Fishery Technology 2002, Vol. 39(1) pp : 49 - 53

Influence of Nutripro-Aqua Incorporated Feed on Water Quality, Primary Pond Productivity and Growth in the Culture of Pearl Spot

V. Jayaprakas and Kurian Mathew Abraham

Department of Aquatic Biology and Fisheries University of Kerala, Kariavattom Campus Kariavattom, Trivandrum - 695 581, India

Supplementary feeding may influence the water quality parameters, especially the productivity. Productivity is one of the principal water quality parameters that determine fish production. An experiment was carried out to evaluate the relationship between productivity and growth in *Etroplus suratensis* fed diet containing Nutripro-Aqua, a commercial growth promoter. Fishes were cultured in cement tanks for 180 days and the growth and productivity were monitored periodically. Nutripro-Aqua was administered through a standard pelletized feed with 40% protein at four dosages, 0, 8, 9.5 and 11%. Productivity and growth of fishes were found to be significantly high in 11% treatment, which indicates the influence of the pond productivity on growth of fishes.

Key words: Nutripro-Aqua, primary productivity, growth, pearl spot, Etroplus suratensis

Maintenance of good water quality accounts for a major part of the production cost and is considered as a determining factor in the economics of fish culture. Optimum physico-chemical parameters of water such as temperature, pH, dissolved oxygen and productivity ensure maximum utility of the feeds, increase food conversion efficiency and thereby production. In confined controlled conditions, the supplementary feeding may affect water quality of culture ponds, which in turn affect the growth of fish. The unutilized feed and the metabolic wastes in high quantity sometimes result in deterioration of water quality which limits the growth of fish (Ghosh et al., 1984); but within limited quantities, it may act as organic manure and enhance the nutrient content and productivity of ponds, which in turn will increase the growth and fish production. Schroeder (1978) suggested that microbial community rapidly digests the fibre-like particles in the unutilized feeds.

Several studies have been conducted on the water quality of aquaculture ponds (Banerjee, 1967; Swingle, 1968; Boyd *et al.*, 1979; Tucker et al., 1979; Ghosh et al., 1984; Chattopadhyay et al., 1990; Nayak & Mandal, 1990). Photosynthesis is well correlated to fish production in ponds (McConnel et al., 1977; Chattopadhyay et al., 1990). Effect of feeding rates on water quality and production has been studied by Tucker et al.(1979) and Ghosh el al. (1984). An attempt has been made in this investigation to evaluate the influence of Nutripro-Aqua, a commercial growth promoter, on primary productivity and fish production in the culture of Etroplus suratensis.

Materials and Methods

Experiments were carried out in cement tanks of size 5x4x1 m, for 180 days in triplicate. The experimental tanks were totally devoid of soil/sediment to avoid leaching of nutrients into the water and no manuring was done at any stage of the culture period. The water depth was kept at 75±5 cm throughout the culture period.

Juveniles of *E. suratensis* (Bloch) (1.69+0.04 g) were collected from Akkulam-Veli Lake in Trivandrum District (Kerala

Table 1. Proportion of ingredients of the experimental diet

Ingredients	Proportion (g)	Protein (%)
Rice bran	16.685	1.23
Tapioca flour	16.685	0.77
Fish meal	33.315	21.48
Goundnut oil cake	33.315	16.52
Total	100.000	40.00

State, India) and transported to culture site without disturbance and kept for two weeks Uniform sized juveniles for acclimation. were randomly stocked at the rate of 50 per tank. Fishes were fed twice daily at 5% of the total body weight. The quantity of feed was re-adjusted after every sampling. Fishes sampled fortnightly for growth measurements. Growth was measured in terms of length and weight. Survival rate was also monitored during the culture period. Nutripro-Aqua containing full fat soya, vitamin B, sodium selenite, methionine, ethoxyquin and cobalt chloride was added to improve feed quality at 0%, 8 %, 9.5% and 11% levels to a standard fish meal based pelleted feed with 40% protein The different levels of Nutripro-Aqua were selected after a short trial run with the growth promoter in the species. The proportions of the ingredients of the experimental feed are given in Table 1. Productivity was measured using Dark and Light bottle method (Santhanam et al. 1989) and physicochemical quality parameters of water such as temperature, pH, hardness, alkalinity and dissolved oxygen were monitored (APHA, 1992) every 10th during the course of culture period.

Statistical analyses were carried out by analysis of variance (ANOVA) (Snedecor & Cocharan, 1968) and Duncan's Multiple Range Test (Steel & Torrie, 1980). Correlation between productivity and growth of fishes was found out by regression analysis (Ricker, 1973).

Results and Discussion

The importance of water quality management in pond culture has been well

elucidated by Boyd (1982), Fast (1983) and Rijn & Shilo (1989). The mean values regarding water quality parameters such as temperature, pH, hardness, alkalinity, dissolved oxygen and productivity were found to be optimum.

Temperature ranged from 25.8 to 32.0°C, which was within the optimum range for fish. The activity of fish and their growth in particular depends on temperature. Fry (1971) categorized temperature and pH as important controlling factors of growth as they govern the rate of reaction by influencing the rate of molecular activation of metabolites. The pH of freshwater ponds is generally controlled by the carbonate bicarbonate buffer system. In the present study, the pH ranged from 7 to 8.5 which may be ideal for growth of pearl spot. The relationship of pH to pond fish culture has been summarized by Swingle (1961) and according to him and Mount (1973), the acid and alkaline death points of fish are about The small pH 4 and 11 respectively. fluctuations in pH, according to Huet (1986), is due to alkalinity and slightly alkaline water with pH 7 to 9 is suited for fish culture.

In the present study, the hardness ranged between 40 and 65 mg CaCO₃.l⁻¹. Small quantity of Ca and Mg are needed in water for fish culture but the necessary quantities are apparently present if total hardness is above 20 mg.l⁻¹ (Swingle, 1967). Similarly, natural waters that contain 40 mg.l⁻¹ or more alkalinity are considered to be more productive than waters of lower alkalinity (Mairs, 1966) and this greater productivity may be due to phosphorous and other nutrients that increase with increase in total alkalinity (Moyle, 1946). In the present study, the alkalinity ranged between 1.75 to 3 milli eq.l⁻¹.

One of the most important physicochemical parameters of water is the dissolved oxygen content, which is a critical factor for maintenance of life and survival of fishes (Boyd, 1982). McKee & Wolf (1963)

Table 2. Mean primary productivity, correlation coefficients and regression equation of productivity with percentage weight in *E. suratensis* fed different levels of Nutripro-Aqua

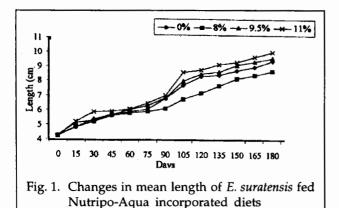
Parameters	Mean productivity (± SD)	Correlation coefficient	Regression equation (y = % Wt)
Control	3.62 ± 1.67 ^a	0.9421**	y=151.01x-186.85
8%	4.41 ± 7.34^{b}	$0.5205^{\rm NS}$	y=10.499x220.15
9.5%	$3.48 + 1.82^{\circ}$	0.9870**	y=167.70x-200.75
11%	4.71 ± 2.76^{ab}	0.9818^{NS}	y=158.93x-242.68
F value	3.747*		

NS - Not Significant, **p<0.01; *p<0.05; a, b - means with same superscript do not differ significantly

reported that less than 3 mg.l⁻¹ of dissolved oxygen in warm waters would be detrimental to fishes. In the present study, the dissolved oxygen ranged between 6.23 and 11.95 mg.l⁻¹ in different treatments.

Banerjee (1967) reported that oxygen concentration above 5 ppm is an indication of productivity, while below that level, water is unproductive. In the present study, productivity ranged from 1.01 to 9.20 mgC.m⁻³. The productivity range differed from tank to tank in which different experimental feeds were administered The productivity ranges were (Table 2). 1.03-6.60; 1.01-4.83; 1.32-6.81 and 1.20-9.20 mgC.m⁻³ in 0%, 8%, 9.5% and 11% Nutripro-Aqua administered tanks, respectively. The high productivity in 11% Nutripro-Aqua tank may be due to the leaching of nutrients from unconsumed feed present in the tanks. ANOVA showed a significant difference (p<0.05) in percentage increase in productivity between treatments and the mean productivity values at 11% Nutripro-Aqua treatment showed better production Ghosh et al. (1988) stated that (Table 2). matter is the main source of nutrients in fish pond fertility. Excess of protein-rich food with added nutrients in the Nutripro-Aqua might have enhanced the productivity of the pond.

Growth measurements at fortnightly intervals showed that the highest growth was obtained in 11% Nutripro-Aqua


treatment followed by 9.5%, 0% and least growth was shown by 8% treatment (p<0.01) (Table 3; Fig. 1 & 2). Elevated growth rate in fishes that received 11% Nutripro-Aqua may be due to the synergistic effect of growth promoter and high productivity of pond water. Keshavanath & Hanumanthappa (1995) reported that 7.5 and 2.5 mg.kg-1 Nutripro-Aqua enhanced the growth of Cyprinus carpio. Sherine (1996) tested the same growth promoter in Oreochromis mossambicus and reported that 8% and 9.5% performed better. Sherly (1997) studied the effect of Nutripro-Aqua on growth of Labeo fimbriatus and reported that Nutripro-Aqua enhanced growth significantly. The dosage of the growth promoter is species-specific and some doses may give good results and some may result in ill effects. The survival rate was also found to be higher in 11% treatment (Table 3).

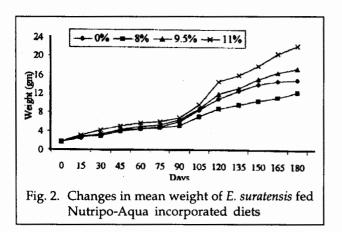

Growth was positively correlated to productivity (p<0.01) except for the 8% level (Table 2). One way ANOVA showed that primary productivity of the four treatments differed significantly. All other conditions being similar except the diet quality, variations in productivity might be due to the influence of feed administered in different

Table 3. Growth and survival rate of *E. suratensis* fed different levels of Nutripro-Agua.

Parameters	Control	8%	9.5%	11%
Initial length (cm)	4.25±0.28	4.27±0.30	4.28±0.30	4.26±0.45
Initial weight (g)	1.68±0.36	1.60±0.40	1.75±0.45	1.67±0.39
Final length (cm) (F=14.5084**)	9.43±0.44b	8.73±0.59°	9.36±0.35 ^{bc}	10.05±0.42°
Final weight (g) (F=112.8505**)	15.13±1.33 ^b	12.41±1.54°	17.50±0.82°	22.34±1.20 ^d
Net weight gain (g)	13.43	10.74	15.57	20.67
Percentage gain in weight	799.4	671.2	889.7	1237.7
Survival (%)	94	98	95	99

a, b, c, d - means with the same superscript do not differ significantly; **p<0.01

treatments. The growth enhancement may be due to the synergistic action of growth promoter with the primary productivity of ambient environment. Regression analysis (Table 2) showed good relationship between productivity and fish growth in the culture system.

The authors are thankful to Dr. P. Natarajan, Head, Department of Aquatic Biology and Fisheries, University of Kerala, Thiruvananthapuram, for the facilities provided and to Dr. N. K. Balasubramanian, Reader in Biostatistics for the assistance in statistical analysis of data. Thanks are also due to Dr. T. Vasudevan Nair for the facilities provided for chemical analysis. We acknowledge Mrs. Sherine Mary Philip and Mr. Alexander Mathew Abraham for timely help rendered.

References

APHA (I992) Standard Methods for the Examination of Water and Wastewater, 18th edn, p. 522, American Public Health Association, Washington DC

Banerjee, S.M. (1967) Indian J. Fish. 14,115

Boyd, C.E., Romaire, R.P. & Jhonson, E. (1979) J. Environ. Qual. 8, 424

Boyd, C.E. (1982) Water Quality Management for Pond Fish Culture, p.318, Elsevier Scientific Publishing Company, Amsterdam

Chattopadhyay, G.N., Saha, P.K., Karmakar, H.C. & Ghosh, A. (1990) in *Proc. National Seminar on Aquaculture Development in India -Problems and Prospects*, Trivandrum, p.151

Fast, A.W. (1983) in *Principles and Practices of Pond Aquaculture: A State of the Art Review* (Lannan, J.E., Smitherman, R.O.,

Oglous, T. G., Eds.), p.145, Oregon State

University, New Port

Fry, F.E.J. (1971) in Fish Physiology Vol. VI (Hoar, W.S & Randall D.J., Eds.), p.1, Academic Press, New York

Ghosh, S.K., Mandal, B.K. & Barthakur, D.N.(1984) Aquaculture 40, 97

Ghosh, A., Chattopadhyay, G.N. & Chakraborti, P.K. (1988) Escap. Seminar on Wastewater Reclamation and Reuse for Aquaculture, Calcutta

Huet, M. (1986) in *Text Book of Fish Culture:*Breeding and Cultivation of Fish, 2nd edn,
p. 438, Fishing News Books Ltd.,
Farnham, Surrey

Keshavanath, P. & Hanumanthappa, H. (1995) in National Workshop on Aquaculture Nutrition, p.23

Mairs, D.F. (1966) Limnol. Oceanogr. 11, 68

McConnel, W.J., Steven, L. & James O.E.(1977) Trans. Amer. Fish. Soc. 106, 417

McKee, J.E. & Wolf, H.W. (1963) Water Quality Criteria. 2nd edn, p. 548, State of California, State Water Quality Control Board, Sacremento Publications

Mount, D.I. (1973) Water Res. 7, 987

Moyle, J.B. (1946) Trans. Am. Fish. Soc. 76, 322

Nayak, P.K. & Mandal, B.K. (1990) J. Aqua. Trop. 5,117

Ricker, W.E. (1973) J. Fish. Res. Bd, Canada 30, 409

53

Santhanam, R., Velayurtham, P. & Jegatheesan, G. (1989) A Manual of Freshwater Ecology, p. 80, Daya Publishing House, Delhi Schroeder, G.I. (1978) Aquaculture 14, 303
Sherine, M.P. (1996) Impact of a Commercial

Product, Nutripro-Aqua on the Growth

Performance of Oreochromis mossambicus

Peters, M. Sc. Dissertation, University

Growth Promoters on the Growth Response

Sherley, D. (1997) Effect of Hormones and

Rijn, J.V. & Shilo, M. (1989) Fish Culture in

Press Inc., Florida

of Kerala

Warm Water System: Problems and Trends. (Shilo, M. & Sarig, S., Eds.), p. 259, CRC

Snedecor, G.W. & Cochran, G.W. (1968) Statistical Methods, p. 593, Oxford and IBH Company, Calcutta Steel. R.G.D. & Torrie, J.H. (1980) Principles and Procedures of Statistics - A Biometrical Approach, p.593, Mc Graw Hill Book Company, New York Swingle, H.S. (1961) Proc. Pacific Sci. Congress 9 (1957) 10, 72 Swingle, H.S. (1967) FAO Fish. Rep. 44(4), 397

Swingle, H.S.(1968) Fish. Res. Bull. 44, 416

Tucker, L., Boyd, C.E. & McCoy, E.W. (1979)

Trans. Am. Fish. Soc., 108, 289

(Day), Ph.D. Thesis, University of Kerala