Fishery Technology 1999, Vol. 36(2) pp : 96-99

Occurrence of *Vibrio cholerae* Non 01 and Their Dispersion Phenomena in the Coastal Waters at Mangalore

S. Sreeja and O. Raveendran

National Institute of Oceanography Regional Centre Cochin-682 018, India

Occurrence of *Vibrio cholerae* non 01 and their dispersion in the coastal waters of Mangalore for three seasons were studied. The near-shore stations recorded comparatively higher incidence of these bacteria while places with a depth of 10m, 2 to 3 kilometres away from the shore, showed a gradual diminishing trend and at the offshore stations, 5 to 6 kilo metres away from the shore, the abundance of the organism was very low. Environmental parameters like salinity, temperature and pH and their correlation with the occurrence of this species are discussed.

Key words: Vibrio cholerae Non 01, Mangalore coast, temperature, dispersion, pH, salinity

Vibrio cholerae non 01 is a non agglutinating group of Vibrios, which occur as a part of the autochthonous flora in estuarine and marine environment (Colwell, 1984). They are rod shaped, non spore forming, motile and Gram negative organisms and are pathologically significant. They have been implicated in diarrhoea as well as systemic infections in human beings (Colwell Kaper, 1997; Blake et al., 1980). V. cholerae non 01 have been isolated from seafoods (Karunasagar et al., 1988; Mathew et al., 1988; Iyer et al., 1990). Published information on these bacteria from the estuarine and marine environments of Mangalore coast is scanty. Hence, such a study was initiated to examine the occurrence of these organisms in the coastal environment of Mangalore with particular emphasis on the dispersion and disappearance phenomena exhibited by them in the coastal waters.

Materials and Methods

The area of study was between Suratkal and Old Port at Mangalore and between 13°

10.414', 074°45.106'W and 12°50.8', 74°49.6'E. Sampling was seasonal, from 1996 March to 1997 June. The details of sampling are given in Table 1. Water samples were collected in sterilized glass bottles using ZoBell's modified water sampler and sediment, in sterilized petri dishes using a Van Veen grab. The samples were brought to the laboratory in iced and aseptic conditions.

Samples (50 ml water or 50 g of sediment) were mixed with 450 ml alkaline peptone water (APW) and incubated at 37°C for 6-8 h. A loopful of the inoculum was streaked on to thiosulphate citrate bile sucrose agar plates (TCBS) and incubated at 37°C for 24 h. Smooth yellow colonies, characteristic of *V. cholerae* were collected and inoculated into triple sugar iron agar (TSI) slants and incubated at 37°C for 18-24 h. Colonies giving typical reactions in the biochemical tests were kept aside for further study.

These colonies were subcultured on to nutrient agar slants and incubated at 37°C

Table 1. Presence of Vibrio cholerae non 01 at the two sampling stations during different seasons

		Depth										
Month & Year		5 m			10 m			20 m				
		SW	BW	SED	SW	BW	SED	SW	BW	SED		
1996 March	S	++	++	++	+	+	+		-	_		
	OP	++	++	++	+	+	. +	-	-	-		
1996 December	S	++	++	++	+	+	+	+	-	-		
	OP	++	++	++	+	+	+	+	-	-		
1997 February	S	++	++	++	+	+	+	-	-	-		
	OP	++	++	++	+	+	+	-	+	-		
1997 May/June	S	++	++	++	+	+	+	-	-	-		
	OP	++	++	++	+	++	+	-	+	-		

++ = High, + = Low, - = Absence, SW = Surface water, BW = Bottom water, SED = Sediment, S = Suratkal, OP=Old Port

for 24 h. Growth in the slants was tested for slide agglutination with cholerae polyvalent antisera 'O'.

Results and Discussion

The presence of *V. cholerae* non 01 in the different samples was recorded from the two stations and data are given in Table 2. The results show that *V. cholerae* non 01 was present in the near-shore stations (5 and 10 m depths) of both Suratkal and Old Port during all seasons, but the abundance was less at 10 m depth. These organisms were almost absent in the offshore (20 m) stations. *V. cholerae* non 01 is not a marine bacterium and chance of its survival in highly saline waters is low. Similar observations had been made during earlier studies also (Jameson & Claus, 1984).

The present study indicated high incidence of *V. cholerae* non 01 along the coastal areas of Mangalore. The significance of the occurrence of *V. cholerae* non 01 is that the frequent isolation of these organisms from an ecosystem indicates a possible health hazard.

The influence of salinity on *V. cholerae* non 01 is important because the ability of these organisms to survive in highly saline condition is very low. They are viable in 4 to 5% saline waters (Colwell & Kaper, 1997). During the period under study, the salinity ranged between 33.43 and 35.40% (Table 2) which was the upper tolerance limit for these organisms. It is known that these organisms survive at temperatures above 10°C only. The water temperature recorded during the period of study (Table 2) seems to be favourable to their survival in the ecosystem. The pH of the water during the period of observation also was favourable for the growth of this organism. The important point to note is that the incidence of V. cholerae non 01 is common in near-shore Terrestrial influence and physicochemical factors like temperature and pH were favourable for their growth and multiplication in this ecosystem. Their abundance was less in offshore waters where salinity was high.

The authors are grateful to Director, National Institute of Oceanography, Goa for encouragements. The first author is thankful to Department of Ocean Development, New Delhi, also for the award of research fellowship.

Table 2. Water quality parameters at the experimental stations during different seasons

		Temperature				
Month & year	Station	Depth (m)	°C	pН	Salinity (%)	
1996 March	Suratkal	0	28.4	8.11	33.44	
		5	28.4	8.11	33.49	
		0	28.7	8.15	33.51	
		10	28.4	8.16	33.58	
		0	28.0	8.17	33.59	
		20	28.0	8.19	33.61	
	Old Port	0	29.6	7.75	34.61	
		5	29.2	8.05	35.05	
		0	29.5	7.15	33.67	
		10	30.0	7.30	33.55	
		0	29.7	8.15	34.96	
		20	28.9	8.12	35.34	
1996 December	Suratkal	0	28.4	8.16	33.75	
		5	28.6	8.17	34.43	
		0	28.2	8.10	33.61	
		10	28.0	8.10	33.59	
		0	29.0	8.10	33.43	
		20	28.0	8.11	33.45	
	Old Port	0	28.0	7.91	34.10	
		5	27.0	8.00	34.87	
		0	28.5	8.00		
		10	28.5		34.29	
				8.01	34.89	
		0 20	28.7 28.5	8.00 8.02	34.35	
1996 February	Suratkal				34.35	
1990 Pedituary	Suratkar	0	30.5	7.79	34.52	
	•	5	30.4	7.89	34.56	
		0	30.5	7.89	34.56	
		10	30.0	8.09	34.54	
		0	30.5	7.88	34.50	
		20	30.0	8.00	34.52	
•	Old Port	0	30.4	7.72	34.51	
		5	30.3	7.78	34.54	
		0	30.2	7.82	34.56	
		10	30.2	8.01	34.52	
		0	30.5	7.87	34.52	
		20	30.0	8.92	34.55	
1997 May/June	Suratkal	0	30.2	8.10	34.50	
		5	29.7	8.12	35.20	
		0	30.5	8.12	34.70	
		10	29.4	8.13	35.30	
		0	30.4	8.13	35.30	
		20	29.3	8.15	35.40	
	Old Port	0	31.2	8.25	34.00	
		5	30.3	8.21	34.95	
		0	30.3	8.25	34.12	
		10	29.6	8.24	35.10	
		0	30.6	8.27	34.75	
		20	29.3	8.25	35.18	

Depth 'O' = Surface water

References

- Blake, P.A., Weaver, R.E. & Hollis, D.G. (1980) Ann. Rev-Microbiol, 3, p.341
- Colwell, R.R. (1984) Vibrios in the envt., p.1 (John Wiley & Sons, New York)
- Colwell, R.R. & Kaper, J. (1997) Science, p.394
- Iyer, T.S.G., Varma, P.R.G., Agnes J. M. & Zacharia, S. (1989) Mysore Journal of Agri. Sci., 23, 549
- Iyer, T.S.G., Varma, P.R.G., Shaji & Joseph, M.J. (1990) Mysore Journal of Agri. Sci. 24, 394
- Jameson, P.M. & Claus, G. (1984) Seminar on Pollution and Water Resources, New York

- Karunasagar, I., Suseela, M., Malathi, G.R. & Karunasagar, I. (1988) *Indo-Pacific-Fishery-Commission Papers* 19-22, 1988, p.53
- Karunasagar, I., Sugumar, G., Karunasagar, I. & Reily, P.J.A. (1984) 3rd International Marine Biotech Conference Abstracts, p.94
- Karunasagar, I., Rosalind, G., Karunasagar, I. & Malathi, G.R. (1992) *Quality assurance*In the Fish Industry, "Isevier Science Publishers
- Mathew, S., Karunasagar, Rao, G.M. & Karunasagar, I. (1988 Asian Fishery Science, 2, 121