

Effect of Chitosan Edible Coating on the Microbial Quality of Ribbonfish, Lepturacanthus savala (Cuvier, 1929) Steaks

V. Renuka^{1*}, C. O. Mohan², Y. Kriplani¹, G. K. Sivaraman¹ and C. N. Ravishankar²

- ¹ Veraval Research Centre of CIFT, Matsyabhavan, Bhidia Plot, Veraval 362 269, Gujarat, India
- ² ICAR-Central Institute of Fisheries Technology, P.O. Matsyapuri, Cochin 682 029, India
- * Corresponding author E-mail: renukavi@gmail.com

Abstract

The demand for healthy food products without any added chemical preservative is increasing globally. Chitosan can find application in food products due to its bio-preservation effects. The present study was aimed to assess the effectiveness of chitosan edible coating on the microbial quality of ribbon fish, Lepturacanthus savala. Ribbonfish steaks treated with (1%) and without chitosan were packed in multilayered films and stored under refrigerated conditions (3±1°C). The fish used in the study is medium fatty fish with good quantity of crude protein. The initial total plate count of 4.5 log cfu g-1 indicates the good quality of fish used in the study which exceeded limit of 7 log cfu g-1 on 10th days in control samples indicating the shelf life of ~8-9 days. In chitosan treated samples, total plate counts were observed to be 6.81 log cfu g⁻¹on 15th day and the limit of 7 log cfu g-1was exceeded only on 20th day indicating a shelf life of ~16-17 days. This clearly indicates the antimicrobial effect of chitosan. Further, significantly (p<0.01) lower counts for Pseudomonas spp., H2S forming bacteria and enterobacteriaceae were observed for chitosan treated samples. The study reveals that chitosan can be used effectively to enhance the microbial quality as well as shelf life of the fishery products.

Keywords : Chitosan, Ribbon fish, microbial quality, refrigerated storage

Introduction

Ribbon fish belonging to the family Trachipteridae is one of the common fish consumed in Gujarat.

Received 21 February 2016; Revised 10 April 2016; Accepted 20 April 2015

Contribution of ribbon fish to total fish landings of Gujarat was to the tune of 14.26% in 2014 (CMFRI, 2015). Apart from its domestic utilization, it finds major export markets like China, Japan and other Southeast Asian countries mainly in frozen form. Nearly 64% of ribbon fish landed is exported in frozen form. Belly bursting is one of the major problem faced by the ribbon fish processing industries and this is mainly due to the autolysis and microbial activity, which leads to loss of quality and nutritive value of ribbon fish. Chitosan which is a derivative of chitin is a natural biodegradable polysaccharide which find varied application in food industry. Chitin is a copolymer of Nacetylglucosamine and glucosamine residues linked by β -1, 4-glycosidic bonds and insoluble in dilute acids. Chitosan [β-(1,4)-2-amino-2-deoxy-D-glucopyranose] is the deacetylated form of chitin and in most cases, will be soluble in dilute acid. It is the second most abundant natural polymer in nature after cellulose (Shahidi et al., 1999). Fungi synthesize chitin and chitosan in their cell walls, while the shells of crabs and shrimps and the bone plates of squids and cuttlefish are composed of chitin only (Ng et al., 2007; Nwe et al., 2002). Pure chitosan is non-toxic, free of antigenic effects, biocompatible, biodegradable and polar in nature (VandeVord et al., 2002). Chitosan has been reported to have a number of functional properties that make it useful in nutrition (Gallaher et al., 2002; Shahidi et al., 1999). These include its antimicrobial activity and its ability to form protective films (Cuero, 1999; Jeon et al., 2002), its texturizing (Benjakul, et al., 2003), and binding action (No et al., 2000); and its antioxidant activity (Kamil et al., 2002). Many workers have studied chitosan as edible coating material for fishery products to enhance quality (Jeon et al. 2002; Augustini & Sedjati, 2007; Mohan et al., 2012). Although there are reports on the

^{*} E-mail: renukavi@gmail.com

application of chitosan in food, very limited report is available on the edible coating on the microbial quality of ribbonfish. Hence the present study aimed to assess the effect of chitosan edible coating on the microbial quality and shelf life of ribbonfish in refrigerated storage condition.

Materials and Methods

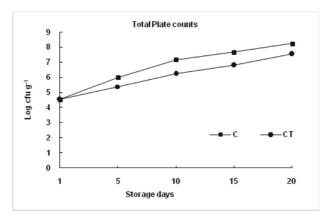
Chitosan with 85% degree of deacetylation with moisture content of less than 10% was procured from Mahatani Chitosan Pvt. Ltd. (Veraval, Gujarat, India). From this, 1% (w/v) chitosan solution was made by dissolving in 1% acetic acid and filtered through cheese cloth in order to eliminate the insoluble material. Fresh ribbonfish (Lepturacanthus savala) was procured from local fish market of Veraval, Gujarat, India and brought to the laboratory within 30 min in iced condition. The fish samples were immediately beheaded, gutted, cleaned and made in to steaks (ca. 190g±10g) and subsequently kept under refrigeration (3±0.5°C) until further use. The fishes were divided into two batches and one batch was dipped in 1% chitosan for 10 minand labelled as chitosan treated ribbon fish (CT). The steaks were then allowed to drain for 10 min on a pre-sterilized metal net. Another batch, the chitosan treatment was not given and labelled as control (C). Fish steaks were packed in synthetic multilayer film (nylon, EVOH and polyethylene) pack (Sealed Air (India) Pvt. Ltd., Bangalore, India) and stored at 3±1°C for further analysis.

The proximate composition of ribbon fish was determined as per AOAC method (AOAC, 2000). The microbial assessment was done by the standard method of USFDA Bacteriological Analytical Manual (2001). For microbial assessment, ribbon fish steak of 25g was transferred into a stomacher bag and homogenized for 2 min (Laboratory Blender 400, Seward, London, U.K.) with peptone saline solution. From this appropriate decimal dilutions were prepared, and used to enumerate the total plate count (TPC), *Pseudomonas* spp., H₂S-producing bacteria, Enterobacteriaceae and coagulase positive

Staphylococci. Results were presented as log colony forming units (cfug⁻¹). The microbial quality assessment was carried out immediately after the preparation of steaks from whole fish (day 0) followed by every 5 days interval during the study period.

Statistical Analysis

Triplicate samples were used for the analysis and the results are expressed as mean \pm standard deviation. Significant differences for different samples were evaluated at P < 0.01 for microbiological quality by analysis of variance (ANOVA).


Results and discussion

Proximate composition of the fish is affected by various factors like season, size, age, sex, diet etc. The proximate composition of ribbonfish studied is shown in Table 1. The results revealed that major contributor is moisture followed by crude protein and crude fat. The fish used in the study had good quantity of protein (20.05%) and is medium fatty fish (3.18%). This indicates that ribbonfish is very ideal for providing nutritional security effectively as it is considerably low cost variety of fish which contains good quantity of protein. The nutritional security can be achieved by supplying to distant markets using appropriate preservation technologies of which chitosan edible treatment can be one option. Prasad et al. (1990) have also reported similar protein content for ribbonfish.

Changes in TPC and *Enterobacteriaceae* counts of control and chitosan treated ribbon fish steaksare shown in Fig. 1. On the initial day TPC of ribbonfish steaks was 4.5 logcfug⁻¹, which indicate the sample had a relatively higher microbial load (Fig.1). This indicates good quality of fish used in the study. Contrary to this, very high TPC counts ca. 5.5 log cfu⁻¹are reported for ribbon fish by Imtiaz (2013). This variation could be due to the season of study as well as prevailing hygienic practices in the region. Total plate count increased with the storage period in both the samples, however, the increase was faster

Table 1. Proximate composition of Ribbonfish

Fish	Proximate composition (% in wet wt basis)			
Ribbonfish	Moisture	Crude Protein	Crude Fat	Ash
(Lepturacanthus savala)	76.17±1.02%	20.05±0.91%	3.18±0.08%	0.08±.01%

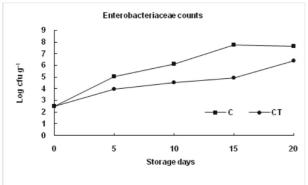
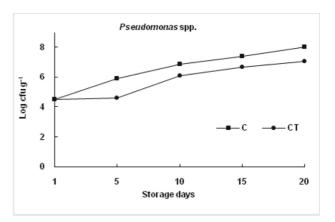



Fig. 1. Changes in total palte count and *Enterobacteriaceae* of Ribbonfish during refrigerated storage

in control samples compared to chitosan treated samples. TPC levels exceeded 7 log cfug⁻¹, which was higher than the maximum recommended level for raw fishery products (ICMSF, 1998) on day 10 for control samples. Up to 15 days, the TPC of chitosan treated samples were observed to be 2 log less than control samples. Total plate counts in chitosan treated sample was less than 7 log cfug-1 until the day 15. This indicates the effectiveness of chitosan treatment in inhibiting microbial growth. The total enterobacteriaceae counts of the initial sample was 2.47 log cfu g-1 which reached a level of 6.13 log cfu g⁻¹on 10th day for control samples. In chitosan treated samples, the counts were below 5 log cfu g⁻¹up to day 15 indicating its antimicrobial effect.

In control, the initial counts of Pseudomonas spp and H_2S producing bacteria were 4.5 and 3.2 $logcfug^{-1}$ respectively and the counts reached 6.8 and 5.9 $logcfug^{-1}$ on day 10 (Fig 2). In chitosan treated samples, the counts of Pseudomonas spp and H_2S producing bacteria were 6.0 and 4.0 $logcfug^{-1}$, which is lower than the control samples on day 10.

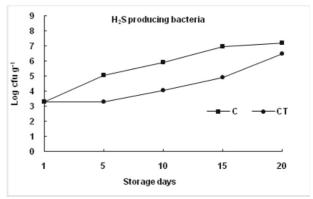


Fig. 2. Changes in *Pseudomonas* spp. and H2S-producing bacteria of Ribbonfish during refrigerated storage

Tsiligianni et al. (2012) reported that 1% chitosan coating resulted in 2-3 log reductions in aerobic, 3-4 log reduction in anaerobic Pseudomonas spp and H₂S producing bacteria of sword fish steaks after 8 days of refrigerated storage. Present result showed that the chitosan coating retard the microbial proliferation in 1-2 log reduction on ribbon fish in the refrigerated storage. Fan et al. (2009) demonstrated that 2% chitosan coating on silver carp (H. molitrix) stored at -3°C extended the shelf life upto 30 days. Li et al. (2013) studied the effect of chitosan coating combined with natural preservatives (grape seed extract and tea polyphenols) on red drum (Sciaenops ocellatus) fillets extended the shelf life of 6-8 days during refrigerated storage. In another study conducted by Vásconez et al. (2009) reported that chitosan coating with tapioca starch reduced the mesophilic and psychrophilic count and extend the shelf life of salmon to 6 days.

Coagulase positive Staphylococci were not detected in both control as well as chitosan treated ribbonfish steaks during storage period. Fresh fish does not contain any coagulase positive Staphylococci. Its incidence in fish is indicative of poor personnel hygiene. The above results reveals there is no cross contamination of coagulase positive Staphylococci in ribbon fish steaks. The effect of chitosan alone or combined with hydrocolloids on shelf life of fish has been studied by several authors (Soares et al., 2015; Mohan et al., 2012; Li et al., 2013; Tsiligianni et al., 2012; Ojagh et al., 2010; Fan et al., 2009; Vasconezet al., 2009). Several hypotheses have been published on mechanism of antimicrobial activity of chitosan. Chitosan is a cationic polysaccharide, can easily interact with anionic charged cell membrane, which induces the damage of cell (Duanet al., 2010; Devlieghere et al., 2004; Fang et al., 1994). Moreover the chitosan also act as physical barrier create an anaerobic condition so that it inhibit the growth of aerobic bacteria and also inhibit the microbial growth by chelation of protein in the microbes (Cuero et al., 1991; Sudarshan et al., 1992).

The edible chitosan treatment had beneficial effects by inhibiting the microbial counts significantly compared to control samples. This study reveals that the chitosan coating on ribbon fish steaks retard the growth of gram positive as well as gram negative bacteria in effective manner and it can be used as a coated material to extend the shelf life of the fish and fishery products. Chitosan edible coating extended the shelf life by 7-9 days compared to control samples during refrigerated storage indicating its application as natural preservative.

Acknowledgments

Authors would like to thank Director, ICAR-Central Institute of Fisheries Technology, Cochin, India for providing facilities to carry out this work and for permitting to publish. The technical help and support rendered by the staff of Veraval Research Centre of ICAR-CIFT are greatly acknowledged.

References

- AOAC. (2000). Official methods of analysis, Chapter 391-27, 17th Edn., Association of Official Analytical Chemists, Maryland, USA
- Augustini, T. W. and Sedjati, S. (2007). The effect of chitosan concentration and storage time on the quality of salted-dried Anchovy (*Stolephorus heterolobus*). J. Coast. Dev. 10(2): 63-71
- Benjakul, S., Visessanguan, W., Phatchrat, S. and Tanaka, M. (2003). Chitosan affects transglutaminase-induced surimi gelation. J. Food Biochem. 27(1): 53-66

- CMFRI. (2015). CMFRI annual report 2014-2015.Central Marine Fisheries Research Institute, Cochin.
- Cuero, R. G. (1999). Antimicrobial action of exogenous chitosan. In: Chitin and chitinases (Jolles, P. and Muzarelli, R. A. A. Eds), pp. 315-333, Birkhauser, Basel
- Jeon, Y. I., Kamil, J. Y. V. A. and Shahidi, F. (2002). Chitosan as an edible invisible film for quality preservation of herring and Atlantic cod. J. Agric. Food Chem. 20: 5167-5178
- Cuero, R.G., Osuji, G. and Washington, A. (1991). N-carboxymethyl chitosan inhibition of aflatoxin production: role of zinc. Biotechnol. Lett. 13(6): 441-444
- Devlieghere, F., Vermeulen, A. and Debevere, J. (2004). Chitosan: Antimicrobial activity, interactions with food components and applicability as a coating on fruit and vegetables. Food Microbiol. 21(6): 703-714
- Duan, J., Cherian, G. and Zhao, Y. (2010). Quality enhancement in fresh and frozen lingcod (*Ophiodon elongates*) fillets by employment of fish oil incorporated chitosan coatings. Food Chem. 119: 524-532
- Fan, W., Sun, J., Chen, Y., Qiu, J., Zhang, Y. and Chi, Y. (2009). Effects of chitosan coating on quality and shelf life of silver carp during frozen storage. Food Chem. 115: 66-70
- Fang, S.W., Li, C.F. and Shih, D.Y.C. (1994). Antifungal activity of chitosan and its preservative effect on low-sugar candied kumquat. J. Food Prot. 57: 136-140
- Gallaher, D., Gallaher, C., Mahrt, G., Carr, T., Hollingshead, C., HesslinkJr, R. and Wise, J. (2002). A glucomannan and chitosan fiber supplement decreases plasmacholesterol and increases cholesterol excretion in overweight normocholesterolemic humans. J. Am. Coll. Nutr. 21(5): 428-433
- ICMSF (International Commission on Microbiological Specifications for Foods). (1998). Microorganisms in Foods, Microbiological Testing in Food Safety Management, 362 p., Kluwer Academic/Plenum Pub., NY
- Imtiaz, M. (2013). Study of shelf life of improved sun dried ribbon fish (*Trichiurus haumela*) at different storage conditions. Bangladesh agricultural university. Mymensingh, Bangladesh (Doctoral dissertation)
- Kamil, J. Y. V. A., Jeon, Y. J. and Shahidi, F. (2002). Antioxidative activity of chitosans of different viscosity in cooked comminuted flesh of herring (*Clupea harengus*). Food Chem. 79: 69-77
- Li, T., Li, J., Hu, W. and Li, X. (2013). Quality enhancement in refrigerated red drum (*Sciaenops ocellatus*) fillets using chitosan coatings containing natural preservatives. Food Chem. 138: 821-826
- Mohan, C. O., Ravishankar, C. N., Lalitha, K. V. and Srinivasa Gopal, T. K. (2012). Effect of chitosan edible

- coating on the quality of double filleted Indian oil sardine (*Sardinella longiceps*) during chilled storage Food Hydrocoll. 26: 167-174
- Ng, C. H., Hein, S., Ogawa, K., Chandrkrachang, S., & Stevens, W. F. (2007). Distribution of D-glucosamine moieties in heterogeneously deacetylated cuttlefish chitin. Carbohyd. Polym. 69: 382-390
- No, H. K., Lee, K. S. and Meyers, S. P. (2000). Correlation between physicochemical characteristics and binding capacities of chitosan products. J. Food Sci. 65(7): 1134-1137
- Nwe, N., Chandrkrachang, S., Stevens, W. F., Maw, T., Tan, T. K., Khor, E. and Wong, S.M. (2002). Production of fungal chitosan by solid state and submerged fermentation. Carbohyd. Polym. 49: 235-237
- Ojagh, S.M., Rezaei, M., Razavi, S.H. and Hosseini, S.M.H. (2010). Effect of chitosan coatings enriched with cinnamon oil on the quality of refrigerated rainbow trout. Food Chem. 120: 193-198
- Prasad, M. M., Khasim, D. I., Basu, S. and Gupta, S. S. (1990). Proximate chemical composition and occurrence of some pathogenic bacteria in frozen fish from upper east coast of India. In: Proceedings of the first workshop on scientific results of FORV Sagar Sampada. Pp441-444, Central Marine Fisheries Research Institute, Cochin

- Shahidi, F., Arachchi, J. K. V. and Jeon, Y. J. (1999). Food applications of chitin and chitosans. Trends Food Sci. Technol. 10(2): 37-51
- Soares, N. M. F., Oliveira, M. S. G. and Vicente, A. A. (2015). Effects of glazing and chitosan-based coating application on frozen salmon preservation during sixmonth storage in industrial freezing chambers. LWT-Food Sci. Technol. 61: 524-531
- Sudarshan, N. R., Hoover, D. G. and Knorr, D. (1992). Antibacterial action of chitosan. Food Biotechnol. 6: 257-272
- Tsiligianni, M., Papavergou, E., Soultos, N., Magra, T. and Savvaidis, I.N. (2012). Effect of chitosan treatments on quality parameters of fresh refrigerated swordfish (*Xiphias gladius*) steaks stored in air and under vacuum conditions. Int. J. Food Microbiol. 159: 101-106
- USFDA. (2001). Bacteriological Analytical Manual. 8th Ed. (Revision A), AOAC International, Gaithersburg, MD
- Vasconez, M. B., Flores, S. K., Campos, C. A., Alvarado, J. and Gerschenson, L. N. (2009). Antimicrobial activity and physical properties of chitosan–tapioca starch based edible films and coatings. Food Res. Int. 42: 762-769
- VandeVord, P. J., Matthew, H. W. T., DeSilva, S. P., Mayton, L., Wu, B. and Wooley, P. H. (2002). Evaluation of the biocompatibility of a chitosan scaffold in mice. J. Biomed. Mater. Res. 59: 585-590