Fishery Technology 2006, Vol. 43(1) pp : 73-78

Effect of Endosulfan and 2,4-Dichlorophenoxy Acetic Acid on the Growth and Gonadal Development of Freshwater Prawn Macrobrachium lamarrei

Shalini Singh, *V.S. Chandrasekaran and U.P. Singh

College of Fishery Sciences G.B. Pant University of Agriculture & Technology Pantnager - 263 145, Uttaranchal, India

The freshwater prawn *Macrobrachium lamarra* was subjected to acute (96 hr) static bioassay toxicity test with the pesticide endosulfan and the herbicide, 2,4-dichlorophenoxy acetic acid and the LC_{50} values were 0.009 ppm and 0.5 ppm respectively. When prawns were exposed for 30 days, under static condition, to five sub–lethal concentrations, viz., 0.008, 0.007, 0.006, 0.005 and 0.004 ppm of endosulfan and 0.4, 0.3, 0.2, 0.1 and 0.05 ppm of 2,4-diclorophenoxy acetic acid, the growth and the gonado-somatic index (GSI) were found to decrease in direct relation to increase in the concentration of the toxicants. However, there was an increase in growth at lower concentrations of endosulfan and acceleration in gonadal development at low concentration of 2,4-dichlorophenoxy acetic acid.

Key words: Pesticide, herbicide, toxicity, Macrobrachium lamarrei

Indiscriminate use of chemicals such as pesticides and herbicides pose threat to the aquatic environment through serious water contamination (Cremyln, 1978). Most of the chemicals used in agriculture are not selective, but are generally toxic to many nontarget organisms, like fishes, prawns and other desirable forms of life that inhabit the environment (Murphy 1980). A number of studies have been carried out globally on the acute toxicity of pesticides and insecticides and their effects on the behavior, physiology, biochemistry, histopathology and various other aspects in fin fishes and shellfishes including the freshwater prawns. Effects of various pesticides and insecticides on the freshwater prawns have been documented in different regions of India (Pillai Yadav al., 1989; and Nagabhushanam, 1989; Sarojini et al., 1990; et al., 1992; Srinivasan and Natarajan, Bhasker patibandla, 1996; Venugopal et al., 2003).

The freshwater prawn, Macrobrachium lamarrei is a medium sized prawn widely distributed all over India and has commercial importance as it is used in fresh or dry forms for human consumption. Studies on the acute toxicity of different pesticides and their impacts on various biological aspects of the prawn are well documented (Shukla and Omkar (1983 a, b), Omkar and Shukla, (1984), Shukla and Shukla (1984), Omkar et al. (1984), Omkar and Shukla, (1985 a, b), Mary et al. (1986) and Sarojini et al. (1986). However, no work has been done on the growth and gonadal development of the prawn except the study on the toxicity of endosulfan and monocrotophos on the survival and growth of the prawn, lamarrei by Chandrasekaran et al. (2000).

The present investigation was carried out with the objective of determining the acute (96 hr) toxicity of the two most common toxicants, i.e., a pesticide,

^{*} Corresponding author: Central Institute of Brackishwater Aquaculture, 75, Santhome High Road, R.A. Puram, Chennai - 600 028, India.

endosulfan and a herbicide, 2,4-dichlorophenoxy acetic acid and their effects at sub-lethal levels on the growth and gonadal development of the adult prawn *M. lamarrei*, as this species has some importance as a candidate for aquaculture in the far inland areas of the country.

Materials and Methods

The medium sized female prawns (40 -50 mm; 0.7 -1.0 g) collected from the fish culture ponds in the University campus were used as test animals. The berried females were sorted out and only the females without eggs were used for the bioassay. The uniformly sized prawns were initially acclimatized in plastic pool of 1000 l capacity for five days and the healthy ones were chosen for the experiment. Feeding was done ad and aeration was not provided libitum during the acclimation period. Acute static bioassay experiments were conducted to find out the LC₅₀ values of the pesticide and the herbicide separately following the methods described by Sprague (1973) and APHA (1976).

The experiments were conducted in glass aquarium tanks of uniform size (30 l), filled with 10 l of water in each tank. The water collected from the pond was filtered and stored for a day or two before being used for the bioassays. Commercial grade pesticide, endosulfan 35 EC endocel (active ingredient of endosulfan 35% M/m) Supplied by Excel industries Ltd., Mumbai and 2,4-dichlorophenoxy acetic acid (34 EC) supplied by Kissan Agro Chemicals, Muzaffarnagar, U.P., were used for the bioassays. Short term (96hr) bioassay experiments were conducted using ten prawns in each tank following the method described by APHA (1976) and Mahapatra and Rengarajan (1995). The stock solution was prepared as per the standard procedure (APHA, 1976) and the test solution was not changed throughout the 96 hrs duration. Feeding and aeration were stopped during the bioassays. Mortality data were collected after 96 hrs of

exposure in each concentration and the median lethal concentrations (LC_{50}) were calculated employing the method outlined by Litchfield and Wilcoxon (1949).

The experiment to assess the effects of the pesticide and the herbicide on the growth and gonadal development of the prawns were conducted separately, in duplicate, for 30 days using five sub-lethal concentrations of the pesticide (0.008, 0.007, 0.006, 0.005, 0.004 ppm) and the herbicide (0.4, 0.3, 0.2, 0.1 and 0.05 ppm). The pre-acclimatized prawns in the size range of 0.8 –1.0 g were used for the assessment of growth and gonadal development, respectively. Prawns were exposed to the pesticide and the herbicide in 15 l capacity glass tanks containing 10 l water in each tank. A set of 10 prawns in each tank was maintained. Aeration was provided and feeding was done ad libitum throughout the study period using pelletized feed composed of rice bran and mustard oil cake at the ratio of 1:1. Water was changed every alternative day with freshly prepared stock solution. The prawns were weighed using an electronic digital balance (0.001g accuracy). Only the nonberried female prawns were used for the study of gonadal development, since the gonads were too small to dissect out in male prawns. The Gonado-somatic index (GSI) was used as the index of gonadal development and was calculated as follows:

$GSI = \frac{Gonadal\ weight}{Body\ weight} \times 100$

The initial weight of the gonad was recorded by dissecting out some prawns kept as stock animals for the experiment and they belonged to the same size group of the ones used in the experiment. The initial GSI calculated so was assumed to be the initial value for all the treatments of the experiment. After the completion of experiment, the prawns were dissected and the gonads were retrieved to take the final weight of the gonads. The water temperature, pH, dissolved oxygen content and CO₂ content of

the experimental medium were monitored during the study tenure following the standard methods (Jhingran *et.al.*, 1969). The variations in growth and GSI were tested statistically using ANOVA (Downie & Heath, 1970).

Results and Discussion

The 96 hr static median lethal concentration (LC₅₀) of endosulfan and 2,4dichlorophenoxy acetic acid to the prawns were found to be 0.009 ppm and 0.5 ppm respectively. The earlier studies on the acute toxicity of endosulfan to different species of freshwater prawns revealed that the acute 96 hr LC₅₀ values were 0.006 ppm for the postlarvae of M. rosenbergii (Natarajan et al., 1992) and 0.005 ppm for the adults of malcolmsonii (Srinivasan and Bhasker Patibandla, 1996). The 96 hr LC₅₀ value estimated for M. rosenbergii post-larvae exposed to the organophosphorus pesticide, malathion was 0.013 ppm (Natarajan et al., 1992).

Shukla and Omkar (1984) observed the endosulfan toxicity to M.lamarrei and estimated the 96 hr LC₅₀ value as 0.0027mg/l. Chandrasekaran et al. (2000) observed the 96 hr median lethal concentration of endosulfan critical to the prawn, M. lamarrei (size range, 25 –30 mm) as 0.005 ppm. When compared to earlier observations made by various authors for different species of fresh water prawns on their LC_{50} values for different toxicants, the variation in LC₅₀ values seems to be dependant on more than one factor, such as the species, the toxicants, the size of the animals and the different environmental parameters during the experimental period. The difference in LC₅₀ values of endosulfan between the present and earlier observations may be due to the difference in the size of the test animals, i.e., 40 - 50 mm in the present case and 25-30 mm in the case of previous observation.

In the present study, when the prawns were exposed continuously for 30 days in five sub-lethal concentrations of the pesticide

Table 1. Effect of the pesticide endosulfan and herbicide 2,4-dichlorophenoxy acetic acid on the growth of the prawn *M.lamarrei* (the range of values given in parenthesis)

Endosulfan					2,4 – Dichloro phenoxy acetic acid)-			
	Initial weight (mg)	Final weight (mg)	Growth in 30days (mg)	Reduction/ Acceleration in growth (%)		Initial weight (mg)	Final weight (mg)	Growth 30days (mg)	
Control	831 (811-850)	974 (952-981)	143	-	Control	831 (813-856)	974 (951-982)	143	-
Sub - lethal Con. I (0.008 ppm)	843 (823-871)	854 (836-934)	11	92.31	Sub – lethal Conc. I (0.4 ppm)	837 (810-854)	843 (818-855)	6	95.8
Sub – lethal Conc. II (0.007 ppm)	865 (817-914)	(897) (848-938)	32	77.62	Sub – lethal Conc. II (0.3 ppm)	853 (823-882)	883 (841-918)	30	79.0
Sub – lethal Conc. III (0.006 ppm)	871 (853-936)	927 (902-967)	56	60.84"	Sub – lethal Conc. III (0.2 ppm)	866 (829-883)	907 (882-961)	41	71.3
Sub – lethal Conc. IV (0.005 ppm)	832 (802-856)	977 (903-988)	145	-1.38	Sub – lethal Conc. IV (0.1 ppm)	860 (832-945)	950 (914-986)	90	37.0
Sub – lethal Conc. V (0.004 ppm)	820 (854-962)	977 (951-987)	157	-9.76	Sub – lethal Conc. V (0.05 ppm)	837 (817-923)	965 (911-988)	128	11.8

Values significant at P<0.05 (*), <0.01 (**) and <0.001 (***) levels.

Table 2. Effect of the pesticide endosulfan and herbicide 2,4-dichlorophenoxy acetic acid on the Gonado Somatic Index (GSI) of the prawn *M. lamarrei* (the range of values given in parenthesis)

Endosulfan				2,4 – Dichloro- phenoxy acetic acid			
	Initial GSI	Final GSI	Reduction in GS I (%)		Initial GSI	Final GSI	Reduction/ Acceleration in GSI (%)
Control	7.8 (7-9)	12 (10-14)	-	Control	7.8 (7-9)	12 (10-14)	-
Sub - lethal Conc. I (0.008 ppm)	7.8	8 (7-10.5)	95.2***	Sub – lethal Conc. I (0.4 ppm)	7.8	10.0 (9-12.5)	47.6°
Sub – lethal Conc. II (0.007 ppm)	7.8	8.2 (7-11)	90.4	Sub – lethal Conc. II (0.3 ppm)	7.8	10.5 (9-13)	35.7
Sub – lethal Conc. III (0.006 ppm)	7.8	9.2 (8-11)	66.6	Sub – lethal Conc. III (0.2 ppm)	7.8	10.9 (9-13.5)	26.1
Sub – lethal Conc. IV (0.005 ppm)	7.8	9.7 (8.2-11)	54.7 ["]	Sub – lethal Conc. IV (0.1 ppm)	7.8	12.2 (11-13.5)	-4.76
Sub – lethal Conc. V (0.004 ppm)	7.8	10 (9-13)	47.6	Sub – lethal Conc. V (0.05 ppm)	7.8	12.3 (11-14)	-7.14

Values significant at P<0.05 (*), <0.01 (**) and <0.001 (***) levels.

and the herbicide separately, there was a distinct decline in growth and gonadal development of the prawns exposed to higher sub-lethal concentrations. The water temperature, dissolved oxygen content, carbon di-oxide content and pH levels were in the narrow range of 29-31°C, 6.0-7.2 ppm, 1-2 ppm and 6.5-7.5, respectively, during the experimental period of 30 days, and they do not seem to influence any change in the growth and survival of the test animals.

growth and survival of the test animals. While the control animals showed normal increase in weight in 30 days the prawns exposed to sub-lethal concentrations of endosulfan and 2,4-dichlorophenoxy acetic acid suffered reduction in growth in correlation with the increase in sub-lethal concentrations of the toxicants (Table 1). The reduction in growth was estimated to be the highest in the sub-lethal concentration-I (0.008 ppm), moderate at 0.007 ppm and low at 0.006 ppm of endosulfan. However, in sublethal concentration-IV (0.005ppm) and V (0.004 ppm), there was an increase in growth of the prawns as compared to that of the

control (Table 1). In the case of prawns exposed to the sub-lethal concentrations of 2,4- dichlorophenoxy acetic acid, they showed greater reduction in growth in the highest sub-lethal concentration (0.4 ppm) and minimum reduction in the lowest concentration of 0.005 ppm. Chandrasekaran *et al.*, (2000) observed the maximum reduction (45.01%) in growth of the prawn when they were exposed to the highest sub-lethal concentration of endosulfan for 30 days.

In the present study, it was observed that in higher sub-lethal concentrations of endosulfan there was a great reduction in GSI also. The reduction in GSI was not so significant in lower concentrations of the pesticide. However, in the case of 2,4-dichlorophenoxy acetic acid, the prawns exposed to the sub-lethal concentrations 0.1 ppm and 0.05 ppm showed an increase in GSI as compared to that of the control (Table 2). The increase in growth and gonad size in lower concentration of the toxicants may be due to the acceleration in metabolic

activity of prawns in lower sub-lethal concentrations of toxicants as also observed earlier by Cantelmo et al. (1978) and Chandrasekaran et al. (2000). The reduction in growth of the prawn up to 92.31% and 95.8% and the reduction in gonadal development up to 95.2% and 47.6% due to endosulfan and 2, 4- dichlorophenoxy acetic acid respectively, was observed in this study and it is a matter of concern for water quality management in culturing this species. However, the ill effects of the chemicals are to be confirmed by conducting investigations at the field level in situ in the prawns stocked in the ponds.

References

- APHA. (1976) Bioassay methods for aquatic organisms. In: Standard methods for the examination of water and wastewater. American Public Health Association, Washington DC. 14th Edition, pp 685-743.
- Cantelmo, A.C., Conklin, P.J., Fox F.R., and Ranga Rao, K. (1978) Effects of sodium pentachlorophenate and 2,4 Dinitrophenol on respiration in crustaceans. In: *Pentachlorophenol: Chemistry, Pharmacology and environmental toxicology*, (K.Ranga Rao, Ed), pp 251–263, Plenum Press, New York.
- Chandrasekaran, V.S., Bisht, H.C.S. and Sharma, A.P. (2000) Pesticide toxicity to freshwater prawn *Macrobrachium lamarrei*. *Advances in Aquaculture*, pp 214-220.
- Cremlyn, R. (1978) Pesticides, preparation and mode of action. John Wiley and Sons Publications, New York, 246 p.
- Downie, N.M. and Heath, R.W. (1970) Basic statistical methods. Third Edition, Harper Internationas Edition, Harper & Row publishers, New York, Evanston and London, 356p.
- Konar, S.K. and Ghosh, J.K. (1983) Effects of some pesticides in mixture of fish, plankton and worm. *Geobios*, **10**, pp 104–107.

- Jhingran, V.G., Natarajan, A.V., Banerjee S.M. and.David, A. (1969) Methodology on reservoir fisheries investigations in India. *Central Inland Fish .Res.Inst. Bull.*, **12**, pp1-152.
- Litchfield, J.T. and Wilcoxon, F. (1949) A simplified method of evaluating dose effect experiments. *J. Pharmac. Exp. Ther.*, **96**, pp 99-113.
- Mahapatra, B.C. and Rengarajan, K. (1995) A manual on bioassays in the laboratory and their techniques. *CMFRI Spl. Pub.*, **64**, pp 1-75.
- Mary, S.A., Sarojini Nagabhushanam, R. and Nagabhushanam, R. (1986) Size and sex dependent tolerance capacity to organophosphorus pesticide in the fresh water prawn *Macrobrachium lamarrei*. *Comp. Physiol. Ecol. II* 4, pp 200-202.
- Murphy, S.D. (1980) Pesticides in toxicology the basic science of poison. (Daull, J., Klassen, C.D. and Amdue, M.O., Eds.), pp.357-408, Macmillan Publishing Co., New York.
- Natarajan, E., Biradar, R.S. and George, J.P. (1992) Acute toxicity of pesticide to giant freshwater prawn *Macrobrachium rosenbergii* (De Man). *J. Aqua. Tropics*, **2**, pp 183–188.
- Omkar, R. Murti, R. Shukla, G.S. (1984) Effect of aldrin on the carbohydrate metabolism of a freshwater prawn *Macrobrachium lamarrei* (H. Milne Edwards) Crustacea, Decapoda. *Acta Hydrochim. Hydrobiol.*, 12, pp 549–552.
- Omkar, R. and Shukla, G.S. (1985a) Dichlorovos intoxication in a freshwater prawn *M. lamarrei* (H. Milne Edwards). *Ecotoxicol. Environ. Saf.*, **9**, pp 392–396.
- Omkar, R. and Shukla, G.S. (1985b) Toxicity of insecticides to *Macrobrachium lamarrei* (H. Milne Edwards) (Decapoda, Palaemonidae). *Crustaceana*, **48**, pp 1–5.
- Omkar, R. Upadhyay, V.B. and Shukla, G.S. (1984) Endosulphan induced changes in

water prawn *Macrobrachium lamarrei* (H. Milne Edwards). *Curr. Sci.* **53**, pp 280-281.

the carbohydrate metabolism of a fresh-

Pillai, K.S., Mathai, A.T. and Deshmukh, P.B. (1989) Acute toxicity of cypermethrin IOEC to Juveniles of a fresh water prawn *Macrobrachium rosenbergii* and fry of a fresh water fish *Labeo rohita*. *Poll. Res.* **2**, pp 95-96.

Sarojini, R., Nagabhushanum, R. and Mary,

S.A. (1986) Effect of ferithrothion on reproduction of the freshwater prawn

Macrobrachium lamarrei (M. Edwards).
Ecotoxicol.Environ. Saf., 11, pp 243–250.
Sarojini Nagabhushanum, R., Nagabhushanum,
R. and Mary, S.A. (1990) Effects of organocholrine pesticides on the brain of fresh water prawn M. Lamarrei. J. Aqua. Tropics, 5, pp 1-7.

Shukla, G.S. and Omkar, R. (1983a) Acute toxicity of insecticide to a freshwater prawn *Macrobrachium lamarrei* (M. Edwards). *Indian J. Environ. Health*, **25**, pp 61-63.

Shukla, G.S. and Omkar, R. (1983b) Toxicity of 2,4,D – Na Salt to freshwater prawn *Macrobrachium lamarrei* (M. Edwards). *Comp. Physiol. Ecol.*, **8**, pp 282-284.

Shukla, G.S. and Omkar. (1984) Insecticide

toxicity to Macrobrachium lamarrei (M.

Crustaceana, 46, pp 283-287.
Shukla, O. and Shukla, G.S. (1984) Alteration

Edwards) (Decapod, Palaemonidae).

SINGH, CHANDRASEKARAN AND SINGH

Shukla, O. and Shukla, G.S. (1984) Alteration in carbohydrate metabolism of freshwater prawn *Macrobrachium lamarrei* after dichlorovos exposure *Ind. Health.*, **22**, pp 133–134.

pp 133–134.

Sprague, J.B. (1973) The ABCs of pollutant toxicity to fish. *Biological methods for the assessment of water quality – I*, ASTM STP, **528**, pp 6–30.

Srinivasan, M. and Bhaskar Patibandla, P. (1996) Impaired behaviour of Macrobrachium malcolmsonii on short-term sublethal exposure to some pesticide toxicity. The Fourth Indian Fisheries Forum, School of Marine Sciences, Cochin University of Science and Technology, Kochi. Abstract No. 3-24.

Venugopal, G., Narasimhacharyulu, V. and Venkateshvaran, K. (2003) Acute toxicity of dichlorovos and monochrotophos and their effect on the respiratory metabolism of *Macrobrachium malcelmsonii*. *Indian J. Fish.*, **50**, pp 461–464.

Yadav, B.S., Sarojini Nagabhushanam, R. (1989) Changes in respiratory metabolism of fresh water prawn *Caridina weberi* after exposure to Endosulfan. *Himalayan J. Env. Zoo.*, **2**, pp 144-148.