NOTES

Fate of Enterotoxigenic Staphylococci in Fish Subjected to Curing*

S. Sanjeev and P.K. Surendran

Microbiology, Fermentation & Biotechnology Section Central Institute of Fisheries Technology Cochin-682 029, India

Enterotoxin A,B,C,D and E producing strains of Staphylococcus aureus were innoculated into dressed Barracuda fish (Sphyraena sp.) salted (3:1) for 48 h and dried in the sun for 3 days. The total bacterial count, S. aureus count and moisture content decreased after 48 h salt curing and decreased further after sun drying. S. aureus could not be isolated after 3 days of sun drying from the fish.

Key words: Staphylococcus aureus, fish, curing and drying

Traditional fish preservation methods are based on salting, drying and smoking either singly or in combination. On a global basis about 14% of the marine fish landings are processed by curing, but in India utilization by this sector is of a higher order of around 32% (Thomas & Balachandran, 1989). In a developing country like India these processes have great significance and relevance, being very simple and cheap requiring least technical expertise.

Staphylococcal food poisoning due to the consumption of fish and its products has been reported from all parts of the world. In India, where a proper system of reporting of foodborne illness is non-prevalent there have been few reports of staphylococcal food poisoning all attributed to milk products (Ghosh & Chattoraj, 1965; D'Souza et al., 1965; Narayanan & Sharma, 1979, Rajalakshmi & Rajyalakshmi, 1982).

Staphylococcus aureus is highly tolerant to low water activity (a_w) and can grow in media containing up to 18% salt (Marcy et al., 1985). Although 10% salt inhibits production of enterotoxin B in the favourable pH range of 4.8 - 8.0 (Genigeorgis, 1974), enterotoxin A is produced at higher salt concentrations (Lotter & Leistner, 1978). Salt can also play a part in the growth of staphylococci by depressing the growth of competing microflora (Hobbs, 1973)

Cured fish collected from Tamilnadu coast were found to be free from S. aureus (Joseph et al., 1986). Enterotoxigenic staphylococci were isolated from 20.5% of the cured fish samples collected from Cochin area (Sanjeev et al., 1985). Though few studies have been carried out on the prevalence of enterotoxigenic staphylococci in fish products and among fish handlers (Sanjeev et al., 1985, 1986, 1987) no information is available on the effect of fish curing operation on enterotoxigenic staphylococci. Hence the present study was undertaken.

Five enterotoxigenic strains of S. aureus A-100, BS-6, C-361, D-472 and E-326 which

Presented at the 79th Annual Meeting of International Association of Milk, Food and Environmental Sanitarians, Ontario, Canada, 26-29 July, 1992

produce enterotoxins A, B, C, D and E respectively, obtained from Dr. M.S. Bergdoll, Food Research Institute, University of Wisconsin, U.S.A. were used for this study. Individual strains were grown in brain heart infusion broth (Difco) at 37°C for 48 h. Two ml of the broth culture of each strain were pooled into another sterile tube, centrifuged and the pellets washed twice with sterile normal saline. Final pellet was resuspended in saline and 2 ml of the cell suspension was added to 750 ml sterile saline.

Fresh Barracuda (Sphyraena sp.) was dressed, split open, washed in potable water, soaked in 10% brine for half an hour and drained. The fish were then dipped in S. aureus cell suspension for one second and arranged in a vat with sodium chloride in 3:1 ratio. After 48 h the fish were taken out, dipped in 10% brine, drained and dried in the sun for 3 consecutive days. The air temperature varied from 28-32°C.

Samples were drained and analysed for total bacterial count, S. aureus count (ICMSF, 1978) and moisture content immediately after inoculation, after 24 h and 48 h of curing and after one, two and three days of sun drying.

Presumptive S. aureus colonies on Baird-Parker medium were confirmed by tube coagulase test using rabbit plasma (Difco). The moisture content and the salt content of the samples were determined as per AOAC method (AOAC, 1975).

Changes in moisture content, total bacterial count and S. aureus count during salt curing and sun drying are given in Table 1. Enterotoxigenic staphylococci persisted in the fish up to 2 days of sun drying but could not be isolated after 3 days of sun drying. Salt content of the final product was 21.06%.

Table 1. Changes in moisture content, total bacterial count and S. aureus count during 48 h salt curing and 3 days sun drying

Period	Moisture content %	g'i	S. nureus g ⁻¹
0 h	70.4	3.2×10 ⁴	1.6×10 ⁴
After curing for 24 h 48 h	50.3 49.7	1.5x10 ⁴ 2.7x10 ⁵	5.7x10 ⁵ 2.1x10 ⁵
After sundrying			
for 1 day	43.0	1.4x10 ⁶	1.0×10°
2 days	32.0	2.4×10 ³	2.0x10 ³
3 days	27.7	1.8x10 ³	Nil

Total bacterial count of dried fish collected from Cochin were found to be less than 10° g1, S. aureus count was up to 5.3x103 g1 and moisture content ranged from 30 to 65% (Sanjeev, 1991). The cured fish collected from Tamilnadu coast were free from S. aureus (Joseph et al., 1986). The mean total bacterial count and staphylococci count of dried beef and dried fish samples collected from Nigerian markets were 1.2x10⁸ g⁻¹ and 4.6x10⁶ g⁻¹ (Adesiyan, 1984). Fish flesh containing 100 million (106) bacteria gol is considered as unsuitable for food (Almas, 1981) and staphylococci count 106 g1 is considered to be hazardous (Bergdoll, 1979).

Staphylococci, especially enterotoxigenic staphylococci do not form part of the normal bacterial flora of fresh marine fish, but they get contaminated either from the handlers or from the surface with which they come in contact. The studies of Sanjeev et al. (1987) have shown that 66.41% of the S. aureus strains isolated from fish processing factory workers were enterotoxigenic and they produced enterotoxins A, B, C, D and E either singly or in combinations. It is also known that S. aureus can grow vigorously in fish if conditions are favourable (Bryan, 1973; Liston, 1980) and produce toxin.

This study has shown that if salt curing and sun drying procedures are followed strictly, it is possible to get cured fish products which are free from enterotoxigenic staphylococci and its enterotoxins even from the raw material containing enterotoxigenic staphylococci as high as 10⁶ g³.

The authors are grateful to Dr. M.S. Bergdoll, Food Research Institute, University of Wisconsin, U.S.A. for supplying enterotoxigenic strains of Staphylococcus aureus and to Dr. K. Gopakumar, Director, Central Institute of Fisheries Technology, Cochin for his kind permission to publish this paper. The technical assistance rendered by Shri P. Sadanandan is gratefully acknowledged.

References

- Adesiyan, A.A. (1984) J. of Food Protection 47, 352
- Almas, A.K. (1981) Chemistry and microbiology of fish and fish processing. Dept. of Biochemistry, Norwegian Institute of Technology, University of Trondheim, Norway
- AOAC (1975) Official Methods of Analysis 12th Edn., Association of Official Analytical Chemists, Washington, DC, USA
- Bergdoll, M.S. (1979) in Foodborne Infections and Intoxications (Rieman, H. and Bryan, Eds.) p. 444 Academic Press, New York, USA
- Bryan, F.L. (1973) in Microbial Safety of Fishery Products (Chichester, C.O. and Graham, H.D. Eds.), p. 273 Academic Press, New York, DC, USA
- D'Souza, J.J. Collee, J.C. & Shah, J.M. (1965) Indian J. Pathol. Bact. 8, 222
- Genigeorgis, C. (1974) Cited in Microbial Ecology of Foods Vol. 1 (ICMSF), Academic Press, London, UK
- Ghosh, D.N. & Chattoraj, S.B. (1963) Indian J. Publ. Hlth. 7, 1
- Hobbs, C.B. (1973) in Microbiological Safety of Food (Hobbs C.B. and Christian, J.H.B. Eds.) p. 129 Academic Press, London, UK

- ICMSF (International Commission on Microbiological Specification for Foods) (1978) Microorganisms in Foods I. Their significance and methods of Enumeration, Second Edition, University of Toronto Press, Toronto, Canada
- Joseph, G.K., Muraleedharan, V. Kalaimani, N. & Unnikrishnan Nair, T.S. (1986) Fish. Tech. 23, 63
- Liston, J. (1980) in Advances in Fish Science and Technology (Connel, J. Ed.) p. 151 Fishing News Books Ltd., Farnham, Surrey, UK
- Lotter, L.P. & Leistner, L. (1978) Appl. Environ. Microbiol. 36, 377
- Marcy, J.A., Kraft, A.A., Olson, D.G., Walker, H.W. & Hotchkiss, D.K. (1985) J. Food Sci. 50, 316
- Narayanan, K.G. & Sharma, V.K. (1979) J. Com. Dis. 11, 112
- Rajalakshmi & Rajyalakshmi, K. (1982) Indian J. Med. Res. 76, 127
- Sanjeev, S., Mahadeva Iyer, K., Arul James, M. & Panduranga Rao, C.C. (1985) J. Food Sci. Tech. 22, 295
- Sanjeev, S., Mahadeva Iyer, K., Panduranga Rao, C.C. & Arul James, M. (1986) Fish. Tech. 23, 164
- Sanjeev, S., Gopalakrishna Iyer, T.S., Varma, P.R.G., Panduranga Rao, C.C. & Mahadeva Iyer, K. (1987) Indian J. Medi. Res. 85, 262
- Sanjeev, S. (1991) Studies on coagulasepositive staphylococci and Vibrio parahaemolytics in selected items of fish, crustaceans and fishery products. Ph.D. thesis, Cochin University of Science and Technology, Cochin, India
- Thomas, F. & Balachandran, K.K. (1989) in Recent Trends in Processing Low Cost Fish (Balachandran, K.K., Perigreen, P.A., Madhavan, P. and Surendran, P.K., Eds.), p. 1, Society of Fisheries Technologists (India), Cochin, India