Bacteriological Analytical Manual. 8th
 Edition. AOAC International,
 Gaithersburg, MD.
- Franz, C.M.A.P., Holzapfel, W.H. and Stiles, M.E. (1999). Enterococci at the cross roads of food safety. *Int. J. Food Microbiol.* **47**, pp1-24.
- González, C.J., Lòpez, T.M., García, M.L., Prieto, M. and Otero, A. (1999). Bacterial microflora of wild brown trout (*Salmo trutta*), wild pike (*Esox lucius*), and aquacultured rainbow trout (*Oncorhynchus mykiss*). *J. Food Protect*. **62**, pp1270-1277.
- González C.J., Santos J. A., Garcia-Lòpez .M.L., González N. and Otero A. (2001). Mesophilic Aeromonads in Wild and Aquacultured Freshwater Fish. *J.Food Protect.* **64**, pp687-691.
- González-Rodríguez, M.N., Sanz, J.J., Santos, J.A..., Otero, A. and García-López, M.L. (2001) Bacteriological quality of

- aquacultured freshwater fish portions in prepackaged trays stored at 3°C. *J. Food Protect.* **64**, pp1399-1404.
- Gram, L., Trolle, G. and Huss, H.H (1987).

 Detection of specific spoilage bacteria from fish stored at low (0°C) and high (20°C) temperatures. *Int. J. Food Microbiol.* 4, pp65-72.
- Hanninen M.L., Oivanen P.and Hirvela-Koski V. (1997) *Aeromonas* species in fish, fish eggs, shrimp and freshwater. *Int. J. Food Microbiol.* 34, pp17–26
- Hubbs, J.(1991) Fish: microbiological spoilage and safety. *Food Sci. Technol.* Today, **5**, pp166-173.
- International Atomic Energy Agency (IAEA) (2005). Determination of human pathogen profiles in food by quality assured microbial assays. Proceedings of a final Research Coordination Meeting held in Mexico City, Mexico, 22–26 July 2002, IAEA Austria.
- ICMSF (International Commission on Microbiological Specifications for Foods). (1998). Microorganisms in Foods. 6. Microbial Ecology of Food Commodities. Blackie Academic & Professional, Baltimore.
- Jayasekaran , G. and Ayyappan, S. (2002). Postharvest Microbiology of farm-reared tropical freshwater prawn (Macrobrachium rosenbergii). J. Food Sci. 67, pp1859-1861.
- Joseph, J., Gupta, S.S. and Prabhu, P.V. (1992).

 Handling amd processing of freshwater prawn, *Macrobrachium rosenbergii*. In Proc. Nat. Symp. on of Freshwater prawns. (Silas E.G. Ed.). Kerala Agricultural University, Trissur, Kerala, pp247-250.

- Kirov S.M. (2001) Aeromonas and Plesiomonas species. In: Food Microbiology: Fundamentals and Frontiers (Doyle, M.P., Beuchat L. & Montiville, T, Eds.). Washington, D.C: ASM Press, pp301-327.
- Krieg N.R. and Holt J.G. (1984). Bergey's Manual of Systematic Bacteriology. Baltimore, USA: Williams and Wilkins, Vol.1, 964 p.
- Lalitha, K.V. and Surendran, P.K. (2003). Effect of handling and chlorine treatment on the microbial quality of farmed freshwater scampi (Macrobrachium rosenbergii). Paper presented at the International Symposium on Freshwater Prawns held at College of Fisheries Panangad, Cochin, from 21st to 23rd August 2003.
- Lalitha, K.V. and Surendran, P.K. (2004).

 Bacterial microflora associated with farmed freshwater prawn Macrobrachium rosenbergii (de Man) and the aquaculture environment. Aqua. Res. 35, pp1-7.
- Lalitha, K.V. and P.K. Surendran (2006).

 Microbiological changes in farm reared freshwater prawn (*Macrobrachium rosenbergii* de Man) in ice. *Food Control*. (In Press).
- Leisner, J.J. and Gram, I.(2000). Spoilage of Fish. In *Encyclopedia of Food Microbiology* (Robinson, R.K., Batt, C.A. & Patel, P.D.). San Diego: Academic Press, pp 813-820.
- Leitào, M.F.F. and Rios D.P.A. (2000). Microbiological and chemical changes in Freshwater Prawn (*Macrobrachium rosenbergii*) stored under refrigeration. *Braz. J. Microbiol.* **31**, pp178-183.

- Marine Products Export Development Authority. (2001). Freshwater Prawn Culture in India-An overview. MPEDA News letter, 6, pp21-25.
- Ninan, G., Bindu, J., Asok Kumar, K. and Joseph, J. (2003). Biochemical changes in the chilled storage of Macrobrachium rosenbergii (de Man) and the evaluation of the freshness. Paper presented at the International Symposium on Freshwater Prawns held at College of Fisheries Panangad, cochin, from 21st to 23rd August 2003.
- Reilly A., Bernate M.A. and Dangla E. (1984) Storage stability of brackishwater prawns during processing for export. Food Technol. Australia, 36, pp282-286.
- Reilly A. and Dangla E. (1986). Post harvest spoilage of shrimp (*Penaeus monodon*).In *The First Asian Fisheries Society* (Maclean, J.L., Dizon, L.B. & Hosillo, L.V. Eds.). Manila, Philippines, pp455-458.
- Rodrigues, F., Basu, S. and Hazra, A.(2000). Ice storage characteristics of cultured *M. Rosenbergii* (de Man). *J. Indian Fish. Asso.* **27**, pp55-63.
- Shamshad, S.I., Nisa, K.V., Riaz, M., Zuberi, R. and Quadri, R.B. (1990). Shelf-life of shrimp (*Peneaeus merguiensis*) stored at different temperatures. *J. Food Sci.* **55**, pp1201-1205.
- Sneath P.H.A., Mair N.S., Sharpe M.E. and Holt J.G. (1986). *Bergey's Manual of Systematic Bacteriology*. vol.2, Baltimore, USA: Williams and Wilkins.

- Surendran P.K., Thampuran N. and Gopakumar K. (1995). Microbial profile of cultured fishes and prawns viz a viz their spoilage and contamination. FAO Fisheries Report No. 514 supplement, FAO, Rome, pp. 1-12.
- Valera L. and Esteve C. (2002). Phenotypic study by numerical taxonomy of strains belonging to the genus *Aeromonas*. *J. Applied Bacteriol*. **93**, pp77- 95.
- Walker, S.J. (1990). Growth characteristics of food poisoning organisms at suboptimal temperatures. In: *Processing and quality of foods vol.3. Chilled foods: The revolutiion in freshness* (P. Zeuthen., J.C. Cheftel., C. Eriksson., T.R., Gormley., P. Linko., & K. Paulus Eds). London: Elsevier Applied Science, pp3.159-3.162.
- West P.A. (1989). Human pathogens and Public health indicator organisms in shellfish. Chap.12. In Methods for the Microbiological examination of fish and shellfish. (Austin, B. and Austin, D.A. Eds.). Halsted Press, Chichester, pp 273-308.
- Zhuang, R. Y., Huang, Y. W. and Beuchat, L. R. (1996). Quality changes during refrigerated storage of packaged shrimp and catfish fillets treated with sodium acetate, sodiumlactate or propyl gallate, J. Food Sci. 64, pp241-244.