Comparative Study of the Major Nutrients of Macrobrachium idella (Hilgendorf, 1898)

N.I. Joseph, K.V. Jayachandran* and H.Suryanarayanan
Department of Aquatic Biology & Fisheries
University of Kerala, Thiruvanandapuram

Proximate analysis has great importance for assessing the nutritive value of food organisms. Such data on many aquatic products are not available. The proximate composition of palaemonid prawns have not been determined. The present paper is a comparative study of the proximate compostion of *Macrobrachium idella* (Hilgendorf, 1898) from three biotops.

M. idella were collected fortnightly for one year during 19.00 - 21.00 h by using castnet from Vellayani lake (freshwater), Aukulam lake (fresh and brackish waters depending on the opening and/or closure of bar mouth) and Poonthura lake (brackish water). Males and females were separated. Males were classified, into subadults and adults and females into subadults, adults, berried and dehised (Jayachandran & Joseph, 1988). The prawn meat was analysed for moisture (AOAC, 1975), glycogen (Seifter et al., 1956) lipid (Bligh & Dyer, 1959) and total protein (Wong, 1923). All colourimetric measurements were made in spectronic 20.

Results of the proximate composition of the various groups of *M idella* from three biotops are given in Table 1. The lowest value of protein wass found in female dehised from Vellayani lake (13.83±2.7) and highest value in female dehised from Aukulam lake (19.37±3). Statistical analysis showed no significant difference in protein content between sexes and prawns inhabiting the three biotopes. Fat content was high

in these species. High lipid content has been reported in mature females of *Metapenaeus affinis* and *Penaeus merguiensis* (Achuthankutty & Parulekar, 1984). Glycogen content in all the samples was in the range 0.33 to 0.51%. Moisture content ranged between 69.4 to 78.08%. It can be deduced from the present analysis that the chemical composition of the muscle tissue of *M. idella* does not significantly change with size, sex, or degree of maturity.

The authors are extremely grateful to Padmasree Professor N. Balakrishnan Nair, Chairman, State Committee on Science Technology & Environment, Government of Kerala for his constant encouragements and suggestions. They are thankful to Dr. M.K. Mukundan, Professor and Head, Department of Processing, College of Fisheries, Panangad, for critically going through the manuscript. Financial assistance from the UGC is gratefully acknowledged.

References

Achuthankutty, C.T. & Parulekar, A.H. (1984) Mahasagar, Bull. National Inst. Oceanogr., 17, 239

AOAC (1975) Official Methods of Analysis (Horwitz, W., Ed., 12th edn., Association of Official Analytical Chemists, Washington

Bligh, E.G. & Dyer, W.F. (1959) Can. J. Biochem. Physiol. 37, 911

^{*} Present address: College of Fisheries, Panangad Kochi - 682 506

Table 1. Percentage composition of major nutrients of M. idella from Vellayani (V), Aukulam (A) and Poonthura (P) lakes. All values are on wet weight basis

Stage/sex	Biotope	Glycogen %	Protein %	Fat %	Moisture %
Male sub-adult	V	0.360±0.05	16.48±2.1	4.67±0.69	74.42±3.48
	A F	0.42±0.06 0.41±0.10	18.82±2.6 17.72±2.4	5.21±0.78 5.05±0.66	70.98±4.03 72.93±5.53
Male adult	V	0.40±0.07	18.39±1.3	5.27±0.47	71.63±2.18
	A F	0.37±0.06 0.33±0.03	17.85±1.3 16.18±1.4	5.05±0.33 4.64±0.41	72.72±1.96 75.24±2.08
Female sub-adult		0.37±0.06	15.51±2.2	4.71±0.75	75.56±3.52
	A	0.35±0.08	16.93±2.3	4.83±0.63	73.66±3.60
	F	0.35±0.07	14.83±2.4	4.25±0.63	76.81±3.41
Female adult	V	0.40±0.01	15.55±0.3	4.73±0.17	76.01±0.79
	A	0.41±0.06	17.73±1.1	5.11±0.29	73.09±1.54
	F	0.30±0.01	17.26±0.9	4.93±0.36	74.06±1.17
Female berried	V	0.36±0.06	17.22±1.0	5.50±0.42	73.52±1.58
	A	0.42±0.06	18.40±1.7	5.54±0.49	71.96±2.54
	F	0.36±0.07	16.14±2.9	4.79±0.84	75.21±4.54
Female dehised	V	0.34±0.08	13.83±2.7	4.01±0.75	78.08±4.27
	Α	0.51±0.04	19.37±3.0	5.38±0.69	69.40±4.37
	F	0.36±0.09	14.87±2.0	4.13±0.66	76.85±3.43
Average		0.38±0.05	16.84±1.48	4.88±0.43	74.01±2.19

Jayachandran, K.V. & Joseph, N.I. (1988) Proc. Indian Natl. Sci. Acad. (in press)

Seifter, S., Dayton, S., Novic, B & Mutiugler,

S. (1956) Arch. Biochem. 25, 191

Wong, M. (1923) J. Biol. Chem. 55, 427