Control of Black Discolouration in Raw Shrimps from Tropical Region

R. Chakrabarti, S.S.Gupta, C.C.P.Rao and Subrata Basu
Research Centre of Central Institute of Fisheries Technology, Kakinada-533 003

Black discolouration on raw shrimps can cause a major marketing problem. Several methods are suggested to control black discolouration. Removal of head followed by thorough washing helps to reduce blackening. Dipping in sodium metabisulphite solution also prevents blackening. CSIRO (1976) permits 30 ppm SO₂ in meat as the upper limit and IS: 2237 (1985) permits 100 ppm. The present study was undertaken to find out the level of metabisulphite which could be used effectively in different types of prawns to prevent black discolouration.

Headless Penaeus indicus, Penaeus monodon and Metapenaeus monoceros (80-100/Kg) collected from local suppliers were dipped in 0.3, 0.4 and 0.5% sodium metabisulphite (100% purity) solution for 30 seconds. Residual SO₂ in the meat was estimated by the modified Monier William method (AOAC), 1975). The dipped shrimps were immediately packed in

crushed ice and residual SO2 in meat was estimated at regular intervals.

Table 1 Shows the SO2 content in the meat soon after dipping in metabisulphite solution and the changes in SO2 during ice storage for 5 days. The residual SO2 in the meat increased proportional to the concentration of the dip solution. Rapid decrease of residual SO2 in the meat during intitial periods of ice storage was noticed. 0.3% metabisulphite was sufficient to control black spot in P. monodon and P. indicus during ice storage for 5 days but black spot was noticed in a few pieces of M. monoceros at the end of 5 days ice storage. A dip in 0.4% metabisulphite for 30 sec prevented black spot in M. monoceros for 5 days ice storage P. monodon was found to retain maximum residual SO2. rapid loss of residual SO2 from the meat during ice storage helped to bring down the residual SO₂ below 30 ppm.

Table 1. Changes in residual So2 in the meat of metabisulphite treated prawns

Species	Concentration		Residual Sulphur dioxide, ppm					
	of Na ₂ S ₂ O ₅ %	Oh	3h	24h	48h	72h	96h	120h
M. monoceros	0.3	43.67	21.84	18.19	14.55	10.93	8.77	2.27**
	0.4	52.40	32.02	27.70	15.28	14.55	14.19	13.83
	0.5	6987	37.13	-	-	-	-	-
P. monodon	0.3	58.25	42.49	27.50	21.83	17.46	17.46	17.46
P. indicus	0.3	43.67	23.39	18.92	12.01	8.73	8.73	8.73

^{**} Black spot was noticed in a few pieces

The authors are grateful to Shri M.R. Nair, Director, Central Institute of Fisheries Technology, Kochi for his kind permission to publish this paper. The authors are also thankful to Shri V.V. Ramakrishna and N.Venkata Rao for their technical assistance.

References

AOAC (1975) Official Methods of Analysis (Horwitz, W., Ed) 12th edn. Association of Official Analytical Chemists, Washington, D.C.

CSIRO (1976) Australian Fisheries 35, 34

IS: 2237 (1985) Specification for Frozen Prawns (Shrimp), Second revision. Indian Standards Institution, New Delhi.