PRELIMINARY TRIALS ON THE TOXICITY OF "ALGISTAT" TO FISH AND ALGAE

R. N. PAL AND V. GOPALAKRISHNAN Central Inland Fisheries Research Institute, Barrackpore, India.

Preliminary toxicity trials conducted with "Algistat" (an algicide) indicated that a dose of 0 66 ppm. of the compound was highly toxic to fish and 0.8 ppm. was the general lethal level for *Spirogyra* sp. The blue green algae, *Oscillatoria* sp., *Mycrocystis* sp. and *Anabaena* sp. were adversely affected by dosages higher than 0.5 ppm. *Euglena* sp. was not affected even at 1.0 ppm.

INTRODUCTION

The occurrence of algal blooms in fish ponds is known to be harmful in different ways; fish mortality may be caused by depletion of dissolved oxygen or liberation of toxic substances, incidence of 'gas embolism' (gas disease) caused by excess of oxygen due to increased photosynthetic activity etc. (Philipose, 1966). Excessive growths of filamentous algae like Spirogyra may also cause adverse conditions, as they may restrict movement of fishes and fry or fingerlings which get trapped by the algal filaments may die. However, not much advances have been made in India in the control of such algae in waters used for pisciculture. Temporary relief has sometimes been obtained by application of raw cowdung as a liquid spray (Alikunhi, 1956). Copper sulphate is the only chemical that has been used with some success for the control of algae

in certain types of waters (Philipose, Ibid)"Algistat', a proprietory algicide manufactured by M/S. Bristish Drug Houses
Ltd., was referred for studies regarding its suitability or otherwise in the control of noxious algae in fish culture waters.

MATERIALS AND METHODS

"Algistat" has been reported to be a safe and effective compound in controlling algal growths in water-cooling towers and associated ponds. The active constituent of the product is 2:3-dichloro – 1:4 naphthaquinone.

The present experiments were conducted in 3 litre and 10 litre glass jars and 15 litre earthen 'gamlas'. Both tap water and pond water were used. Cyprinus carpio (var. communis) were used as test fish. The algae tried were Spirogyra sp., Oscillatoria sp., Anabaena sp., Microcystis

TABLE I "EFFECT OF 'ALGISTAT' ON Cyprinus carpio FRY

Companyage in Assertment			F	ish			
Serial No	No. of fish	Conc. In ppm.	Length mm (range)	Weight gm (range)	No. of fish died	Lethal in Hr. & Minimum	
1	8	Control	27–39	0.3-0.8	nil		
2	8	0.33	28-39	0.3-0.8	1	7-25	
3	8	0.5	26-39	0.2 - 0.9	4	3-25	6-32
4	8	0.66	30-41	0.3-1.1	8	2-20	1-05

TABLE II EFFECT OF 'ALGISTAT' ON ALGAE

Serial No.	Species	Concentration of Algistat	No. of Trials	Observation after 24 hours
1	Spyrogyra sp.	Control	4	No mortality
2	do	0.33 ppm	3	do
3	do	0.4 ppm	4	do
4	do	0.55 ppm	2	do
5	do	0.6 ppm	4	do
6	do	0.66 ppm	2	do
7	$\mathbf{d}\mathbf{o}$	0.8 ppm	4	All died
8	do	1.0 ppm	7	do
1	Oscillatoria 60% Anabaena sp. 30% Microcystis sp. 5% Euglena sp. 5%	Control	4	No mortality
2	do	0.5 ppm	4	do
3	do	0.66 ppm	4	All, except Euglena died
4	do	1.0 ppm	4	do

sp., and Euglena sp. The fish and algae were acclimatised prior to experiments.

RESULTS

During initial trials, it was observed that the test fish as well as *Spirogyra* sp. died in 1 ppm. concentration of 'Algistat'. Hence, lower concentrations were tried for subsequent experiments and the results obtained are presented in Tables I and II. From Table I it will be observed that a dose of 0.66 ppm. of the compound was highly toxic to *Cyprinus carpio* fry. Some trials were made using fry of Indian major carps and it was observed that 0.3 ppm. concentration did not have any apparent

adverse effect. 0.5 ppm. was generally the lethal level for Catla and 0.66 ppm. for Rohu and Mrigal.

From Table II it will be seen that upto 0.6 ppm. concentration no ill effect on
Spirogyra sp. was observed. However,
little crumpling of the chloroplast was
noticed. The same sort of crumpling was
found when Spirogyra collected from pond
water was kept in tap water. Dosages of
0.8 ppm. and above killed this filamentous
algae. The blue green algae, Oscillatoria,
Microcystis and Anabaena were adversely
affected by dosages higher than 0.5 ppm.
Euglena sp. was not affected even at 1.0
ppm concentration.

Conclusion

The preliminary trials conducted indicate that generally the application of 'Algistat' for control of algal blooms and filamentous algae may have to be tried in nursery and rearing ponds, before introducing the fish. The possibility of applying the compound at a dose of about 0.6 ppm on regions of water surface, where algae get concentrated by wind action, as done by Kessler (1960) with copper sulphate spray, may also have to be looked into. As already mentioned the experiments

described above were meant as preliminary trials only and further field observations will be worthwhile.

ACKNOWLEDGEMENT

Authors are indebted to Dr V. G. Jhingran, Director, Central Inland Fisheries Research Institute, Barrackpore, for his keen interest. Thanks are due to Messers British Drug Houses (India) Private Limited for providing a sample of 'Algistat'.

REFERENCES

Alikunhi, K. H., (1956). Fish culture techniques in India: In Progress of fisheries development in India, published by the Executive Committee, All-India Fisheries Exhibition, Cuttack 63-73 pp.

Kessler, S., (1960). Eradication of bluegreen algae with copper sulphate, Bamidgeh. 12, 1, 17.

Philipose, M. T., (1966) Present trends in the control of weeds in fish cultural waters of Asia and the Far East, FAO world symposium on warm-water pond fish culture, Rome. 18—25 May, 1966. FR VII/R-3: 1-26.