Fishery Technology 2003, Vol. 40(2) pp : 127 - 132

Effect of Iced Storage Duration and Treatments on the Frozen Storage Characteristics of Cuttlefish Fillets

Sophia Margaret Joseph and P.M. Sherief

College of Fisheries Kerala Agricultural University Panangad, Cochin - 682 506, India

Effect of iced storage duration and treatments with 2% (w/v) salt + 0.2% (w/v) citric acid solution and with 0.01% (w/v) butylated hydroxy anisole (BHA) solution, each for 10 min was studied in frozen stored cuttlefish fillets. The salt + citric acid treatment was found to be superior in retaining the texture, physical appearance and overall quality of the frozen fillets. Yellow discolouration was observed on the control samples (4-d iced) after eight weeks of frozen storage. A Maillard type reaction is postulated as the possible cause of yellow discolouration in frozen stored cuttlefish fillets.

Key words: Frozen storage, cuttlefish fillets, dip treatment

Freezing and frozen storage prolong the shelf life of seafood by retarding enzymatic and microbial degradation (Selvaraj et al., 1991). Several studies have been reported on the storage characteristics of iced and frozen stored squid and cuttlefish (Joseph et al., 1985; Dhananjaya et al., 1987; Joseph and Perigreen, 1988; Selvaraj et al., 1991; Anon, 1994 a, b; Hisa et al., 1999). The present investigation was undertaken to study the effect of immediate freezing, and the effect of iced storage for different periods and subsequent freezing on the quality of frozenstored cuttlefish (Sepia aculeate-Orbigny) fillets. An attempt was also made to find out the effect of sodium chloride + citric acid dip treatment and the antioxidant BHA dip treatment on the frozen storage characteristics of the fillets.

Materials and Methods

Cuttlefish *Sepia aculeata* (140-150 g size) procured from the local fishing harbour was used in the study. Whole cuttlefish without any bruises or ink sac rupture was selected. The dressed mantles were divided into three lots. One lot was given a 10 min dip treatment in a solution containing 2% (w/v) sodium chloride + 0.2 % (w/v) citric acid.

The second lot was given a 10 min dip treatment in 0.01% (w/v) BHA solution. Tween 80, an emulsifier was used for preparing the antioxidant solution. The third lot was kept as control without any chemical treatment. All the three lots were iced in 1:1 ratio in plastic boxes. A temperature of 2 $\pm 1^{\circ}$ C was maintained throughout the period of study. A portion of the iced samples was drawn on the zero day, second day and fourth day of iced storage and subjected to freezing. The mantles were rolled into tubes and frozen at − 40 °C in a blast freezer, which were then dipped in glaze water at around 0°C and sealed in 150 gauge polyethylene pouches and packed in 3-ply corrugated master carton. This was then stored at -18 $\pm 1^{\circ}$ C. These samples were drawn after 1w, 4w and 8w of frozen storage and analysed for biochemical and sensory characteristics.

Quality characteristics like alpha amino nitrogen (Pope and Stevens, 1939), non-protein nitrogen (NPN) (AOAC, 1975), total volatile base nitrogen (TVBN) and trimethylamine content (TMA) (Conway, 1947), free fatty acid (AOAC, 1998), peroxide value (Connell, 1975) and thiobarbituric acid reactive substances (TBARS) (Buege and Aust, 1978) were determined. The protease

activity (Heriott, 1955) of mantle tissue at different pH values was also determined on the zero day. The sensory evaluation of the raw and the cooked samples was also carried out. The cooked samples were prepared by boiling the mantles in 2% brine for 10 min (Joseph et al., 1985). The organoleptic evaluation of these samples was carried out by a six- member panel. The overall quality of meat was rated on a five point hedonic scale (Selvaraj et al., 1991) from 5 to 1; samples receiving a score upto 2 were considered acceptable. ANOVA (Snedcor and Cochran, 1967) was done with respect to frozen storage period and treatments using Factorial CRD (completely randomised design) for biochemical characteristics. The Quade test (Rangaswamy, 1995) was done for statistical analysis of the organoleptic quality and randomised block design (RBD) for proteolytic activity.

Results and Discussion

The results of biochemical evaluation of zero day, second day and fourth day frozen

cuttlefish fillets are given in Tables 1, 2, 3 & 4. Among the zero day, second day and fourth day frozen samples, the salt + citric acid treated samples gave the highest alpha amino nitrogen content even after 8 w of frozen storage compared to the control and the BHA treated sample. This sample also showed less decrease in NPN content than the control and BHA treated sample. This can be attributed to the increased water holding capacity of the muscle and less leaching of NPN fractions in salt +citric acid treated sample. All the fourth day frozen samples, control and treated, showed the lowest alpha amino nitrogen content during the period of storage. This can be due to the longer storage of the fillets in direct contact with ice as reported earlier by Raghunath (1984) and Joseph et al. (1985).

The TVBN and TMA content was found to be increasing steadily in the control and the treated samples (Table 2). The TVBN content was within the limit even for the 4-d iced and frozen samples stored for 8 w. But the control sample was found not

Table 1. Changes in NPN and α -amino nitrogen during frozen storage at -18 \pm 1°C

Days in ice	Parameter	Sample	Frozen storage period in weeks		
			1	4	8
0	NPN (%)	Control Salt + citric acid BHA	0.569 ± 0.015 0.577 ± 0.011 0.567 ± 0.014	0.453 ± 0.08 0.457 ± 0.015 0.350 ± 0.008	0.310 ± 0.004 0.427 ± 0.001 0.403 ± 0.008
2	NPN (%)	Control Salt + citric acid BHA	0.391 ± 0.001 0.434 ± 0.004 0.448 ± 0.001	0.273 ± 0.011 0.273 ± 0.008 0.235 ± 0.009	0.164 ± 0.005 0.192 ± 0.003 0.191 ± 0.004
4	NPN (%)	Control Salt + citric acid BHA	0.196 ± 0.002 0.222 ± 0.007 0.198 ± 0.001	0.132 ± 0.003 0.181 ± 0.007 0.176 ± 0.009	0.094 ± 0.005 0.074 ± 0.003 0.0118 ± 0.001
0	α-amino nitrogen (mg/100g)	Control Salt + citric acid BHA	247.518 ± 2.358 254.627 ± 2.844 254.369 ± 0.176	240.374 ± 1.475 246.89 ± 1.04 246.428 ± 0.873	228.93 ± 3.435 236.26 ± 1.104 231.408 ± 0.911
2	α-amino nitrogen (mg/100g)	Control Salt + citric acid BHA	164.384 ± 0.425 191.022 ± 0.965 179.80 ± 0.16	109.729 ± 0.333 163.643 ± 0.821 151.372 ± 2.217	83.627 ± 0.079 102.611 ± 2.143 91.865 ± 2.391
4	α-amino nitrogen (mg/100g)	Control Salt + citric acid BHA	79.704 ± 3.623 127.54 ± 1.204 108.679 ± 3.468	49.460 ± 0.708 99.106 ± 0.823 82.37 ± 0.51	19.487 ± 2.748 52.494 ± 2.82 38.635 ± 0.057

Table 2. Changes in TVBN and TMAN during frozen storage at $-18 \pm 1^{\circ}$ C

Days in ice	Parameter	Sample	Frozen storage period in weeks		
			1	4	8
.0	TVBN (mg/100g)	Control Salt + citric acid BHA	4.812 ± 0.045 4.151 ± 0.046 4.821 ± 0.02	5.464 ± 0.033 5.14 ± 0.32 5.538 ± 0.043	8.273 ± 0.024 7.832 ± 0.365 8.264 ± 0.032
2	TVBN (mg/100g)	Control Salt + citric acid BHA	6.164 ± 0.016 5.537 ± 0.052 5.787 ± 0.336	6.857 ± 0.021 6.475 ± 0.309 7.225 ± 0.369	10.450 ± 0.012 9.707 ± 0.059 9.678 ± 0.03
4	TVBN (mg/100g)	Control Salt + citric acid BHA	10.642 ± 0.226 9.017 ± 0.77 9.374 ± 0.379	12.365 ± 0.177 11.699 ± 0.097 12.355 ± 0.077	13.574 ± 0.322 12.85 ± 0.405 13.108 ± 0.019
0	TMAN (mg/100g)	Control Salt + citric acid BHA	2.75 ± 0.026 2.075 ± 0.023 2.073 ± 0.001	3.415 ± 0.021 2.414 ± 0.368 2.768 ± 0.022	4.136 ± 0.012 3.404 ± 0.010 4.132 ± 0.016
2	TMAN (mg/100g)	Control Salt + citric acid BHA	3.757 ± 0.342 3.46 ± 0.032 3.407 ± 0.002	4.798 ± 0.671 4.772 ± 0.024 4.816 ± 0.017	7.314 ± 0.339 5.896 ± 0.383 6.221 ± 0.019
4	TMAN (mg/100g)	Control Salt + citric acid BHA	5.494 ± 0.06 4.158 ± 0.039 4.427 ± 0.416	7.207 ± 0.241 6.535 ± 0.29 6.863 ± 0.043	9.050 ± 0.017 8.288 ± 0.009 8.968 ± 0.013

All values are given as average ± SD of three determinations

acceptable organoleptically with regard to texture, flavour and appearance. The low value of TVBN in the control even when it was not acceptable may be attributed to its loss by leaching in the thaw drip (Joseph & Perigreen,1988). The statistical analysis also showed the control to be significantly different from the two treatments.

There is an increase in free fatty acids (Table 3) implicating lipolysis during frozen storage of control and treated samples of cuttlefish fillets. This increase is less pronounced in salt + citric acid treated sample showing probably the inhibition of phospholipases either by salt or citric acid or by both. Free fatty acids are formed in fish tissue primarily from phospholipids by the action of phospholipases (Bligh, 1961).

PV increased gradually in all the three samples (Table 3). The BHA treated samples gave the lowest value of PV throughout the storage period. In the fourth day frozen sample, the rise in PV was slow, apparently due to the progressive break down of peroxides taking place whereby, the PV showed not much increase. BHA treated sample gave the lowest mean value showing its antioxidant property. Control gave the highest values for TBARS. The lower values of TBARS in salt + citric acid treated sample compared to the control can be attributed to the antioxidant property of citric acid through its metal chelating property.

The results of sensory evaluation are given in figures 1, 2 and 3. The control and treated samples frozen on the zero day icing were found to remain in acceptable condition even after 8 w of storage. In the case of the second day frozen fillets, the salt + citric acid treated sample remained in acceptable condition with respect to the appearance, texture and flavour even after 8 w of storage. On the other hand, the BHA treated sample and the control were found to remain in fair and acceptable condition only upto 4 w of storage. The change noticed in the BHA treated and in the control samples after 8 w

Table 3. Changes in fat during frozen storage at -18 ± 1°C

Days in ice	Parameter	Sample	Frozen storage period in weeks		
			1	4	8
0	FFA (as %oleic acid)	Control Salt + citric acid BHA	19.116 ± 2.073 18.816 ± 0.15 13.248 ± 0.477	26.782 ± 1.218 22.555 ± 0.778 15.70 ± 0.30	30.672 ± 0.127 31.305 ± 0.194 21.266 ± 0.733
. 2	FFA (as %oleic acid)	Control Salt + citric acid BHA	29.614 ± 0.538 27.30 ± 0.7 17.242 ± 0.442	42.79 ± 0.28 35.70 ± 0.7 23.046 ± 0.646	45.309 ± 0.509 38.69 ± 0.509 25.923 ± 0.077
4	FFA (as %oleic acid)	Control Salt + citric acid BHA	37.755 ± 0.425 34.524 ± 0.063 24.384 ± 0.384	29.40 ± 1.4 19.133 ± 0.467 16.521 ± 0.521	42.775 ± 0.775 22.654 ± 0.254 19.514 ± 0.848
0	PV (milliequivalent/ kg fat)	Control Salt + citric acid BHA	9.34 7 ± 0.652 6.558 ± 0.108 5.572 ± 0.309	10.717 ± 0.283 8.332 ± 0.556 6.333 ± 0.333	13.363 ± 0.636 12.916 ± 0.416 11.047 ± 0.381
2	PV (milliequivalent/ kg fat)	Control Salt + citric acid BHA	11.922 ± 0.384 7.50 ± 0.5 5.131 ± 0.131	11.709 ± 0.598 10.00 ± 0.0 7.128 ± 0.205	11.454 ± 0.545 10.378 ± 1.288 8.90 ± 0.329
4	PV (milliequivalent/ kg fat)	Control Salt + citric acid BHA	12.666 ± 0.666 10.09 ± 0.679 5.633 ± 0.249	14.000 ± 0.0 11.555 ± 0.444 6.335 ± 0.621	15.277 ± 0.277 11.833 ± 0.167 7.339 ± 0.067
0	TBARS (mg malonaldehyde/ kg meat)	Control Salt + citric acid BHA	0.906 ±0.005 0.889 ± 0.002 0.662 ± 0.004	1.258 ± 0.006 0.924 ± 0.005 0.697 ± 0.004	1.816 ± 0.047 1.258 ± 0.006 0.892 ± 0.002
2	TBARS (mg malonaldehyde/ kg meat)	Control Salt + citric acid BHA	0.993 ± 0.004 0.864 ± 0.003 0.756 ± 0.002	1.428 ± 0.046 0.910 ± 0.002 0.789 ± 0.003	2.771 ± 0.078 1.006 ± 0.003 0.807 ± 0.004
4	TBARS (mg malonaldehyde/ kg meat)	Control Salt + citric acid BHA	2.446 ± 0.004 1.69 ± 0.007 1.565 ± 0.006	2.815 ± 0.006 1.893 ± 0.012 1.751 ± 0.10	3.296 ± 0.031 2.519 ± 0.028 2.336 ± 0.008

All values are given as average ± SD of three determinations

were, loss in firmness of texture, which became soft in raw condition and rubbery when cooked, loss of the sweet taste and fading of the white fillets to a dull white colour. The control samples also showed desiccation seen as white patches, after 8 w.

After the eighth week of storage, the control sample showed yellow discolouration on the surface of the mantle. The texture, flavour and appearance also reached the borderline of acceptability. Desiccation of the samples was also observed. Compared to the salt + citric acid treated sample, the BHA treated sample, after 8 w, gave a score below '3' for all the attributes even though, it did

not reach the borderline of acceptability. Desiccation was also noticed in the BHA treated samples after 8 w storage. The salt + citric acid treated sample remained in fair and acceptable condition with respect to

Table 4. Protease activity of different regions of cuttlefish mantle at different pH values on zero day (expressed as µg Tyrosine liberated/ml/h).

Region of mantle pH	Anterior	Middle region	Lateral side	Posterior region
3	102.844	121.637	138.706	163.27
4	144.396	137.413	145.172	182.068
7	202.5	206.982	224.137	224.396
8	111.379	139.741	147.758	181.81

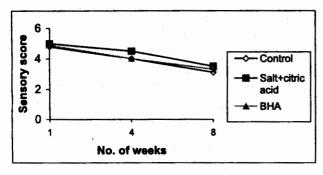


Fig. 1. Changes in overall organoleptic acceptability of zero day frozen raw cuttlefish fillets during storage.

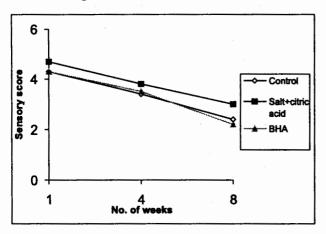


Fig. 2. Changes in overall organoleptic acceptability of second day frozen raw cuttlefish fillets during storage.

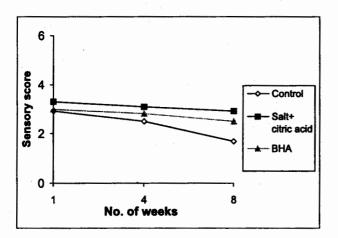


Fig. 3. Changes in overall organoleptic acceptability of fourth day frozen raw cuttlefish fillets during storage.

texture and colour even after 8 w. No desiccation was noticed in this sample. Statistical analysis also showed the salt + citric acid treated sample to be significantly different from the control with respect to flavour, texture, colour and appearance.

Hence the study shows that the salt + citric acid treatment is a better treatment than BHA treatment. The former treatment prevents protein degradation as well as lipid autoxidation, supporting the Olcott's hypothesis that the yellow discolouration is due to a Maillard or an aldehyde amine type et al., 1962). reaction (Schultz, desiccation during frozen storage may also play a pivotal role in the yellow discolouration reaction. So it may be postulated that a delay in the processing of cuttlefish leads to the formation of amino compounds by bacterial/ endogenous proteolysis, and carbonyl compounds by lipid autoxidation. desiccation occurring during frozen storage may accelerate a Maillard type reaction between the amino and carbonyl compounds leading to yellow discolouration.

The proteolytic activity of the cuttlefish fillets evaluated on the initial day was found to be maximum in the lateral and posterior region of the mantle as compared to the anterior and middle region (Table 4). The region where yellow discolouration was observed in the fourth day frozen untreated sample after eight weeks of storage was near the lateral side. Hence, a correlation between the region of appearance of yellow discolouration and region of maximum proteolytic activity cannot be ruled out.

The authors are grateful to Dr. D.D. Nambudiri, Dean, College of Fisheries, Panangad, for providing the required facilities. The advice of Dr. Sajan George and Smt. V. Malika is also acknowledged. The first author also acknowledges her gratitude to the Kerala Agricultural University for granting a fellowship during the tenure of this study.

References

A.O.A.C. (1975) Official Methods of Analysis, 12th edn., Association of Official Analytical Chemists, Washington, DC, USA

A.O.A.C. (1998) Official Methods of Analysis, 16th edn., Association of Official analytical chemists, Washington, DC, USA Malaysia

143-145

Anon. (1994a) Handling and Transport of Cephalopod, BFAR annual report, Quezon city (Philippines)

ADB/INFOFISH (1985) Global Industry Up-

date/ Cephalopods, p. 17, Kuala Lumpur,

- Anon. (1994b) Handling and Transport of Cephalopod, BFAR annual report, Quezon city (Philippines) Bligh, E.G. (1961) Lipid hydrolysis in frozen
- Buege, J. A. and Aust, S. D. (1978) in Methods in Enzymology Vol. LII, Part C, p. 305, Ed. Fleisher, S and Packer, L., Acad. Press N.Y. Connell, J.J. (1975) in Control of Fish Quality.
- Farnham, 232 p, Fishing News Book Ltd., England Conway, E.J. (1947) in Microdiffusion Analysis and Volumetric Error. 4th edn., Van Nostrad Co. Inc., New York
- Dhananjaya, S., Krishnakumar, S. and Hiremath, G.G. (1987) Effect of handling on the pink discolouration in fresh squid during iced storage Seafood Export Journal. 19, pp 13-18
- Herriott, R.M. (1955) in Methods in Enzymology. Vol. 2, p 3, Ed. Colowick, S.P. and Kaplan, N.O., Acad. Press, New York Hisa, K, Takemasa, N, Mochida, S, Toyofuku, H. and Fujiwara, S. (1999) Case study of incidents of food decomposition and the problems in preventing recurrence Jap. J.

Food. Micro. 16, pp 205-209

of chilled and frozen fish and fish products, University of Aberdeen, Scotland, 1-3 Oct. Joseph, J. and Perigreen P.A. (1988) Studies on frozen storage of cuttlefish fillets Fish. Technol. 25, pp 32-36 Pope, C.G. and Stevens, M.F. (1939) The cod muscle J. Fish. Res. Bd. Can., 18, pp determination of amino nitrogen using

1070-1076

pp 50-55

Joseph, J., Perigreen, P.A. and Nair M.R. (1985)

Paper presented at the meeting of

International Institute of Refrigeration Commission C2 and D3 on storage lives

a copper method I. Biochem. 33, pp

losses in squid (Loligo duvancellii) during

storage in slush ice J. Fd. Sci. Technol. 21,

Raghunath, M.R. (1984) Soluble nitrogen

- Rangaswamy, R. (1995) in A text book of Agricultural statistics, p.136, New Age International Pub. Ltd., Wiley Eastern, New Delhi Schultz, H.W., Day, E.A. and Sinnhuber, R.O. (1962) in Symposium on Foods: Lipids and their Oxidation, p. 173, The AVI publish
 - ing Co. Inc., Wesport, Conn. Selvaraj, P., Jasmine, G.I. and Jeyachandran, P. (1991) Effect of ascorbic acid dip treat-
 - ment on frozen storage of squid (Loligo duvaucelli) Fish. Technol. 28, pp117-120 Sikorski, Z.E., Olley, J. and Kostuch, S. (1976)
- Protein changes in frozen fish Crit. Rev. Food Sci. Nutr. 8, pp 97-101 Snedcor, G. and Cochran, W.J. (1967) in Statistical methods, p. 32, Oxford and IBH Co. New Delhi