Cellulolytic Bacteria in Marine Wood Borers

K. Dhevendaran, R.V. Rajashree and N. Balakrishnan Nair

Department of Aquatic Biology and Fisheries University of Kerala, Thiruvananthapuram-695 007, India

Four wood borers (Sphaeroma terebrans, S. annandalei, Martesia striata and Teredo furcifera) were collected from four stations (Akathumuri, Edava Nadayara, Neendakara and Ashtamudi) of Kerala Coast. The cellulolytic bacterial population in S. terebrans during different seasons were investigated. Maximum population was recorded during monsoon season in the hind gut region. Samples from Ashtamudi and Akathumuri recorded the maximum cellulolytic bacteria in S. terebrans. Similarly a survey of the cellulolytic bacteria in different wood-borers collected from Ashtamudi revealed that M. striata harboured the maximum cellulolytic bacteria and S. annandalei showed the minimum population. Bacterial isolates randomly selected, exhibited maximum cellulolytic activity of 350µg glu.ml⁻¹h⁻¹ in Micrococcus (AQB Th3) isolated from S. terebrans and minimum, 37µg glu.ml⁻¹h⁻¹ in Corynebacterium (AQB Th2) isolated from S. annandalei. The enzyme activity in the mouth and viscera of wood borers was investigated. It was noted that maximum cellulolytic activity was in the mouth region though not low in the visceral region.

Key words: Wood borers, cellulolytic bacteria

Cellulose is distributed widely in submerged wood (John, 1964) and in seaweeds (Aspinall et al., 1958). The cellulose material is decomposed by cellulose decomposing microbes in nature, (Dhevendaran et al. 1992; Rajasree, 1996). Certain marine Vibrio spp., Streptomyces and fungi exhibited cellulolytic activity (Balasubramaniam et al., 1975; Venugopalan et al., 1986), Florkin & Lozet (1949) have demonstrated the presence of cellulolytic bacteria, decomposing cellulose in the digestive tract of the snail H. pomatia. Polychaetes such as Nereis virens fed on algae possessed cellulase enzyme (Lewis & Whitney, 1968). Cutter & Rosenberg (1972) investigated cellulolytic bacteria in the digestive system of shipworm. Boyle & Mitchel (1980) observed the interaction between microorganisms and marine wood boring crusta-Waterbury et al. (1983) isolated nitrogen fixing cellulolytic bacteria from a specialized gland of the shipworm, known as the gland of Deshayes. Adhesive properties of symbiotic bacteria from a wood boring marine shipworm was investigated by Syed et al. (1990). Although a few reports are available at present on distribution of wood borers (Nair & Dharmaraj, 1979, 1980, 1982) on cellulolytic bacteria and cellulose synthesis in wood borers, information on the combined cellulolytic activity by marine wood borers and associated bacteria in Southwest of India is totally lacking. This work was aimed at investigating cellulolytic activity of bacterial strains associated with wood borers and the enzyme activity in the animals themselves to assess, whether any association existed between bacteria and the host, based on cellulose metabolism.

Materials and Methods

The present investigation was carried out over a period of one year (Jan. - Dec., 1992). The wooden planks containing wood borers were removed from the main trees in coastal regions of Akathumuri, Edava Nadayara, Neendakara and Ashtamudi and placed in polythene bags. They were brought to the laboratory in minimum time to avoid variations in microbial load. In the laboratory, the wood borers (Sphaeroma annandalei, S. terebrans, Martesia striata and Teredo furcifera) were removed from the wood using sterile needle and forceps into sterile

petridishes under aseptic conditions, unless otherwise stated. The animals were dissected into head, thorax and abdomen and also digestive tract. They were independently transferred into 99 ml of sterile 50% seawater blank and homogenized using a sterile tissue homogeniser. Standard plating technique was followed employing the method adopted by Dhevendaran (1977) and Dhevendaran & Maya (1998).

Randomly selected bacterial strains were identified to the generic level following the methods of Simidu & Aiso (1962) and Staley *et al.* (1989).

For assay of cellulolytic activity, 0.1 ml of 24 h old culture was inoculated into 8 ml nutrient broth, prepared in phosphate buffer at pH 7.0 with 1% of carboxy methyl cellulose (CMC) and incubated for 48 h at room temperature (28±2°C) After the incubation period was over, the bacterial biomass was estimated by measuring at 600 nm in UNICAM - spectrophotometer. estimate cellulase activity, 2 ml of culture mixed with 2 ml of copper was reagent and heated in boiling water bath for After sufficient cooling, 2 ml of 20 min. arsenomolybdate was added and blue colour was developed. The whole content was centrifuged at 10,000 rpm for 10 min. The supernatent was diluted with 4 ml of distilled water and then it was read at 495 the UNICAM-spectrophotometer et al., 1992). (Dhevendaran

Results and Discussion

Seasonal variations of cellulolytic bacterial load on the exoskeleton of *S. terebrans* is given in Fig.1a. During post-monsoon season maximum bacterial population $(25 \times 10^4 \, \text{g}^{-1})$ was found in abdominal part and minimum $(1.82 \times 10^4 \, \text{g}^{-1})$ population was noticed during pre-monsoon season in the head region. This pattern was similar to that observed in termites by Jaisree *et al.* (1985). The cellulolytic bacterial load in the digestive tract of *S. terabrans* is presented in Fig.1b.

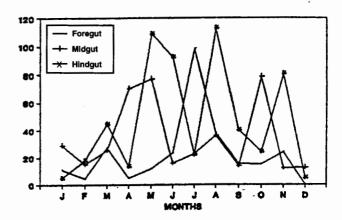


Fig. 1 a. Seasonal variations of cellulolytic bacteria isolated from the exoskeleton of wood-borer, *S. terebrans*

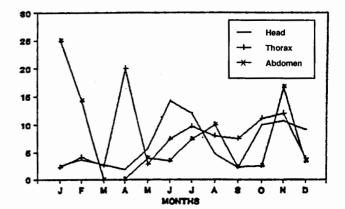


Fig. 1 b. Seasonal variations of cellulolytic bacteria isolated from the digestive tract of wood-borer, *S. terebrans*

Seasonal variations of the microflora in the digestive tract of wood borers revealed that hind gut harboured maximum cellulolytic bacteria (112.9 x 10⁴. g⁻¹) during monsoon months and minimum (4.76 x 10⁴.g⁻¹) during postmonsoon season. Kasinathan et al (1973) observed that three species of land snail harboured maximum cellulolytic bacteria in the post-stomach and intestine. (1976) reported the occurrence of maximum cellulolytic bacteria in the hind gut of termites. It was seen that there were no statistically significant differences in the bacterial load between seasons or body parts. The slight differences in the cellulolytic bacterial population may be due to changes in the external environmental factors like salinity and temperature, which in turn influence growth of cellulolytic bacteria. The proportion of cellulolytic bacteria varied

Table 1. Cellulolytic bacterial load on the exoskeleton and alimentary tract of *Sphaeroma terebrans* collected from Ashtamudi lake

Sources	THB x 10 ⁶ .g ⁻¹	Cellulolytic Bacteria x 10 ⁶ .g ⁻¹	% of cellulolytic bacteria
Head	62.82	27.00	42.98
Thorax	56.87	29.00	51.00
Abdomen	61.27	22.00	35.91
Fore gut	87.53	44.00	50.27
Mid gut	117.68	48.00	40.79
Hind gut	113.20	59.00	52.12

from about 36% of the total bacterial load in the abdomen to about 52% in the hind gut (Table 1).

It was observed that most of the gut microflora were cocci. In a similar study, Breznak, (1975) isolated cellulolytic cocci and coccobacilli from the gut of *Reticuliterms flavipes* and *Copotermes formosanus*.

Cellulolytic bacterial population in the different body parts of the exoskeleton of *S. terebrans* collected from different regions showed wide variations (Table 2). Maximum population was in the sample collected from Ashtamudi lake and minimum in the animal collected from Neendakara region.

Cellulolytic bacterial load in different parts of alimentary canal of selected wood borers from Ashtamudi is shown in Table 3. It was noted that the foregut of *M. striata* harboured the maximum number of cellulolytic bacteria and the hind gut of *S. annandalei*, the minimum. In the present study, the cellulose decomposing bacteria may contribute to the cellulase pool in the

Table 2. Cellulolytic bacterial population on the exoskeleton of *Sphaeroma terebrans* collected from different loctions

Sources (Cellulolytic bacterial population, x 106.g-1			
	Head	Thorax	Abdomen	
Akathumuri	8.57	26.53	14.89	
Edava Nadayar	18.00	25.66	13.75	
Neendakara	4.00	7.55	2.00	
Ashtamudi	25.00	20.00	4.00	

Table 3. Cellulolytic bacterial population in the alimentary tract of different wood borers collected along the Ashtamudi lake

	Cellulolytic b	acterial popul	ation, x 106.g-1
Sources	Fore gut	Mid gut	Hind gut
S. terebrans	10.00	25.00	2.00
S. annandalei	10.00	15.75	5.62
M. Striata	30.00	20.19	15.25
T. furcifera	2.00	8.50	15.00

animal to a limited extent. There seems to exist a symbiotic association between the wood borers and the cellulolytic bacteria.

Cellulolytic activities of randomly selected 24 isolates from exoskeleton and alimentary tract of different wood borers are presented in Table 4. *Micrococcus* isolated from mid gut of *S. terebrans* showed maximum growth (1.40 OD) and elevated

Table 4. Cellulolytic activity in selected bacterial strains

	,	,		
Bacterial culture	Sources	Isolate number	Growth (OD at 6.0 nm)	Activity (µg glu. ml ⁻¹ .h ⁻¹
Arthrobacter Micrococcus Moraxella	S. terebrans	HDI TH13 AN24	0.5 1.2 0.55	126 300 136
Moraxella Corynebacter Micrococcus	S. annandalei ium	HD15 TH2 AN2	0.35 0.15 . 0.55	88 37 136
Vibrio Micrococcus Micrococcus	M. striata	PHD14 PTH24 PAN1		189 228 111
Bacillus Moraxella Moraxella	T. furcifera	THD8 TDR TAN6	0.95 0.42 1.00	235 106 250
Pseudomonas Micrococcus Corynebacteri		FG5 MG2 HG1	0.45 1.40 1.20	111 350 300
Micrococcus Micrococcus Micrococcus	S. annandaelei	AFG26 AMG3 AHG25	4 0.66	286 165 180
Vibrio Moraxella Bacillus	M. striata	PFG30 PMG29 PHG8	0.54 9 0.70 0.75	134 177 189
Micrococcus Moraxella Arthrobacter	T. furcifera	TFG1 TMG15 THG25		235 2.86 204

Table 5. Cellulolytic activity in the mouth and viscera of various wood borers

Organsims	Source	Activity
S. annandalei	Mouth Viscera	140.00 55.00
S. terebrans	Mouth Viscera	214.00 190.00
M. striata	Mouth Viscera	204.00 134.00
T. furcifera	Mouth Viscera	180.00 134.00

enzyme (350µg glu.ml.-1h-1) activity. Corynebacterium from hind gut and Micrococcus from the exoskeleton of the same organisms showed enzyme activity of 300µg glu.ml⁻¹ h-1. However, Corynebacterium isolated from the exoskeleton of S. annandalei had less enzyme activity (37µg glu.ml.-1h-1) and feeble (0.15 OD) growth. Table 5 shows the cellulolytic activity in mouth and visceral regions of selected wood borers. Invariably in all the four wood borers, the mouth regions exhibited higher activity compared Of these, the to viscera. activity was maximum in the mouth of S. terebrans (214µg glu.ml⁻¹.h⁻¹). The visceral mass of S. annandalei had the least (55µg glu.ml⁻¹.h⁻¹) enzyme activity.

Cellulolytic activity is widespread in invertebrates where it is associated with gut flora or perhaps produced by the animals themselves. Sulfutile, a liquid formed during the preparation of cellulose from wood is also fermented by microorganisms. Cellobiose which is a product of the digestion of cellulose can be converted into glucose by the action of β-glucosidase (Fischer & Zempplen, 1910. A fungus, Cladosporium cladosporoides from soil showed cellulase activity on carboxy methyl cellulose (CMC). This was mainly extracellular (Lynch et al., 1981). They also that large variations in cellulase stated activity was mainly because of assay substrate and location of the enzyme reserve.

The present investigation revealed that the wood borers by themselves are capable of secreting cellulase and perhaps the indigenous cellulolytic bacteria associated with wood borers help them in boring through the wood by breaking down the cellulose molecule.

The authors wish to thank the authorities of University of Kerala, for facilities provided to carry out this research programme.

References

- Aspinall, G.O., Hirst, E.H., Percival, E.G.V. & Williamson, I.R. (1958) *J. Chem. Soc.* 5, 3184
- Balasubramanian T., Lakshmanaperumalsamy, P., Chandramohan, D. & Natarajan, R. (1975) Cellulolytic activity of straptomycetes isolated from the alimentary canal of marine borers. p.51 XVI Annual Conference, Association of Microbiological of India, Virabhadra (UP), 51
- Boyle, P.J. & Mitchell, R. (1980) Science, 280, 1157
- Breznak, J.A. (1975) In *Society for Experimental Biology* (Jenning, D.H. & Lee, D.L., Eds) p.559 Cambridge University Press, London
- Cutter, J.M. & Rosenberg, F.A. (1972) In Biodeterioration of Materials. (Waters, A.H., Mueck Van der Plas, E.H. Eds) p42. Applied Science Publishers Ltd., London.
- Dhevendaran, K. (1977) The Studies in Arylsulfatase Activity of Marine Sediments. Ph.D. thesis, Annamalai University, India
- Dhevendaran, K., Maya, K. & Natarajan, P. (1992) *Indian Acad Sci.* **62**, 59
- Dhevendaran, K., Radha, S. & Natarajan, P. (1993) *Indian J. Mar. Sci.* 22, 30
- Dhevendaran, K. & Maya, K. (1998) *J. Mar. Biotech.* **6**, 71

CELLULOLYTIC BACTERIA IN MARINE WOOD BORERS

35

Florkin, M. & Lozet, F. (1949) Acrh. Intern. Physiol. et. Biochem. 87, 201

Jaisree, P., Aditi, S. & Ajit, V. (1985) Curr. Sci. **54**, 1098

John, P.A. (1964) Helgolander Wissenchaftliche Meerasenter serchungen 11, 22 Lewis, J. & Whitney, K. (1968) Comp. Biochem.

Physiol. 13, 323 Lynch, J.M., Slater, J.H., Jacqueline, A., Bennett, S. & Harper, H.T. (1981) J. Gen. Microbiol. **127**. 231

12, 103

Nair, N. B. & Dharmaraj, K. (1979) Mahasagar, Nair, N. B. & Dharmaraj, K. (1980) Mahasagar, **13**, 249

Nair, N. B. & Dharmaraj, K. (1983) Indian J.

Mar. Sci.12, 96

Venugopalan, V.K., Ramesh, A. & Loganathan, B. (1986). Proc. Marine Biodeterioration, 357

Wood

Fish. 28, 1133

Baltimone

Microbiol. 56, 1317

Waterbery, J.B., Calloway, C.B. & Turner, R.D. (1983) Science, **221**, 1401

Boring Organisms Thiruvananthapuram coast. Ph.D. Thesis,

University of Kerala, India

Simidu, U. & Aiso, K. (1962) Bull. Jap. Soc. Sci.

Staley, J.T., Bryant, M.P. Pfenning, N. & Holt,

Sayed, H.I., Richard, V., Greene, R., Herold,

Thayer, D.W. (1976) J. Gen. Microbiol. 95, 287

J.G. (1989) Bergey's Manual of Systematic

Bacteriology, Williams and Wilkins,

L. & Griffin, J. (1990) Appl. Environ.