Fishery Technology 2006, Vol. 43(1) pp : 65-72

The Effect of Dietary Lipid Levels on the Nutrition and Growth of Juveniles of *Macrobrachium rosenbergii* (de Man)

Hari B. and B. Madhusoodana Kurup*

Post Graduate Department of Zoology, Sree Narayana College, Nattika, Thrissur, Kerala. Pin - 680 566

The effect of dietary lipid levels on the nutrition and biochemical composition of the giant freshwater prawn Macrobrachium rosenbergii (de Man) was studied by incorporating graded levels of cod liver oil in semi-purified diets to provide 2,4,6,8,10,12, and 15 % lipid level. A diet devoid of lipid content was used as control diet. Prawns with 63±10 mg initial body weight were used for the study. Maximum weight gain, better feed conversion and higher protein efficiency ratio were recorded in M. rosenbergii juveniles fed with diet containing 6 and 8% dietary lipid level. After 42 days, significantly higher (p< 0.05) weight gain was recorded in 4 to 10% dietary levels of lipid than control and 2% lipid diet. However, there exist no statistically significant difference in weight gain, specific growth rate, FCR and protein efficiency ratio among 4 to 10% dietary treatments. The broken line model suggests a requirement of 4.4% lipid level in the diets of M. rosenbergii juveniles. Moreover, the results of the present study bring out the negative impact of the over supplementation of lipid (12 and 15%) in the diets of M. rosenbergii. The dietary lipid did not affect the survival of prawns and it ranged from 66.11 to 91.11%, however, an addition of 4% dietary lipid increased the survival of prawn to 82.22%. The RNA, DNA and nucleic acid ratios of the muscle tissue of prawns fed with 6 and 8% dietary lipid level were significantly (p< 0.05) higher than that of control diet, 2 and 4% dietary lipid levels. A positive correlation was recorded between the dietary and carcass lipid level, however an inverse relationship was noticed between carcass lipid and moisture content. The results of study revealed that dietary lipid had an important role on the nutrition and biochemical composition of juveniles of M.rosenbergii.

Key words: Macrobrachium rosenbergii, dietary lipid level, lipid requirement.

Lipids are indispensable nutrients for the growth of shrimps and prawns (Kanazawa, 1985) since they form a major source of metabolic energy in prawn and fish. Being highly digestible, lipids have greater sparing action than dietary carbohydrates for protein (Ellis &Reigh, 1991) and they undertake a definite role in the feed utilization also. The levels of lipid used in a diet also vary considerably as per convenience and availability apart from considering the dietary requirements of the target animal. However, information is scanty with regard to the lipid requirements of fresh water prawn *M. rosenbergii* (New,

1976). Adequate knowledge on the nutritional requirements of M. rosenbergii is found inevitable for the development of a cost effective feed that can be formulated with some flexibility in the choice of ingredients. Nutritional studies conducted earlier in other crustaceans indicated that the optimal lipid range varies from 5 to 8% of the diet and also found that higher levels of dietary lipid resulted in lower growth rate (Forster & Beard, 1973; Kanawaza et al., 1977; Deshimaru et al., 1979; Davis & Robinson, 1986). Sheen & D'Abramo (1991) reported in M. rosenbergii that a dietary lipid level ranging from 2 to 10% under a wide range

^{*} Corresponding author: Professor, School of Industrial Fisheries, Cochin University of Science and Technology, Fine Arts Avenue, Cochin - 682 016, India. (madhukurup@hotmail.com)

of dietary lipid carbohydrate ratio was found to be satisfactory.

The present study was undertaken to assess the quantitative lipid requirement of *M. rosenbergii* using cod liver oil as dietary lipid source on the growth, survival, feed consumption ratio, protein efficiency ratio and carcass composition of juveniles of *M. rosenbergii*.

Materials and Methods

Iso-nitrogenous and iso-energetic diets were formulated for both the experiments following the semi-purified feed formula (Table 1) in which fat free casein was used as the major protein source. The lipid levels ranged from 0 - 15% of dry weight of the diets. Cod liver oil was used as lipid source. Ingredients were procured from authorised dealers while Cod Liver oil was purchased from Universal Medicare Limited, Sion-Trombay Road, Deonar, Mumbai-400 088.

The feed ingredients were weighed and mechanically homogenised. Butylated hydroxy toluene (BHT) at 0.005 g/100g of dry diet was first mixed with lipid source before adding it in to the dry mixture. Warm water (75 –80° C) was added and mixed thoroughly by hand until a consistency for extrusion was achieved. Diets were hand extruded through a 2mm diameter die. The spaghetti- like strands were steam cooked for 5 minutes and then dried in an electric oven till 8 - 10 % moisture content was obtained. Dried feed strands were broken in to 3 mm pellets and stored in air tight plastic containers at - 4° C. Crude protein, crude lipid, crude fibre, ash and moisture were determined following standard procedures of AOAC (1990) and nitrogen free extract (NFE) was estimated by difference. Digestible dietary energy values were estimated using standard physiological fuel values of 4 kcal/g for protein and carbohydrate and 9 kcal/g for lipid (Maynard et al., 1979).

The feeding experiment was conducted following the randomized block design in

order to eliminate the influence of position and place of the tanks among different For each set of treatment, triplicates were maintained. M. rosenbergii juveniles reared in Hatchery Complex of School of Industrial Fisheries with an average weight of 0.063±0.01g were selected and stocked in 100 lit FRP tanks at a stocking density of 15 prawns/tank. In all the experimental groups the animals were fed ad libitum for the first week of the experiment at four times a day at 8 AM, 11 AM, 8 PM and at 11 PM to avoid feed wastage and deterioration of water quality. From second week onwards, the pre weighed experimental diets (approximately 15% of the body weight) were placed in petri dishes and unconsumed feed was siphoned out and washed gently with distilled water and filtered through a pre weighed filter paper and dried to constant weight in an electric oven at 60 ° C. Dechlorinated tap water was used as the rearing medium and the level of the water in all experimental tanks were maintained same and 50 % water was exchanged daily at 10 AM. A sponge mope was used to scrub the sides of the tanks on alternate days for any algae or bacterial growth. Water temperature and pH were measured using a mercuric thermometer and pH meter respectively. Dissolved oxygen and ammonia were determined following the standard procedures of APHA (1995).

The initial and final total length of the experimental animal was measured using a vernier caliper from the tip of the rostrum to the tip of the telson. The initial and final live weight of the animals were measured to the nearest 0.0001 g by weighing the individual group of animals in each treatment after removing the water on their body with tissue paper. The growth of the animal in length and live weight was measured with the help of the following standard formulae:

Growth =
(<u>Final measurement - Initial measurement</u>) x100
Initial measurement

Specific Growth Rate (SGR) = (log final weight-log initial weight) x100

Days of experiment

Feed Conversion Ratio (FCR) =

<u>Feed consumed (dry weight)</u>

Live weight gain (wet weight)

Protein Efficiency Ratio (PER) =

<u>Live weight gain</u>

Protein consumed in dry weight

Survival % =

100- (<u>Initial No of prawn- Final No. of prawn</u>) x 100
Initial No. of Prawn

Approximately 50 prawns were collected at the beginning of the experiment and were stored at -10 °C for the determination of whole body proximate composition from carcass. The feeding experiment was carried out for a period of 42 days and after the termination of experiment all the prawns were weighed, collected and pooled according to the experimental treatments and then sampled for whole body proximate composition analysis and lipase enzyme analysis. Carcass composition analysis for moisture, crude protein, crude lipid and ash were carried out following the standard methodology of AOAC (1990). The nucleic acid content of the muscle tissue of the prawns was estimated following the method of Schneider (1957). The hepatopancreas of the prawn was dissected out at 4 °C and crude enzyme extracts were prepared and then estimated for the total and specific lipase enzyme activity following the standard procedure of Bier (1955).

All the data (except carcass composition analysis) were subjected to analysis of variance (ANOVA) and Duncan's multiple range test to determine the difference between the treatment means (SPSS 7.5 package for WINDOWS). Results were treated for its statistical significance at 0.05 probability level.

Results and Discussion

Water quality parameters like water temperature, pH, dissolved oxygen and ammonia ranged from 27.5 to 29.0°C, 7.3 to 8.2, 5.38 to 6.78 mg/l and <0.2 ppm respectively through out the experimental period. Proximate composition, digestible energy and lipid to carbohydrate ratio of the experimental diets containing different dietary lipid are given in Table 2. The results of the present study emphasize the essentiality of lipid in the diet and also unravel the effect of different levels of lipid on weight gain, feed conversion ratio and protein efficiency ratio in the juveniles of rosenbergii. The initial and final length, weight and percentage gain in live body length and weight the specific growth rate, feed conversion ratio and survival of M. rosenbergii fed with different dietary lipid levels are shown in Table 3. The analysis of variance of the weight gain of prawns fed with varying dietary lipid level showed significant variation (p<0.05). Significant weight increase was encountered in prawns fed with diet L8 followed by L6 and L4 when compared to L2 and L0.

No statistically significant difference (p<0.05) was observed in the specific growth rate among those fed with L4, L6, L8 and L10 diets. Relatively lower SGR value was obtained in L0, which did not vary significantly from the values registered in respect of L2 and L15. Growth of M. rosenbergii juveniles fed with lipid free diet was very poor, however, it was improved significantly by the inclusion of lipids in diets at a level of 4%. Significant increase in weight gain was achieved upon further increase in the level of dietary lipid, even up to 12%. Results of the present study showed that the minimum level of dietary lipid required for optimal growth of M. rosenbergii is 4%. Sheen and D'Abramo (1991) while feeding juveniles of M. rosenbergii with different dietary levels of cod liver and corn oil mixture, concluded that a dietary lipid level

HARI & KURUP

Table 1. Percentage of ingredients in experimental diets with varying dietary lipid levels

Ingredients	LO	L2	L4	Experimer L6	ntal diets L8	L10	L12	L15
9								
Casein	30	30	30	30	30	30	30	30
Starch	38	. 35	32	30	28	26	24	20
Cod liver oil	0	2	4	6	8	10	12	15
Aminoacid mix ^a	3	3	3	3	3	3	3	3
Dextrin	5	5	5	5	5	5	5	5
Gelatin	5	5	5	5	5	5	5	5
Sodium citrate	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3
Mineral & Vitamin mix b	2	2	2	2	2	2	2	2
Choline chloride	1	1	1	1	1	1	1	1
Glucosamine HCl	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80
Vitamin C	0.17	0.17	0.17	0.17	0.17	0.17	0.17	0.17
Cholesterol	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50
Carboxy methyl cellulose	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00
Alpha cellulose	12.23	13.23	14.23	14.23	14.23	14.23	14.23	15.23

^a Amino acid mix - 1:1 ratio of Glycine and Betaine

Ca, 280mg P, 120mg; Cu 0.2 mg; I, 1mg; Fe, 6mg; Mn, 1.2mg; Se, 0.01mg; Zn, 2 mg

ranging from 2-10% gave satisfactory results and this finding is almost comparable with the present results. However, in the present study, maximum growth rate was recorded when dietary lipid level was maintained at 8% followed by 6%, however there exist no statistically significant difference between them and this observation was in full accordance with that of Sheen and D'Abramo (1991) who recorded higher percentage increase in body weight at 6% followed by 8% dietary lipid level. However, in the present study the broken line model of the specific growth rate has a break point at 4.4% dietary lipid level (Fig.1) and this would suggests the exact lipid requirement for M.rosenbergii juveniles for normal growth.

It appears that inclusion of more than 4% lipid in the diet of *M. rosenbergii* resulted in non significant improvement in growth performance of prawns while higher dietary lipid level (15%) showed a synergetic effect on growth performance. This finding shows strong agreement with that of Kanazawa *et*

al. (1977) who used powdered pollack residual oil as a lipid source for *Penaeus japonicus* and found that the body weight was lower when the dietary level was increased to 16%. When the oil content of a diet for *Palaemon serratus* was increased from 7.5 to 15%, the growth rate showed a significant reduction (Forster & Beard, 1973).

The feed conversion ratio worked out in the present study showed significant variations (P<0.05) as lower FCR values were recorded for M. rosenbergii juveniles fed with diet L8 and L6 when compared to diet L0 and L2. The differences in FCR among diets L4 to L15 were not statistically significant (P>0.05). The results of ANOVA did not found show any variation in protein efficiency ratio among the treatments (p>0.05). However, Duncan's test showed significantly higher PER values in diet L8 and L6 in contrast to diets L0 and L2. In higher dietary lipid levels (L12 and L15), the protein efficiency ratio was not found better than that of L4, L6 and L8. Low growth and

^b Mineral and vitamin mix (mg.g⁻¹ mineral and vitamin mix)

Vitamin A, 625IU; Vitamin D3, 6.25IU; Vitamin E, 0.25 mg; niacinamide, 22.5 mg; thiamin mononitrate, 30mg; riboflavin, 30mg; Folic acid, 50mg; Biotin, 10mg; pryidoxin HCl,9mg; D pantothenate, 37.5 mg; Cyanocobalamine, 0.45 mg;

Table 2. Proximate compositon, energy content and protein to energy ratio of diet containing different dietary lipid levels

Experimental Diets	LO	L2	L4	L6	L8	L10	L12	L15
Moisture (%)	8.86	9.45	8.69	9.32	8.79	8.86	9.45	9.15
Crude protein (%)	35.24	35.10	35.16	35.20	35.18	34.98	35.23	34.93
Crude lipid (%)	0.12	2.10	4.17	6.12	8.10	10.20	12.05	15.24
Ash (%)	3.58	3.98	4.23	4.97	4.68	4.69	3.98	4.29
Crude fiber (%)	10.35	11.95	12.75	12.35	12.86	12.56	12.45	13.68
NFE (%) 1	41.85	37.42	35.00	32.04	30.39	28.71	26.84	22.71
Energy (kcal/100g) ²	309.44	308.98	318.17	324.04	335.18	346.56	356.73	367.72

¹ By Difference

Table 3. Weight gain, percentage increase in weight SGR, FCR, PER, survival rate, RNA, DNA, muscale tissue and lipase enzyme activity of hepatopancrease RNA, DNA and nucleic acids ratio of muscle tissue and lipase enzyme activity of hepatopancrease of Macrobrachium rosenbergii juveniles fed with different dietary lipid levels. Mean value with different superscript vary significantly (p<0.05)

	L0	L2	L4	L6	L8	L10	L12	L15
Initial weight (g)	0.063±0.004	0.057±0.001	0.059±0.005	0.063±0.005 -	0.060±0.005	0.059±0.002	0.061±0.007	0.063±0.008
Final weight (g)	0.141±0.027	0.151±0.032	0.210±0.024	0.242 ± 0.033	0.246±0.044	0.231±0.069	0.204 ± 0.042	0.174 ± 0.02
Weight gain (g)	0.078±0.03°	0.094 ± 0.033^{ab}	0.161 ± 0.022^{bcd}	0.179 ± 0.033^{cd}	0.186 ± 0.039^{d}	0.172±0.067 ^{cd}	$0.143 \pm 0.04^{\text{bod}}$	0.112 ± 0.013^{ab}
% Weight gain	125.04±54.74°	164.96±60.9 ^{ab}	271.16±35.67 ^{cd}	286.63±53.14 ^d	310.07 ± 39.86^{d}	289.00±105.5 ^d	232.06±38.93 ^{bcd}	178.43±11.09 ^{ab}
SGR	1.89±0.55°	2.27±0.59°	3.11±0.24 ^{cd}	3.21 ± 0.32^{cd}	3.35±0.23 ^d	3.17 ± 0.70^{cd}	2.85±0.27 ^{abc}	2.44 ± 0.01^{abc}
FCR	3.21±0.06 ^b	3.12 ± 0.02^{h}	2.95 ± 0.18^{ab}	2.82±0.08	2.80±0.16°	3.05±0.09 ^{ab}	3.00±0.19 ^{ab}	2.98 ± 0.23^{ab}
PER	0.66±0.42°	0.67±0.21°	0.94 ± 0.07^{ab}	1.13±0.26 ^b	1.15±0.21 ^b	1.01 ± 0.18^{ab}	0.87±0.09 ^{ab}	0.84 ± 0.06^{ab}
Survival %	66.67±6.67°	68.89±3.85°	82.22±10.18°	86.67±17.64 ^a	86.67±13.33°	91.11±10.18 ^a	84.44±21.43°	75.56±7.70°
RNA (mg/gm wt tissue) DNA	14.49±2.23°	15.91±0.47°	17.09±0.34 ^{bc}	18.42±0.10 ^{bc}	19.58±0.93 ^d	18.61 1.89 ^{cd}	16.78±1.66 ^{abc}	16.06±0.78 ^b
(mg/gm wt tissue)	9.42±0.33 ^a	9.49±0.35°	9.73±0.67 ^a	10.33±0.18 ^b	10.31±0.26 ^b	10.17±0.34 ^{ab}	10.02±0.44 ^{als}	9.93±0.69 ^{ab}
RNA/DNA	1.54±0.26 ^a	1.68±0.02 ^{abc}	1.76 ± 0.11^{bcd}	1.78±0.11 ^d	1.90±0.10 ^d	1.83±0.21 ^d	1.68±0.24 abo	1.62±0.14 ^{ab}
Total Lipase Activity*	0.31±0.020°	0.30±0.03 ^a	0.32±0.02 ^b	$0.44 \pm 0.07^{\circ}$	0.42±0.01°	0.43±0.03°	0.44±0.01°	0.43±0.01°
Specific Lipase activity	** 0.03±0.001°	0.32 ± 0.001^{b}	0.03 ± 0.002^{b}	$0.04 \pm 0.001^{\circ}$	$0.05{\pm}0.001^{\rm de}$	0.05±0.001°	0.05±0.01 ^f	0.04 ± 0.01^{d}

^{* 0.02} N NaOH required/min per g tissue.

reduced protein efficiency ratio in prawns fed with lower lipid levels (0 and 2%) can be attributed to a condition in which the feed and the protein are poorly utilised. This observation shows full agreement with that of Chandge and Raj (1997). From the results of the present study, it can be inferred that lipid at adequate levels can significantly spare protein for growth as already been established in fish by Watanabe (1982).

The dietary lipid level did not influence the survival rate of juvenile prawn and it ranged from 66.67 to 91.11%. However, the survival was low in-group of *M. rosenbergii* fed with lipid free diet L0. Addition of 4% dietary lipid level improved the survival to 82.22%. Diet containing 4,6,8,10 and 12% of dietary lipid showed relatively high survival, on the contrary, comparatively lower survival was encountered in diet with 15% lipid level. Based on the present study it can be inferred that the dietary inclusion level of lipid alone did not affect the survival. Similar results were reported in *M. rosenbergii* fed with different levels of cod liver oil and corn

² Calculated apparent digestible energy= [4(%protein)+9(% lipid)+4(%carbohydrate)]

^{** 0.02}N NaOH required/min/mg protein.

Table 4. Carcass composition analysis of juvenile *Macrobraclium rosenbergii* fed with diets containing varying dietary lipid levels

	Initial	L0	L2	L4 ·	L6	L8	L10	L12	L15
Moisture content (%)	72.32	74.79	74.82	73.85	74.68	74.32	73.1	72.27	71.34
Crude protein (%) *	65.23	65.45	65.84	68.56	70.56	70.94	70.98	69.54	68.95
Crude Lipid (%) *	5.72	5.23	5.81	5.98	6.10	6.07	6.87	7.22	7.72
Ash (%) *	13.96	14.98	14.25	13.86	14.71	14.32	14.05	13.96	14.47

^{*} Dry weight basis

oil mixtures (Sheen & D'Abramo, 1991). In *Penaeus indicus* the survival was affected significantly by dietary lipid level and this was resolved by the an addition of 3% dietary lipid (Chandge & Raj, 1997). In the present study also, supplementation of 4% dietary lipid level had resulted an improvement of the survival rate from 66.67% in fat free diet (L0) to 82.22% when lipid level was maintained at 4%.

RNA, DNA and RNA/DNA ratio of the muscle tissue and total and specific lipase activity of hepatopancreas of M. rosenbergii fed with different dietary lipid sources are shown in Table 3. The RNA content of muscle tissue of M. rosenbergii juveniles showed significant variation (p<0.05) and the highest RNA content was estimated in prawns fed with diet containing 8%. The lowest RNA content was recorded in fat free diet and diet with 2% and 15% lipid level. The nucleic acid ratios in the muscle tissue of M. rosenbergii were also found significantly lower in 0, 2, 4 and 15% dietary lipid level than 6, 8 and 10%. The total and specific lipase activity of hepatopancreas of rosenbergii showed significant difference different among dietary treatments. M.rosenbergii juveniles fed with diet containing 0, 2 and 4% lipid levels showed significantly lower total and specific lipase activity when compared to other dietary treatments and this can be attributed to suboptimal level of dietary lipid levels.

The results of carcass composition analysis of M. rosenbergii fed with different inclusion levels of dietary lipid are presented in Table 4. An increase in the body protein content was recorded in prawns fed with diets having up to 10% dietary lipid, although the carcass lipid content increased with increase in dietary level of lipid. A negative correlation ($r^2 = 0.90$ and Y= - 1.5x + 83.2) was observed between the percentage of moisture and lipid in the body (Fig 2), whereas the correlation was positive (r = 0.94and Y = 0.1557x + 5.266) between the dietary lipid and the carcass lipid level (Fig. 3). A positive relationship between the dietary lipid and the carcass lipid observed in the present study agrees with Sheen & D'Abramo (1991) and Hilton et al. (1983). An inverse relationship noticed between carcass fat and carcass moisture in the present study corroborates fully with that of Chandge & Raj (1997) in P. indicus.

A steady increase in growth performance and protein content of the prawn with the increase in dietary level of lipid from 0 to 8% may be attributed to the protein sparing action of these dietary lipids. The results of the present study showed that the dietary lipid level above 8% had no beneficial effect on the food and protein utilisation of prawns. Protein utilisation was found to be better when enough fat and carbohydrate were provided in their diet. Clifford & Brick (1978) made similar obser-

vations in *M. rosenbergii*. While Chandge & Raj (1997) clearly demonstrated the protein sparing effect of lipid in Indian white shrimp *Peneaus indicus*

In conclusion, higher weight gain, better feed conversion and higher protein efficiency ratio were recorded in M. rosenbergii juveniles fed with diet containing 6 and 8% dietary lipid level. Further increase in dietary lipid had no corresponding effect in improving growth performance. Growth performance showed a perceptible decline at high concentrations (15%) of dietary lipid levels. and was improved significantly by the inclusion of lipids in diets at a level of 4% and no improvement in weight gain was noticed with further increase in dietary lipid level even up to 12%. The broken line model suggested a lipid requirement of 4.4% in the diets of M.rosenbergii of normal growth.

Authors are grateful to The Director, School of Industrial Fisheries for providing facilities and Dr. K.G. Ramachandran Nair, Principal Scientist, CIFT, Cochin –29 for his valuable suggestions. This work has been done as part of ICAR ad hoc scheme No. 4 (20)/96 ASR –I/96 and the financial assistance from ICAR is thankfully acknowledged.

References

- AOAC (1990) Official method of Analysis 15th edn., Association of Official Analytical Chemist Washington, DC, USA.
- APHA (1995) Standard Methods for the examination of water and wastewater. 19th edn. American Public Health Association, Washington, DC, USA.
- Bier, M. (1955) Lipase. In: *Methods in Enzymology*, (Colowick, S. and Kaplan, N.O. Eds) Academic Press, New York
- Chandge, M.S. and Paul Raj, R. (1997) Dietary lipid requirements of the juveniles of Indian white prawn *Penaeus indicus* H.

- Milne Edwards. *J. Aqua. Trop.,* **12,** pp . 165-180
- Clifford, H.C.III and Brick, R.W. (1978) Protein utilization in the freshwater shrimp *Macrobrachium rosenbergii. Proc. World Maricult. Soc.*, **9**, pp 195-208
- Davis, D.A. & Robinson, E.H. (1986) Estimation of the dietary lipid requirement level of the white crayfish *Procambarus acutus*. *J. World Aquacult*. *Soc*, **17**, pp 37-43
- Deshimaru, O., Kuroki, K. and Yone, Y. (1979) The composition and level of dietary lipid appropriate for growth of prawn. *Nippon Suisan Gakkaishi, Bull. Jap. Soc. Sci. Fish.* **45**(5), pp 519-594
- Ellis, C.S. and Reigh, R.C. (1991) Effects of dietary lipid and carbohydrate on growth and body composition of juvenile red drum, *Sciaenops ocellatus*. *Aquaculture*, **97**, pp 383-394
- Forster, J.R.M. and Beard, T.W. (1973) Growth experiments with prawns, *Palaemon serratus* Pennant, fed with fresh and compounded foods. *Fishery invest.*, London, Ser. **2** 27 (7), 16p.
- Hilton, J.W., Harrison, K.E. and Slinger, S.J. (1983) A semi-purified test diet for *Macrobrachium rosenbergii* and the lack of need for supplemental lecithin. *Aquaculture*, **37**, pp 209-215
- Kanazawa, A. (1985) Essential fatty acids and lipid requirement of fish. In: *Nutrition and feeding in fish*. (Cowey, C.B., Mackie, C.M. and Bell, J.G. Eds). Academic Press, London and New York, USA.
- Kanazawa, A., Teshima, S. and Tokiwa, S. (1977) Nutritional requirement of prawn-VII. Effect of dietary lipids on growth. *Nippon Suisan Gakkaishi, Bull. Jap. Soc. Sci. Fish.* **43**, pp 894-856.

and Kalpan, O. Eds) Academic Press,

sponse of juvenile fresh water prawn,

HARI & KURUP

Warner, R.G. (1979) Animal Nutrition.

7th edn. McGraw-Hill, St. Louis, MO:

Macrobrachium rosenbergii to different New, M.B (1976) A review of dietary studies with shrimp and prawns. Aquaculture, 9, levels of cod liver/corn oil mixture in a semi purified diet. Aquaculture, 93, pp pp 101-144. 121-134. Schneider, W.C (1957) Determination of nucleic Watanabe, T. (1982) Lipid nutrition in fish. acid in tissue by pentose activity. In Comp. Biochem. Physiol. 73B, pp 3-15. Methods of Enzymology. (Clowick, S.P.

Maynard, L.A., Loosli, J.K., Hintz, H.F. and

602p.