Fishery Technology 1996, Vol. 33(2) pp : 96 - 100

Studies on Square Mesh Codend in Trawls-II Observations with 20 mm Mesh Size

M.D. Varghese, K.K. Kunjipalu

Fishing Technology Division

and

A.K. Kesavan Nair

Extension, Information and Statistics Division Central Institute of Fisheries Technology Matysapuri P.O., Cochin-682 029, India

Investigations were carried out to study comparative escapement of different sizes of fish and prawns from diamond and square mesh codends of 20 mm mesh size. Both the codends were covered with small meshed (10 mm) webbing to collect the fish which escaped through the codends. The mean selection length and selection factor for four species of fish (Johnius spp., Leiognathus spp., Dussumeria acuta, Thryssa purava) and two species of prawns (Parapenaeopsis stylifera and Metapenaeous dobsoni) were worked out for both the codends. The mean selection length was greater for square meshes indicating the superiority of this type of mesh over the conventional mesh in releasing more juveniles of the species studied.

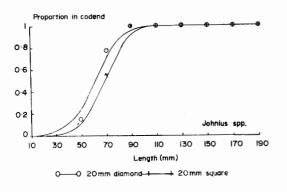
Key words: Trawl selectivity, selection factor, conservation, mesh regulation.

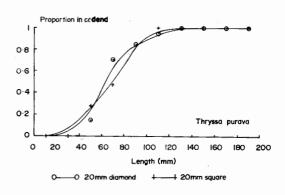
The mesh size of the codend of trawls is chosen so as to exploit the desired size groups and avoid capture of juveniles in order to conserve the fishery resources. The conventional diamond mesh, under tow becomes stretched and its lumen narrows down resulting in the prevention of escape of fish. Chun Chun et al. (1991) observed that the diamond mesh becomes narrow at the middle of the codend causing the mesh lumen to be almost closed during trawling and hence the benefit of mesh regulation is insufficiently Robertson & Stewart (1986) attained. observed that the codend when filled assumes bulbous shape and the fish escape through a small area of open meshes in front of the bulb, while forward of this point most of the meshes are stretched and closed. Pope (1966) stated that the shape of mesh affects the selectivity of codend. Further, the flow of water also depends on the shape of mesh. Hence for improving the filtering efficiency of mesh, the mesh has to remain open facilitating more water

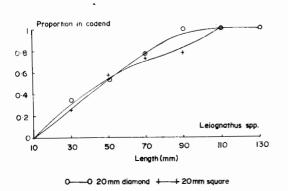
flow and easy escape of young ones of fish. This can be achieved by using square mesh codends as this will remain open while in operation. The superiority of square mesh over diamond mesh in facilitating escapement of juvenile fish has been proven by many workers (Robertson, 1982; 1983a,b; 1984 & 1986; Robertson & Polanski, 1984; Robertson *et al.*, 1986; Robertson & Stewart, 1986 Kunjipalu & Varghese, 1989 and Kunjipalu *et al.*, 1994).

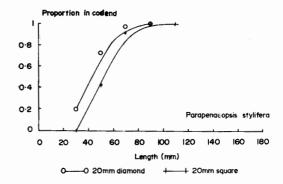
The present study is a continuation of earlier studies (Kunjipalu *et al.*, 1994) to find out the impact of using square mesh codend in place of conventional codend of the same mesh size.

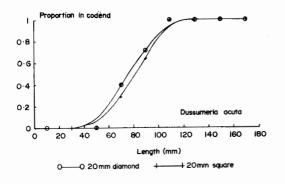
Materials and Methods


Diamond and square mesh codends of 20 mm, fabricated out of 1 mm dia PE were attached to the throats of 17 m two-seam trawl and 22 mm shrimp trawls. Both the codends were covered with nylon webbing


of 10 mm mesh size for collecting the fish that escaped through the codend. The nets were operated during 1988-90 fron the Departmental vessel Fishtech VI, 9.0 m OAL, fitted initially with a 50 hp engine and subsequently with a 37 hp engine.


Twenty five hauls each were made alternately with square and diamond mesh codends under identical conditions, providing equal chances for both. The catch composition as well as length frequency of dominant species obtained during each haul in the codend and cover were recorded and the data were processed to determine the mean selection length L_{50} and selection factor, b as described by Kunjipalu *et al.* (1994) based on methods described by Gulland (1969). Four species of finfish viz. *Johnius* spp., *Leiognathus* spp. *Dussumeria acuta*, and *Thryssa purava* and two species prawns


Table 1. Percentage escapement of different length classes of species groups from 20 mm diamond and square mesh codends


Midpoint of	Percentage escapement		Midpoint of	Percentage escapement		
length	Diamond	Square	length	Diamond	Square	
class, mm	mesh	mesh	class, mm	mesh	mesh	
a) Johnius spp) .		b) Leiognathus	spp.		
30	100	100	30	67	75	
50	81	100	50	47	43	
70	22	44	70	24	28	
90	0	0	90	0	23	
110	0	0	110	0	0	
130	0	0	130	0	-	
150	0	0				
170	0	0	d) Thryssa purava			
190	0	0				
c) Dussumeria	acuta		30	100	100	
50	100	-	50	86	7 2	
70	60	71	70	30	53	
90	29	36	90	16	14	
110	0	0 .	110	5	0	
130	0	0	130	0	0	
150	0	0	150	0	0	
170	-	0	170	0	. 0	
			190	0	-	
e) Parapenaeop	osis stylifera					
30	81	100	f) Metapenaeous dobsoni			
50	28	58	50	45	72	
70	3	9	70	16	23	
90	0	0	90	7	0	
110	-	0	110	0	0	

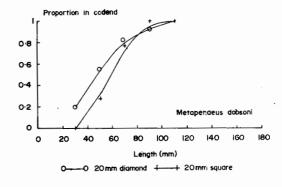


Fig. 1. Selectivity curves for square and diamond mesh codends for different fish and prawn species studied.

viz., Parapenaeopsis stylifera and Metapenaeus dobsoni were selected for the studies.

Results and Discussion

Table 1 shows the percentage escapement of different length classes of species groups from 20 mm diamond and square mesh codends. Fig. 1 gives the selection curves of species groups for diamond and square condend.

The length at which 25% of fish are retained (L_{25}), length at which 50% are retained (L_{50} : Mean selection length), length at which 75% are retained (L_{75}), selection range ($L_{75} \stackrel{\cdot}{\cdot} L_{25}$) and selection factor (L_{50} / mesh size) in respect of two types of codends for the different species are furnished in Table 2.

As evident from Table 2 and Fig. 1, mean selection lengths were greater for square mesh for all species studied, thus showing that 20 mm square mesh can release more juveniles compared to diamond mesh of same size. Kunjipalu *et al.* (1994) while comparing the selectivity of 30 mm square mesh and diamond mesh observed that mean selection length in

respect of Dussumeria acuta and Saurida tumbil was greater for square meshes. However, mean selection length obtained by Kunjipalu et al. (1994) in respect of fishes Iohnius spp., Thryssa purava, Leiognathus spp. and prawns Parapenaeopsis stylifera and Metapenaeous dobsoni were smaller in square mesh codend. Based on a preliminary study, Kunjipalu et al. (1989) showed that percentage of smaller size groups of fishes retained by square mesh (20 and 30 mm size) was lower compared to conventional diamond mesh. Pillai et al. (1994): observed that percentage escapement of smaller size groups of Nemipterus sp., Decapterus sp., Priacanthus sp. and Saurida sp. were more in square mesh (40 and 50 mm mesh size) compared to diamond meshes of same size. Thus it seems possible that capture of juveniles and subadults of many species could be controlled by using square mesh of appropriate size in the codends. However, further studies covering all species of commercial importance are required for optimisation of the mesh size with respect to fishing areas, in order to give final recommendations on the use of square mesh codend as a management measure.

Table 2. Selection lengths corresponding to 25%, 50% and 75% retentions, selection ranges and selection factors

Name of fish	Shape of codend mesh	L ₂₅ mm	L ₅₀ mm	L ₇₅ mm	Selection range	Selection factor
Johnius spp.	Diamond	50.00	61.60	73.30	23.30	3.08
	Square	58.30	68.80	79.10	20.80	3.44
Leiognathus spp.	Diamond	29.30	47.40	67.90	38.60	2.37
	Square	26.50	53.60	80.00	53.50	2.68
Dussumeria actua	Diamond	62.90	77.80	94.30	31.40	3.88
	Square	67.10	81.40	95.70	28.60	4.07
Thryssa puruva	Diamond	51.50	67.30	79.20	27.70	3.37
	Square	49.20	67.70	84.60	35.40	3.39
Parapenaeopsis	Diamond	32.90	42.30	55.00	22.10	2.12
stylifera	Square	42.10	53.30	66.40	24.30	2.62
Metapenaeous	Diamond	33.60	49.80	65.70	32.10	2.49
dobsoni	Square	45.00	58.00	72.10	27.10	2.94

References Chun-Chun-Te, Matuda, K. & Honda, M. (1991) Bull. Jap. Soc. Sci. Fish. 57(7), 1313 Gulland, J.A. (1969) Manual of Methods for

Fish Stock Assessment - Part I. Fish

Population Analysis. FAO Manual in Fisheries Science, No. 4 FRS/M4

The authors wish to express their thanks to Dr.

K. Gopakumar, Director, Central Institute of Fisheries

Technology, for giving permission to publish this paper; to Shri M.R. Nair, former Director for his

support during the course of the investigations and to

Shri P.A. Panicker, former Head of Fishing Technology Division for his keen interest in the study and

encouragement. They also express their thanks to Shri Manibhadran, Tindal and his crew for their co-

operation during the field trials.

Kunjipalu, K.K., Varghese, M.D. & Kesavan Nair, A.K. (1994) Fish. Technol. 31, 112 Pope, J.A. (1966) Manual of Methods for Fish Stock Assessment - Part III. Selectivity of Fishing Gear. FAO Fisheries

Technical Paper No. 41 Robertson, J.H.B. (1982) Scottish Fisheries Working Paper 3, 11 p

Robertson, J.H.B (1983a) Int. Coun. for the

Explor. of the Sea, CM 1983/B: 25:4 p.

Robertson, J.H.B. (1983b) Scottish Fisheries Working Paper, 3, 4 p. Robertson, J.H.B.& Polanski, J. (1984) Int. Coun. for the Explor of the Sea. CM

K.A. & Chapman, C.J. (1986) Int.

1984/B:30, 5 p.

Robertson, J.H.B. Emslie, D.C., Ballantyne,

Coun. for the Explor. of the Sea. CM 1986/B:12, 5 p. Robertson, J.H.B. & Stewart, P.A.M. (1986) Scottish Fisheries Working Paper, 9, 8 p Robertson, J.H.B. & Stewart, P.A.M. (1988)

I. Counc. CIEM 42(2): 148 Subramonia Pillai, N., Varghese, M.D., Syed Abbas, M. & Krishna Iyer, H. (1994) Abstract No. 85 Second Workshop on Scientific Results of FORV Sagar Sampada 15 to 17 February

1994, Cochin Suuronen, P. (1991) Proc. Counc. Meet. of the Int. Counc. for Explor. of the Sea. Copenhagen. 4-12 October, 1990

Suuronen, P. & Miller, A.T. (1992) Can. J. Fish. Aquatic Sciences, 49(10), 2104