

Modulation in Nutritional Quality of Microalgae, Chaetoceros calcitrans in Different Culture Media

K.P. Lincymol, Gijo Ittoop¹, P. Lakshmi Devi and Aneykutty Joseph*

Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Cochin - 682 016, India

Abstract

The present study was initiated to identify the best medium for culture of Chaetoceros calcitrans that could provide better protein and lipid content while supporting good growth of the algae. The media selected were Walne's, Miquel's, Chu and f/2 media. The algae cultured in Walne's, Miquel's and f/2 media showed significantly higher content of lipid (P<0.05) in the late exponential phase. Protein content was the highest in Walne's medium (32.53 ± 0.28% dry weight) as compared to other media tested. Maximum cell density was recorded in f/2 medium. Miquel's medium gave the maximum carbohydrate content (16.92 ± 1.54% dry weight). It was observed that media could certainly influence the biochemical composition of microalgae and therefore selection of media should be based on the larval requirement of the target species. Results obtained in the present study revealed that microalgae cultured in Walne's medium gave high values of protein and lipid content. Although cell count was the highest in f/2 medium, Walne's medium provided the best nutritional quality of algae.

Key words: Algal culture, *Chaetoceros calcitrans*, culture media, biochemical Variation

Received 20 July 2011; Revised 4 May 2012; Accepted 07 June 2012

Introduction

Microalgae contribute half of the globe's photosynthetic activity and form the basis of the food chain for more than 70% of the world's biomass (Raja et al., 2008). About 25 000 species of microalgae are reported, but only a few are used for various purposes beneficial to humans. One of the most important applications of the microalgae is its use in the larval rearing of a variety of fin fish and shellfish (Brown et al., 1997). Advancement in biotechnology has paved way for enrichment of microalgae using various media as well as culture strategies, so that the percentage of larval survival can be improved (Noue & Pauw, 1988). Otero et al. (2006) had developed culture techniques for Phaeodactylum tricornutum, Isochrysis galbana and Porphyridium cruentum with high polyunsaturated fatty acid (PUFA) content. Different nutrient concentrations and aeration rates were tried to improve nutritional status of microalgae by Fábregas et al. (1986a, 1986b, 1998). Eicosapentaenoic acid and docosahexaenoic acid emulsions were used in the media for improving polyunsaturated fatty acid content in Dunaliella tertiolecta (Nevejan, 2003). Much advancement has been made by other countries in the manipulation of biochemical content of the microalgae in accordance with the requirement of the cultured species. This field of study is still in its infancy in India. Even though different media are used for algal culture, their effect on the biochemical composition of microalgae has not yet been studied. The present study attempts to find the best medium which supports good growth with improved nutritional value for the culture of Chaetoceros calcitrans, an important live food used in mariculture.

Materials and Methods

Pure culture of *C. calcitrans* maintained in f/2 medium was obtained from Central Marine Fisher-

^{*} E mail: aneykuttyj@yahoo.co.in

¹Present address : Government Regional Fisheries Vocational Higher Secondary School, Thevara, Cochin-682 013, India

ies Research Institute, Cochin, India. The media tested in the present study were Miquel's (Miquel, 1892), Chu (Chu *et al.*, 1942), Walne's (Walne, 1974) and f/2 media (Guillard & Provasoli, 1975), the composition and preparation/procedure of which are given in Table 1.

Sea water of salinity between 28-35 ppt was used for the preparation of the media. Standard algal culture procedures were used throughout the study (Lee & Shen, 2004). Hafkin's flasks of 3000 ml capacity were used for testing each media in triplicate. A temperature of 23 to 25°C and illumination of 1000 to 2000 lux for 12 h were provided for the algal growth. Inoculation of each media was done at the rate of 9 to 10 x 10⁴ cells ml⁻ 1. Algal cell counting was done every day using haemocytometer. Preliminary experiments showed that algal culture reached exponential phase in 10 to 12 days and the decline phase started by day 15 in all the media tested. So it was decided to analyze the biochemical composition on day 12, the late exponential phase. Throughout the culture period, strict anti-contamination procedures were followed (Lee & Shen, 2004) and the culture was checked on every sampling for contamination. For harvesting, flocculation was done by increasing the pH using sodium hydroxide. Protein analysis was done using dye binding method (Bradford, 1976), carbohydrate analysis using phenol-sulphuric acid method (Dubois et al., 1956) and lipid content using sulpho-phospho vaniline method (Barner & Blackstock, 1973). The differences in the means of cell count and biochemical compositions among various treatments were compared using ANOVA and the variations between individual treatments, if any, was brought out following post hoc analysis.

Results and Discussion

Cell count of the algae in the different culture media during the study period is given in Fig. 1. The results showed that the maximum cell count was in f/2 medium (145 cells ml^{-1}), followed by Walne's medium. Miquel's medium showed the poorest performance. Statistical analysis of the data revealed significant difference (P<0.05) between cell density in different media. The f/2 medium gave a significantly high cell count compared to all other media. The result obtained is in accordance with Fábregas et al. (1986a), who reported that different nutrient composition can influence the biomass production in microalgae.

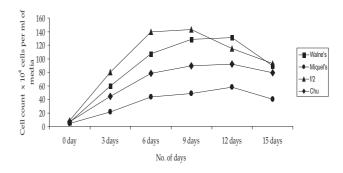


Fig. 1. Cell count of *Chaetoceros calcitrans* in different media against time

Mean percentage of protein, lipid and carbohydrate content of *C. calcitrans* in different media are given in Table 2. Statistical analysis of the data showed significant differences (P<0.05) between the protein content in microalgae cultured in different media. The Walne's medium gave a significantly high (P<0.05) content of protein (32.53 \pm 0.28% dry weight). This was followed by f/2 medium (25.69 \pm 0.30% dry weight). The influence of nutrient content of the media in determining protein content of the microalgae produced has been elucidated by Fábregas et al. (1986a).

In the case of lipid content, the results revealed that the lipid content almost the same in all the media tested except the Chu medium. There was no significant difference between the lipid content in Walne's, Miquel's and f/2 media whereas in the Chu medium there was a significantly lower (P<0.05) lipid content in the microalgae produced.

Miquel's media which gave microalgae with lower protein and fat content, provided a higher content of carbohydrate (16.92 \pm 1.54% dry weight). The Walne's, Chu and f/2 medium showed results with no significant difference at (P>0.05). But at the same time, these results were significantly lower (P<0.05) compared to the values obtained in Miquel's medium. Growth of algae and level of protein and lipid content were lower in the Miquel's medium. But the carbohydrate content was maximum in this medium. The change in the carbohydrate content in different nutrient composition of the culture media is reported by Fábregas et al. (1986b).

From Table 2, it can be seen that protein and lipid content were higher in media such as Walne's and f/2 media where trace elements and vitamins are included. In case of Miquel's and Chu media,

Table 1. Composition of media selected for the study

Sl. No.	Media		Composition/procedure	Quantity
1	Miquel's media (Miquel, 1892)		Potassium nitrate Distilled water - Sodium ortho phosphate Calcium chloride Ferric chloride Hydrochloric acid Distilled water 5 ml of A and 0.50 ml of B were added to the of filtered and boiled sea water	20.2 g 100 ml 4 g 2 g 2 g 2 ml 100 ml
2	Conway or Walne's media (Walne, 1974)	On	Potassium nitrate Sodium ortho phosphate Sodium EDTA Boric acid Ferric chloride Manganese chloride Distilled water Zinc chloride Cobalt chloride Copper sulphate Ammonium molybdate Distilled water Vitamin B1 Vitamin B12 B and C were prepared in different bottles. e ml of A, 0.5 ml of B and 0.1 ml of C were led to 1 litre filtered and boiled sea water	100 g 20 g 45 g 33.4 g 1.3 g 0.36 g 1000 ml 4.2 g 4.0 g 4.0 g 1.8 g 1000 ml 200 mg 100 ml ⁻¹ 10 mg 100 ml ⁻¹
3	f/2 medium (Guillard and Provasoli, 1975)	Soci Soci Fer Soci Ma Zin Col Cop Soci Thi Bio Cya 1 n orth 1 n solu	lium nitrate lium ortho phosphate lium silicate ric chloride lium EDTA nganese chloride cc sulphate palt chloride pper sulphate lium molybdate amine tin anocobalamin al of sodium nitrate, 1 ml of sodium nophosphate, 1 ml of sodium silicate, al of trace metal and 0.5 ml of vitamin ution added to 1 liter of filtered and boiled water	7.5 g 100 ml ⁻¹ 500 mg 100 ml ⁻¹ 3 g 100 ml ⁻¹ 0.32 g 9.5 ml ⁻¹ 0.44 g 9.5 ml ⁻¹ 18 g 100 ml ⁻¹ 2.2 g 100 ml ⁻¹ 1 g 100 ml ⁻¹ 0.98 g 100 ml ⁻¹ 0.63 g 100 ml ⁻¹ 200 mg l ⁻¹ 1 mg l ⁻¹ 1 mg l ⁻¹
4	Chu's medium (Chu et al., 1942)	A. B. C. D. E. F.	Calcium nitrate Potassium ortho phosphate Magnesium sulphate Sodium carbonate Sodium silicate Ferric chloride d 1 ml of A, B, C, D, E, F to 1 liter of filtered a	5.76 g 100 ml ⁻¹ 0.5 g 100 ml ⁻¹ 2.5 g 100 ml ⁻¹ 2 g 100 ml ⁻¹ 2.5 g 100 ml ⁻¹ 0.08 g 100 ml ⁻¹ and boiled sea wate

Nutritional Media parameters Walne's Miquel's f/2Chu Protein (%) 32.53 ± 3.97 a* 13.84 ± 4.07 b 25.69 ± 2.89 c 18.23 ± 2.15 b 16.07 ± 3.28 a 15.89 ± 2.35 a 16.09 ± 3.22 a 9.39 ± 1.85^{b} Lipid (%) Carbohydrate (%) 11.29 ± 1.99 a 16.92 ± 1.54 b 11.88 ± 1.76 a 9.47 ± 5.89 a

Table 2. Mean percentage and SD of protein, lipid and carbohydrate in Chaetoceros calcitrans cultured in different media

growth as well as nutritional quality of the algae produced were low because of the absence of trace elements and vitamins in the media. According to Croft et al. (2006), most groups of algae require thiamine, cyanocobalamin and biotin as growth factors in media for increased ability of photosynthesis. The role of trace elements such as iron, copper and manganese in the growth of microalgae has been elucidated by Spencer (1957).

From the above results and discussion, it is evident that media have certainly influenced the growth as well as biochemical composition of the microalgae C. calcitrans. The f/2 medium supported maximum growth of the algae while Walne's medium gave maximum content of protein and lipid. Miquel's media though did not support good growth of algae the carbohydrate content was higher in algae grown in this medium. The biochemical variability of algae in Walne's and f/2 medium was similar to that obtained by Brown et al. (1997) and Phatarpekar et al. (2000). Thus the present study has proved the superior efficiency of Walne's medium for producing C. calcitrans with higher protein and lipid content for better performance in larval nutrition of cultured species.

Acknowledgements

The authors wish to express their gratitude to the Head and staff of the Department of Marine Biology, School of Marine Sciences, Cochin University of Science and Technology for providing necessary facilities. They also thank Kerala Biotechnology Commission, Government of Kerala and University Grant Commission, New Delhi for the funding provided.

References

Barner, H. and Black Stock, J. (1973) Estimation of lipids in marine mammals and tissues, detailed investigation of Sulphophosphovanillin method for total lipids. J. Exp. Bio. Ecol. 12: 103-118 Bradford, M. M. (1976) A rapid and sensitive method for the quantization of microgram quantities of protein utilizing the principles of protein- dye binding. Anal. Biochem. 72: 248-254

Brown, M. R., Jeffrey, S. W., Volkman J. K., and Dunstan, G. A. (1997) Nutritional properties of micro algae for mariculture. Aquaculture, 151: 315-331

Croft, M. T., Warren, M. J. and Smith, A. G. (2006) Algae need their vitamins. Eukaryot Cell, 5: 1175-1183

Chu, F. E., Dupuy, J. L. and Webb, K. L. (1942) Polysaccharide composition of five algal species used as food for larvae of American oyster. Aquaculture, 29: 241-252

Dubios, M., Gilles, K.A., Hamilton, J.K., Rebers, P.A. and Smith, F. (1956) Colorimetric determination for sugars and related substances. Anal. Chem. 28: 350-356

Fábregas, J., Herrero, C., Abalde, J., Liano, R. and Cabezas, B. (1986a) Biomass production and biochemical variability of the marine microalga *Dunaliella tertiolecta* (Butcher) with high nutrient concentrations Aquaculture, 53: 187-199

Fábregas, J., Herrero, C., Cabezas, B. and Abalde, J. (1986b) Biomass production and biochemical composition in mass cultures of the marine microalga *Isochrysis galbana* Parke at varying nutrient concentrations. Aquaculture, 53: 101-113

Fábregas, J., Otero, A., Morales, E. D., Arredondo-Vega, B.O. and Patiño, M. (1998) Modification of the nutritive value of *Phaeodactylum tricornutum* for *Artemia* sp. in semicontinuous cultures. Aquaculture, 169: 167-176

Guillard, R. and Provasoli, L. (1975) Culture of phytoplankton for feeding marine invertebrates. In: Culture of Marine Invertebrate Animals (Smith, W. L and Chanley, M. H., Eds), pp 29-60, Plenum, New York

Lee, Y. K. and Shen H. (2004) Basic culturing techniques, In: Handbook of Microalgal Culture: Biotechnology and Applied Phycology (Richmond, A., Ed), pp 40– 56, Blackwell, Oxford

^{*} Values which are differently superscripted in each row are significantly different (P<0.05)

- Miquel, P. (1892) De la culture artificielle des Diatomèes. C.R. Academic Science, Paris 114: 780-782
- Nevejan, N., Saez, I., Gajardo, G. and Sorgeloos, P. (2003) Supplementation of EPA and DHA emulsions to a *Dunaliella tertiolecta* diet: effect on growth and lipid composition of scallop larvae, *Argopecten purpuratus* (Lamarck, 1819). Aquaculture, 217: 613-632
- Noue de la Joel and Pauw de Niels (1988) The potential of microalgal biotechnology: A review of production and uses of microalgae. Biotechnol. Adv. 6: 725-770
- Otero, A., García, D. and Fábregas, J. (2006) Factors controlling eicosapentaenoic acid production in semicontinuous cultures of marine microalgae. J. Appl. Phycol. 9: 465-469
- Phatarpekar, P. V., Sreepada, R. A., Pednekar, C. and Achuthankutty, C.T. (2000) A comparative study on growth performance and biochemical composition of mixed culture of *I. galbana* and *C. calcitrans* with mono culture. Aquaculture, 181: 141-155
- Raja, R., Hemaiswarya, S., Kumar, N. A., Sridhar, S., and Rengasamy, R. (2008) A perspective on the biotechnological potential of microalgae. Critical Rev. Microbiol. 34: 77-88
- Spencer, C. P. (1957) Utilization of trace elements by marine unicellular algae. J. Gen. Microbiol. 16: 282-285
- Walne, P.R. (1974) The culture of marine bivalve larvae. In: Physiology of Mollusca (Wilbur K. M. and Yonge C. N., Eds), pp 197-210, Academic Press, New York

