

Research Note

Body Composition of *Ompok bimaculatus* (Bloch 1794) from Tripura Waters with respect to Body Size, Condition Factor and Sex

Chandan Debnath* and Lopamudra Sahoo

ICAR Research Complex for NEH Region (Meghalaya), Tripura Centre, Lembucherra - 799 210, India

Proximate composition is a good indicator of physiology which is needed for routine analysis of fish (Cui & Wootton, 1988). Body composition illustrates the nutritional quality of food because analysis of biochemical composition including protein, fat and ash is very important in assessing food value (Kamal et al., 2007). So, biochemical evaluation is necessary to ensure the nutritional value as well as eating quality of fish (Azam et al., 2004). However, the value of these body constituents vary significantly from one species to other and one individual fish to another depending on age, sex, feeding season, sampling time, activity and environmental condition (Tang et al., 2009). Many investigators have analysed the body composition of fish (Weatherley & Gill, 1987; Dempson et al., 2004) but few have examined the changes in relation to body size, condition factor and sex (Salam & Davies, 1994; Salam et al., 2001; Yousaf et al., 2011). In the present study, an attempt was made to examine changes in the proximate composition of Ompok bimaculatus in relation to body size, condition factor and sex since there is no report available on these aspects particularly from the states of North East India where the fish is considered as a delicacy and is under extreme fishing pressure.

Fifty wild *O. bimaculatus* of different body sizes, ranging from 12.5-23.5 cm total length and 36.4-66.4 g body weight were collected during post monsoon months from Tripura and brought to the laboratory

Received 02 October 2012; Revised 22 April 2013; Accepted 09 May 2013

in live condition. The fresh fish were washed with tap water several times to remove adhering substances. They were anaesthetized with Tricaine Methanesulfonate (MS-222), weighed to nearest 0.01 g on an electronic digital balance (Shimadzu) and their length measured to the nearest 0.1 cm on wooden measuring tray. Muscle samples were collected and placed in a pre-weighed aluminum foil tray in an electric oven (NSW 143) at 70°C until a constant weight was obtained. Dry carcasses were powdered in an electric blender (Moulinex) and sub-samples taken for ash and fat determination. Ash content was determined in duplicate for each fish using 1 g sub samples in a muffle furnace (RJM-1.8-10A) for 12 h at 450-500°C. The total lipid content of 1 g dry tissue was determined by extraction in a 1:2 mixture of chloroform and methanol (Bligh & Dyer, 1959). For single fish, the difference between replicate samples was less than one percent. The protein contents were estimated following Kjeldahl method. Condition factor (K) for each fish was calculated using the formula K = 100x WL⁻³ by the method of Weatherley & Gill (1987) and Wootton (1998). Statistical analysis including regression analysis, calculation of correlation coefficients, standard error of the estimates and plotting of data were carried out using SAS 9.2.

The variation of body constituents with reference to sex is depicted in Table 1. As variations in the body constituents and condition factors were found to be related to body weight or length, regression analysis was applied to assess the size dependence of moisture, ash, fat and protein content. The regression parameters of these relationships are given in Table 2, 3 and 4. Student's t test shows that the slopes (b) of the regression lines are statistically different from b = 0 in all cases.

^{*} E-mail: chandannath23@gmail.com

Table 1. Mean values and ranges of various body constituents of male and female Ompok bimaculatus

Body constituents (% wet wt.)	Fen	nale	Male		
	Mean ± S.D.	Range	Mean ± S.D.	Range	
Moisture	79.05±0.92 ^a	78.13-82.44	79.03±1.10 ^a	78.65-82.44	
Ash	3.83±0.92 ^a	3.12-5.24	3.81 ± 0.94^{a}	3.12-5.24	
Fat	4.07±0.78 ^a	3.48-5.30	4.11±0.70 ^a	3.48-5.20	
Protein	12.91±1.08 ^a	11.65-14.45	12.81±1.34 ^a	11.42-14.25	

Table 2. Total length (cm) versus body constituents of Ompok bimaculatus

Body constituents	r	a	b	S.E. (b)	t value, when b=0
Moisture	0.097	82.528	0.022	0.080	0.277
Ash	0.761*	0.930	0.158	0.047	3.318
Fat	0.436	2.764	0.072	0.052	1.370
Protein	0.491	10.366	0.136	0.085	1.595

Statistical parameters of various relationships, correlation coefficient (r), intercept (a), regression coefficient (b), standard error of b (S.E.) and n = 50 in each case. Significance level: *p<0.05

Table 3. Wet body weight (g) versus body constituents of Ompok bimaculatus

Body constituents	r	a	b	S.E. (b)	t value, when b=0
Moisture	0.117	82.420	0.009	0.028	0.335
Ash	0.747*	0.851	0.055	0.017	3.181
Fat	0.474	2.582	0.028	0.018	1.523
Protein	0.450	10.466	0.044	0.031	1.428

Statistical parameters of various relationships, correlation coefficient (r), intercept (a), regression coefficient (b), standard error of b (S.E.) and n = 50 in each case. Significance level: *p<0.05

Table 4. Condition factor (K) versus percent body constituents (g) of wild Ompok bimaculatus

Body constituents	r	a	b	S.E. (b)	t value, when b=0
Moisture	-0.146	7.467	-0.077	0.186	-0.417
Ash	-0.676*	2.538	-0.396	0.152	-2.597
Fat	-0.507	2.541	-0.372	0.223	-1.665
Protein	-0.497	3.835	-0.219	0.135	-0.162

Statistical parameters of various relationships, correlation coefficient (r), intercept (a), regression coefficient (b), standard error of b (S.E.) and n = 50 in each case. Significance level: *p<0.05

Debnath and Sahoo 356

In the present study, it was observed that total length and wet body weight of fish has positive influence on ash, fat, protein and water contents and this result is in general agreement with the earlier findings for other fish species (Salam & Davies, 1994; Salam et al., 2001; Yousaf et al., 2011). The significant positive correlation (p<0.05) between ash content and body weight and total length is in agreement with the findings in Wallago attu (Yousaf et al., 2011). The negative correlation between K and water content is in agreement with the findings in Oreochromis mossambicus (Salam et al., 2001) and Aristichthys nobilis (Naeem & Salam, 2010). Negative correlation (p>0.05) between K and protein is in agreement with the study in O. mossambicus (Salam et al., 2001). Negative correlation between K and ash content is in agreement with the finding in Aristichthys nobilis (Naeem & Salam, 2010). The relationship between body composition (moisture, fat and protein content in wet body weight) and K was found to be not significant (p>0.05) in this study, suggesting no effect of K on moisture, fat and protein content. This could be due to the fact that the weight of a fish is not always proportional to the cube of its length (Weatherley & Gill, 1987). The non-significant difference (p>0.05) between the sexes is in agreement with Mermid et al. (2006). It is therefore concluded that if it is impossible to determine the proximate composition of O. bimaculatus directly, body constituents can be estimated from weight or length of the fish using predictive regression models with a reasonable amount of accuracy.

Acknowledgments

The authors are sincerely thankful to the farmers of Tripura for providing wild *Ompok bimaculatus*. The Director and Joint Director of ICAR NEH, Tripura Centre are also gratefully acknowledged for providing the necessary facilities for this study.

References

Azam, K., Ali, M.Y., Asaduzzaman, M., Basher, M.Z. and Hossain, M.M. (2004) Biochemical assessment of selected fresh fish. J. Biol. Sci. 4(1): 9-10 Bligh, E.G. and Dyer, W.J. (1959) A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 37: 911

- Cui, Y. and Wootton, R.J. (1988) Effects of ration, temperature and body size on the body composition, energy content and condition of Minnow (*Phoxinus phoxinus* L.). J. Fish Biol. 32: 749-764
- Dempson, J.B., Schwarz, M., Shears, M. and Furey, G. (2004) Comparative proximate body composition of Atlantic salmon with emphasis on parr from fluvial and lacustrine habitats. J. Fish Biol. 64: 1257-1271
- Kamal, D., Khan, A.N., Rahman, M.A. and Ahamed, F. (2007) Biochemical composition of some small indigenous fresh water fishes from the river Mouri, Khulna, Bangladesh. Pak. J. Biol. Sci. (9): 1559-1561
- Mermid, D., Celikkale, M.S. and Ercan, E. (2006) Effects of different diets on growth performance and body composition of Russian sturgeon (*Acipenser gueldenstaedtii*, Brandt & Ratzenburg, 1833). J. Appl. Ichthyol. 22(1): 287-290
- Naeem, M. and Salam, A. (2010) Proximate composition of fresh water bighead carp, *Aristichthys nobilis*, in relation to body size and condition factor from Islamabad, Pakistan. Afr. J. Biotechnol. 9(50): 8687-8692
- Salam, A. and Davies, P.M.C. (1994) Body composition of northern pike (*Esox lucius* L) in relation to body size and condition factor. Fish. Res. 19: 193-204
- Salam, A., Ali, M. and Anas, M. (2001) Body composition of *Oreochromis nilotica* in relation to body size and condition factor. Pak. J. Res. Sci. 12(1): 19-23
- Tang, H., Chen, L., Xiao, C. and Wu, T. (2009) Fatty acid profiles of muscle from large yellow croaker (*Pseudosciaena crocea* R.) of different age. J. Zhejiang Univ. Sci. B, 10(2): 154-158
- Weatherley, A.H. and Gill, H.S. (1987) The Biology of Fish Growth, pp 1-443, Academic Press, London
- Wootton, R.J. (1998) Ecology of Teleosts Fishes 2nd edn., Dordrecht: Kluwer, Biostatistical Analysis, Prentice-Hall, New Jersey
- Yousaf, M., Salam, A. and Naeem, M. (2011) Body composition of freshwater *Wallago attu* in relation to body size, condition factor and sex from southern Punjab, Pakistan. Afr. J. Biotechnol. 10(20): 4265-4268