EXPERIMENTAL FISHING IN HIRAKUD RESERVOIR, ORISSA (1965-67)

P. SULOCHANAN*, V. C. GEORGE & R. M. NAIDU Central Institute of Fisheries Technology Sub-Station, Burla, Orissa.

The comparative efficiencies of simple gill net, vertical line net and framed net in exploiting the fishery of Hirakud Reservoir in Orissa were studied. Though comparatively costlier to fabricate, the framed net gave better results than the other two.

Introduction

Consequent on the increased importance envisaged in the successive five year plans, numerous river valley reservoirs have been formed. In addition to irrigation, power generation and flood control. these lacustrine water spreads sustain a rich fishery potential, which, if judiciously exploited could substantially contribute to an enhanced production of this much needed animal protien. Hirakud Reservoir, formed across the Mahanadi in Orissa State, has possibly the largest water spread of 74,592 hectares (288 square miles) with a shore line of 643.6 kilometres (400 miles) at the maximum water level of 192.15m (630') from the mean sea level. his collaborators (1955) have described in detail the Icthyofauna of the reservoir. The annual fish landings of the reservoir for the last five years are tabulated in Table I.

TABLE I

Year	Weight in Kgs.
1961–62	51,926
1962-63	32,400
196364	14,401
1964-65	15,092
1965-66	12,378

The presence of numerous underwater obstructions limits the use of active gear like the trawls, seines and drifting nets in the exploitation of the reservoir, while passive gear like the set gill nets are apparently the only types suitable. The Sub-Station of the Central Institute of Fisheries Technology at Burla, Orissa from its inception had been conducting systematic investigations on the utility of different designs of gill nets and the results of these experimental studies are incorporated in the present communication.

^{*} Present address: Central Institute of Fisheries Technology, Cochin-5

GEAR AND METHOD OF OPERATION

The different types of gill nets used for the investigations were, Simple gill net. Vertical line net and Framed net. design details of these types of nets along with diagramatic sketches are given in Table II a, b, c and Text Fig. 1 a, b and c respectively. The nets were operated as surface set nets in various regions of the reservoir. Text Fig. 2 gives a plan of the reservoir along with the places where experimental fishing was conducted. Two to six shots in each of the different types of nets were operated in the reservoir. arranging the gear in such a way as to alternate one type with the other and to give equal chances to the different types. This alternating arrangement of the gear was maintained unless otherwise disturbed due to damages caused to a particular net by submerged objects in the reservoir.

The fish landed by the different nets were recorded seperately. Spatial distribution of fish caught in the nets, the number of meshes disabled by gilling or entangling and the morphometric data such as length, weight and girth of the different species of fishes were also noted.

RESULTS

The total area of nets operated during different months and the catches for the years 1965-66 and 1966-67 are given in Table III. The catches per unit area of 1,000 square metres of the Simple gill net. the Vertical line net and the Framed net during each month for the two year period are given in Table IV. The proportionate increase of catch observed for the three types of nets during different months are given in Table V. The vertical distribution of the two major species of fishes in the reservoir is reccorded in Table VI. size compositions of S. silondia and C. catla captured by three types of nets and each net separately are given in Table VII.

The length frequency curves of *S. silondia* captured by the three nets together and each net separately are shown in Text Fig. 3. The numbers of *silondia* caught by gilling and entangling from June, 1966 to March, 1967 are given in Table VIII and the meshes disabled in each case are indicated in Table IX.

DISSCUSSION

Selection of twine and mesh size

The mesh sizes adopted and the twines selected for the gill nets in vogue are given in Table X. It would be apparent from the Table that the selection of the size of twine is not based on any scientific data but rather following age old practices or the rule of thumb method. Baranov (1960) has suggested the following relationship for cotton nets.

Twine dia. in mm.	Mesh bar in mm.	Catch
0.50	45	300
0.75	45	100

In the experimental nets tried during the present investigations the twine size selected was Nylon 210 D/2/3 having an average diameter of 0.453 mm and the mesh size 75 mm bar. The reduction of the thickness of the twine makes the net less visible as well as facilitates easy entangling of fish.

Spatial distribution of fish in the nets and determination of optimum fishing height of the net

The spatial distribution of fish in the gill nets helps in the rational design of the gear particularly to determine the appropriate fishing height. The vertical distribution of fishes caught in the experimental gill nets operated in the Hirakud Reseavoir (Table VI) shows that the fishes are distributed almost uniformly in the entire height of the net and a fishing height of six metres may, therefore, be considered as desirable for the gear.

Catch efficiency of the nets & the mechanism of capture

Based on catch per unit area, Balasubramanyan et. al. (1960) have compared the efficiency of cotton nets with that of Nylon. The efficiencies of the three different nets were determined following the same method. Tables IV and V would show that the increase in catch of fish is more for the Framed nets when compared with those of the nets with vertical lines and the simple nets.

In fourteen out of nineteen months increase in catch is indicated in the case of Framed nets and the rate of increase observed is tangible for cleven months, that is, June, September and November, 1965 and January through June, October and November, 1966. During these months, the proportionate increase in landings of the Framed nets over the conventional simple gill net ranged from 1.4 times to 4.76.

The proportionate catch of the Framed net in comparison with that of the Vertical line net also showed similar increase.

The catching efficiency of the Vertical line net is also observed to be better than that of the Simple gill net. But in most cases the rate of increase in catch is not substantial and in eleven out of nineteen months the efficiency index of the Vertical line net was only on a par with that of the Simple gill net or even less.

From the foregoing it would be abundantly clear that the Framed net Is more effective than the simple gill net and the Vertical line net for the exploitation of Hirakud Reservoir Fishery.

Von Brandt (1964) has recorded that for relatively large fishes, mechanism of capture is more of entangling than of gilling. It would be clear from Table VIII that 23% of the fishes were captured by gilling, while 77% were by entangling. As such Framed nets having the maximum slackness of webbing (Vertical co-efficient 0.50) are more efficient in comparison with nets with vertical lines of lesser slackness (Vertical co-efficient 0.70) and the conventional Simple gill net having the minimum slackness (Vertical co-efficient 0.86). Slackness of webbing also reduces the reflection of swell (von Brandt, 1964) and thus enhances the efficiency of the net.

It may be stated that by gilling it is meant, the capture of fish by enmeshing in a single mesh, while entangling means, gilling and subsequent entangling or entangling alone, i e; rolling the various parts of the body or the entire body itself in the net during the struggle to escape. During the process of entangling, therefore, a number of meshes are disabled and are deprived of the gilling capacity in that particular operation. In the case of S. silondia about 60% of the entangled fishes disabled 10 to 80 meshes (Table IX). Even though this is an overall picture for the three types of nets, the number of meshes disabled is reduced by the interference of the Framing lines in the case of Framed nets and Vertical lines in the case of Vertical line nets. This factor also enhances the catching efficiency of the Framed and Vertical line nets as the fishes caught in these nets leave the adjoining compartments of the net in a better condition to catch fish subsequently.

In a simple gill net of 50×6 metres dimension, the total number of meshes is 31302. Of these the top, bottom, and side meshes by their very arrangements are not able to catch fish. Subtracting this number from the total meshes, there are only 29,880 meshes which can potentially catch fish. Considering that 90 meshes are required to

TABLE II a DESIGN DETAILS OF SIMPLE GILL NET

Name of Gear	Simple Gill Net
Type	Surface Set Net
Webbing	
Material	Nylon
Type of knot	Nylon Double trawl knot
Twine size	010/0/2
Breaking strength in kg.	77
Mesh bar in mm.	75
Upper edge	666 meshes
Lower edge	666 meshes
Depth	47 meshes
Horizontal co-efficient	0.50
Vertical co-efficient	0.86
Selvedge (upper)	666 meshes
-do- (lower)	666 meshes
-do- Depth	2 meshes at upper & Lower sides.
-do- Material	Nylon
-do- Type of knot	Double trawl knot
-do- twine size	210/4/3
Breaking strength in kg	15.5
Mesh bar in mm.	75
Lines and Ropes	
Material	Kapron
Diameter of H. R.	3 mm.
-do- of F. R.	5 mm.
Breaking strength of Kapron 3 mm. dia.	171 kg
Breaking strength of Kapron 5 mm. dia.	342 kg
Length of H. R.	50 m.
-do- of F. R.	50 m.
Floats	
Material	Polythene
Number	6
Shape	Spherical
Diameter	15 cm.
Sinkers	2511
Material	Mild steel
Number	6
Shape	Ring of 15 cm dia.
Weight in air	1200 gm

TABLE II b DESIGN DETAILS OF VERTICAL LINE NET

Name of gear	8.5.4	Vertical Line Net
Type		Surface Set Net
Webbing		
Material		Nylon
Type of knot	000	Double trawl knot
Twine size		210/2/3
Breaking strength in kg	000	7.7
Mesh bar in mm.	400	75
Upper edge	a • •	666 meshes
Lower edge	•••	666 meshes
Depth		57 meshes
Horizontal co-efficient	a s o	0.5
Vertical co-efficient		0.7
Selvedge (upper)	400	666 meshes
-do- (lower)	400	666 meshes
-do- (depth)	200	2 meshes upper and lower sides
-do- (material)	•••	Nylon
-do- Type of knot		Double trawl knot
-do- Twine size	300	210/4/3
Breaking strength in kg		15.5
Mesh bar in mm.		75
Lines		
Material		Nylon
Twine size	000	210/15/3
Breaking strength in kg	•••	57
Distance between two lines	4 0 0	1 m.
Length of each line	400	6 m.
No. of Vertical lines	300	51
Ropes		
Material	***	Kapron
Diameter of H. R.		3 mm.
-do- of F. R.	•••	5 mm
Breaking strength of Kapron 3 mm. dia.	•••	171 kg
Breaking strength og Kapron 5 mm. dia.		342 kg
Length of H. Rdo- of F. R.		50 m.
Floats	9 6 6	50 m.
Material		Polythene / Alkathene
Number	•••	8
Shape		Spherical
Diameter		15 cms.
Sinkers		
Material	9	Mild steel
Number	•••	8
Shape	•••	Ring of 15 cm dia.
Weight in air		1600 gm.

TABLE II C DESIGN DETAILS OF FRAMED NETS

Name of gear Type	* * *	Framed Nets Surface Set Net
<u>* -</u>	•••	Burrace Bet Ivet
Webbing		
Material		Nylon
Type of knot		Double trawl knot
Twine size Breaking strength in kg		210/2/3 7.7
Mesh bar in mm.		78
Upper edge		666 meshes
Lower edge		666 meshes
Depth	•••	80 meshes
Horizontal co-efficient		0.5
Vertical co-efficient	•••	0.5 666 meshes
Selvedge (upper)		666 meshes
-do- (lower) -do- (depth)		2 meshes at upper & lower sides
-do- Material	9 8 9	Nylon
Type of knot	•••	Double trawl knot
Twine size	***	210/4/3
Breaking strength in kgs.	• • •	15.5
Mesh bar in mm.	• • •	75
Lines		
Material	•••	Garware Nylon
Twine size	•••	210/15/3
Breaking strength in kgs.	***	57
Distance between two vertical lines	***	1 m.
Length of each vertical line	•••	6 m. 51
No. of vertical lines Distance between two horizontal lines	***	1 m
Length of each horizontal line	•••	50 m.
No. of horizontal lines	•••	5
Ropes		
Material		Kapron
Diameter of H. R.	• • •	3 mm.
-do- of F. R.	•••	5 mm.
Breaking strength of Kapron 3 mm. dia.		171 kg
Breaking strength of Kapron 5 mm. dia.	• • •	342 kg
Length of H. R.	***	50 m.
-do- of F. R.	4 0 0	50 m.
Floats		
Material	***	Polythene / Alkathene
Number		10
Shape		Spherical 15 cm
Diameter	***	15 Cm
Sinkers		
Material	• • •	Mild steel
Number	•••	10 Bing of 15 am dia
Shape Weight in air	***	Ring of 15 cm dia. 2000 gm
weight in all	•••	2000 gm

TABLE III THE MONTHWISE AREA OF NETS OPERATED AND THE CATCH FOR THE YEARS 1965-1966 and 1966-67.

With the last to the last the last to the	196	5–66	196	66–67
Month	Area of nets in square meters	Catch in Kilogrammes	Area of nets in square metres	Catch in Kilogrammes
April	32901	185.02	94050	391.70
May	37431	94.75	121752	467.65
June	21452	147.85	85668	725.35
July		—		<u></u>
August	·			
September	24514	55.67		_
October	40900	94.67	93300	223.01
November	88050	130.62	141860	216.10
December	155707	183.33	148160	171.90
January	105091	184.80	143251	134.80
February	119523	287.80	100678	70.95
March	117140	358.15	135126	267.05

TABLE IV CATCH IN KILOGRAMS PER 1,000 SQUARE METRES OF NET

	1965	-1966			1966-1967	
Month	Simple Gill net	Vertical Line net	Framed net	Simple Gill net	Vertical Line net	Framed net
April	7.120	7.170	4.910	3.370	3.760	5.420
May	2.400	2.700	1.780	2.150	3.020	7.870
June	4.000	6.000	7.500	6.410	9.810	13.730
July					-	At-
August					**********	
September	1.000	3,000	2.600		Mayor-may.	
October	2.970	1.790	2.680	1.031	1.080	1.860
November	0.713	1.402	2.523	0.916	2.178	1.307
December	2.670	1.290	2.990	1.253	0.666	1.333
January	0.850	2.240	2.570	1.135	1.403	0.408
February	1.050	2.720	5.000	0.863	0.570	0.263
March	2.470	2.480	5.630	2.067	1.875	2.398

TABLE V PROPORTIONATE INCREASE IN CATCH OF FRAMED NETS AND VERTICAL LINE NETS DURING DIFFERENT MONTHS

Month	Increase in catch of Vertical line net to that of Simple gill net	Increase in catch of Framed net to that of Simple gill net	Increase in catch of Framed net to that of Vertical line net
April, 1965	1.00 times	0.69 times	0.69 times
May, ,,	1.13 ,,	0.74 ,,	0.66 ,,
June, ,,	1.50 ,,	1.88 ,,	1.25 ,,
July, ,,		. —	
August ,,			- .
September, "	3.00 times	2.60 times	0.87 times
October, ,,	0.60 ,,	0.90 ,,	1.50 ,,
November, "	1.97 ,,	3.56 ,,	1.80 ,,
December, ,,	0.48 ,,	1.12 ,,	2.32 ,,
January, 1966	2.64 times	2.02 times	1.15 times
February, ,,	2.59 ,,	4.76 ,,	1.84 ,,
March, ,,	1.00 ,,	2.28 ,,	2.27 ,,
April, ,,	1.12 ,,	1.61 "	1.44 ,,
May,	1.41 ,,	3.66 ,,	2.61 ,,
June, ,,	1.53 ,,	2.14 ,,	1.40 ,,
July, ,,	-		Bernand
August, ,,		***************************************	·
September, ,,	p		
October, ,,	1.05 times	1.80 times	1.72 times
November, "	2.38 ,,	1.42 ,,	0.60 ,,
December, ,,	0.53 ,,	1.06 ,,	2.00 ,,
January, 1967	1.24 times	0.36 times	0.29 times
February, ,,	0.66 ,,	0.31 ,,	0.46 ,,
March, ,,	0.91 ,,	1.16 ,,	1.27 ,,

TABLE VI VERTICAL DISTRIBUTION OF FISHES IN THE NETS

	Depth	of net from surface to b	pottom
Species of fish	0 to 2 metres	2 to 4 metres	4 to 6 metres
S. Silondia	35.40%	40.20%	24.40%
C. Catla	20.60%	44.45%	34.92%
Total of all fishes	32.00%	40.00%	28.00%

TABLE VII SIZE COMPOSITION OF S. silondia and C. catla Captured by simple gill net, vertical line net AND FRAMED NET FOR THE YEAR 1965-1966 AND 1966-1967

Length group		10	1965_66	S. si	S. silondia		1966-67			101	1965_66	C. catla	atla	1066 67	17	
in cms.		-				7								0061	10-0	
	Ë	S. G. N.	V. L. N.	F. N.	H.	S. G. N.	V. L N.	H. N.	E.	S. G. N.	V. L. N.	F. N.	Ė.	S. G. N.	V.L.N.	F. N
21–30	ς.	4	pool	0	0	0	0	0	0	0	0	0	0	0	0	0
31-40	0	n	4	7	0	0	0	0	0	0	0	0	-	0	H	0
41-50	∞	ო	m	7	∞	7	4	7	-	B	Ś	ಣ	7	7	7	m
51-60	∞	ಶ	-	т	37	26	«	m	Π	m	7	9	9	Printed	0	8
61–70	40	13	=	91	45	24	15	9	13	-	3	6	9	\vdash	m	~
71-80	66	35	40	24	102	42	43	17	B	0	7	·	7	7	7	m
81-90	42	16	14	12	87	18	21	48	4	0	7	7	4	0	.0	4
91-100	10	5	0	2	29	'n	9	20	0	0	0	0	7	0	H	possed
101-110	0	0	0	0		-	-	0/	0	0	0	0	0	0	0	0
111-120	0	9	0	0	7	0	0	7	0	0	0	O	0	0	0	0
121-130	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total:	221	83	74	64	321	116	86	107	42	7	14	21	33	9	6	18
		<u> </u>	[=	= Tc	Total				V. L. N.		Vertical Line Net	ine Ne	ب		45700	1
			S. G. N.	= Sir	Simple (Gill Net			F. Z.		Framed Net	et				

TABLE VIII NUMBER AND PROPORTION OF GILLING AND ENTANGLING OF THE TOTAL NUMBER OF *S. silondia* of all the nets together and in each net separately from June, 1966 to march, 1967.

	Total number	No. of fishes gilled	% of gilling	No. of fishes entangled	% of entangling
Simple gill net	63	14	23	49	77
Vertical line net	60	13	22	47	78
Framed net	64	16	25	48	75
Grand total	187	43		144	
					ni a dilika kishan hara ngambili dilikish padapayahan disilakahan ka sa s

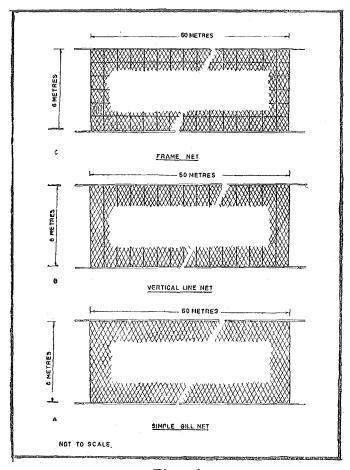


Fig. 1

TABLE IX NUMBER OF MESHES DISABLED IN DIFFERENT NETS BY S. silondia Caught during june 1966 to march 1967

J					Me	Meshes disabled	led				
Type or net	10-30	31-50	51-70	5 06-12	91-110	111-130	131-150	151-170	171-190	191-210	211-230
(1)	(2)	(3)	(4)	(5)	(9)	(7)	(8)	(6)	(10)	(11)	(12)
Simple Gill Net	∞	10	4	5	9	2	-	4	5		-
Vertical Line Net	8	10	∞	9	5	F4	-	0	33	0	m
Framed Net	12	5	∞	3	4	0	prod	S	2		0
Total Number of S. silondía	28	25	20	14	15	m	m	6	10	2	4
					Me	Meshes disabled	led				
1ype of the	231-250	231-250 251-270 271-290	271-290	201-310	311-330	0 331-350	50 351-370	0 371-390	0 391-410	0 411-430) Total
	(13)	(14)	(15)	(16)	(17)	(18)	(19)	(20)	(21)	(22)	(23)
Simple Gill Net	0	0	0	0	0	0	0	0	0	0	49
Vertical Line Net	0	2	0	0	0	0	0	0	0	0	47
Framed Net	2	0	0	0	0	4	0	0	0	Francis	48
Total Nnmber of S. silondia	2	7	0	0	0	4	0	0	0	. 🛏	144
	CHEST STREET,										

TABLE X DETAILS OF THE TWINE USED, MESH SIZE, FISHING HEIGHT AND FISHES CAPTURED IN THE VARIOUS INLAND RESERVOIRS

Place	Mat	Material	Mesh bar in mm	Fishing height of the net	Catch
Jaisamand Lake, Rajastan	Terylene	250/2/3	70	2.44	C. catla, L. rohita, S. silondia, C. mrigala
Thungabhadra Dam, Mysore	Terylene	250/2/3 250/2/3	31	2.15)	
7		250/2/3 250/3/3 250/4/3 250/5/3	62.5 104 80 125	3.22 5.36 4.12 5.37	B. colus, L. Calbasu, S. silondia, C. catla
Mellandur Tank, Mysore	Terylene	250/3/3	95	3.80	C. catla
Mettur Dam, Madras	Terylene ,,	250/2/3 250/4/3	65	3.91	C. cirrohsa, C. catla, W. attu, L. calbasu, B. colus, M. aor
Nizamsagar, Andhra Pradesh	Terylene	250/6/3	20-60	6.00	T. sandkhol, B. tor, M. seenghala, C. catla, S. silondia, L. fimbriatus
Hirakud Dam, Orissa	Nylon	210/2/3	75	6.00	S. Silondia, C. catla, M. aor, M. seenghala, W. attu, L. rohita, C. mrigala, L. calbasu,

TABLE XI THE DETAILS OF THE COST OF SIMPLE GILL NET, VERTICAL LINE NET & FRAMED NET

Details	Simple gill net	Vertical Line net	Framed net
Material for webbing in kg	1.700	2.000	2,900
Material for lines in Kg	0.000	0.400	0.800
Material for rope in Kg	1,000	1.000	1.000
Total in Kg	2.700	3.400	4.700
Cost of materials @ Rs. 38/- per Kg	102.60	129.20	178,60
No. of floats required	6	8	10
Cost in Rs. @ Rs. 0.50/ sinker	3.00	4.00	5.00
Total cost of materials in Rs.	141.60	181.20	243.60
Labour charges in Rs. for the fabrication of webbing @ Rs. 0.75 per 1000 meshes	23.47	29.13	39.96
Assembling charges in Rs.	29.47	41.13	57.96
Total cost of finished net in Rs.	171.07	222.33	301.56

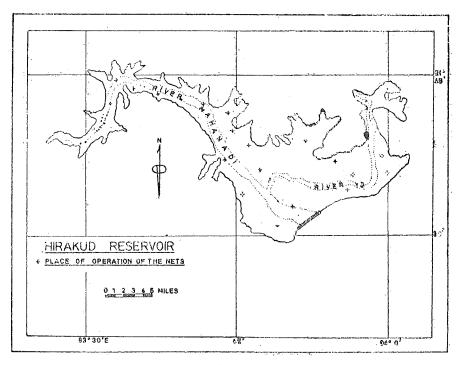


Fig. 2

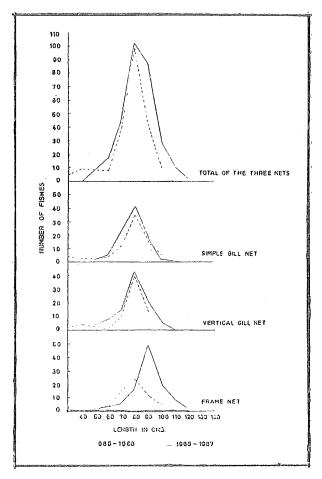


Fig. 3

capture one Silondia, a simple gill net can catch at best a maximum of 322 fish. Granting even the same rate of disabling of meshes for the Vertical line net and Framed net of 50×6 metres the number of Silondia that could be captured are 374 and 498 respectively. This also further substantiates the superiority of the Framed nets over the Vertical line and Simple nets.

From graph I (Fig. 3) it would be seen that model value is 80 cms for S. silondia for the year 1965-66 and 1966-67 and the model value of the size group of individual nets for 1965-66 is also 80 cms while for the year 1966-67, the model value of Framed net is 90 cms. The reason for this is not clear and hence needs further investigations. The limited number

of observations of *C* catla do not lead to any conclusion regarding the selectivity of nets.

The details of the cost of each net are given in Table XI. From this Table, it would be evident that a Framed net is 76.89% costlier than a Simple gill net. may therefore be argued that Framed nets and Vertical line nets in view of their increased cost compared to Simple gill net, may not be economical. Considering the normal life of a net to be three years and for a fleet of Framed nets operating a standard length of 1,250 metres (7,500 square metres area) the net income at the end of the third year can be expected to be many times more than that of the Simple gill net.

The parameter of one square metre frames of the Framed nets was arbitrarily fixed and the optimum parameters framing of the net is yet to be ascertained. Some trials made in this respect making use of Framed nets of 2 square metre frames gave encouraging results. A substantial saving in the cost of the Framed nets can be effected as substitution of one square metre Frames with two square metre ones can reduce the requirement of framing lines as well as the cost of labour for framing to nearly 50%.

SUMMARY

A study of the comparative efficiency of the three different types of set gill nets indicates that the Framed nets are more effective than the Veatical Line net and Simple gill net in the exploitation of the Hirakud Reservoir Fishery. The catch per Unit area of 1,000 square metres of Framed net showed substantial increase over those of the Vertical line net and the Simple gill net of the conventional type. Even though the cost of Framed net is more than that of the Vertical line net and Simple gill net, the returns are observed to be tangible. Probable line in furthering

the investigations to determining the optimum parameters in framing the net are also indidated.

ACKNOWLEDGEMENT

We wish to express our sincere thanks to Dr. A. N. Bose, Director, Central Institute of Fisheries Technology, Ernakulam for the interest he has evinced in the work. We are deeply indebted to Sri G. K. Kuriyan, Senior Research Officer (Craft & Gcar) for going through the manuscript and suggesting necessary alterations.

REFERENCES

Balasubramanyan, R., Satyanarayana, A. V. V. and Sadanandan, K. A. 1960, A preliminary account of the experimental rock lobster fishing conducted along the south-west coast of India with bottomset gill, nets, *Indian J. Fish*, 7, 2, 407.

Baranov, F. I. 1960 Techniques of Industrial fishing, Moscow.

von Brandt, A, 1964 Fish catching methods of the world, London.

Job, T. J., David, A. and Das, K. N. 1955 Fish and Fisheries of Mahanadi in relation to the Hirakud Dam, *Indian J.* Fish: 2, 1, 1.