DETERMINATION OF THRESHOLD CURRENT DENSITIES FOR DIFFERENT REACTIONS OF FISHES USING A PANTOSTAT

K. P. BISWAS
Directorate of Fisheries, Dry Dock, Cuttack-7, Orissa.

The threshold current densities required for first reaction, galvanotaxis and galvanonarcosis of fish depended upon species, length of the body, conductivity of water, nature of current and frequency of impulses. The threshold values and their ratios decreased with increase in length of fish. With rise in conductivity of water in the ratio of 1:4:13, these values increased in the ratio 1:2:5. Impulse D. C was superior to continuous D. C and the threshold values of current densities for different reactions of fish decreased with rise in impulse frequency reaching minimum at an impulse frequency of 48/sec. Among Salmo irideus, Idus melanotus and Cyprinus carpio, the first one was affected earlier and required minimum current densities to exhibit the reactions, while the last one showed similar reactions only at higher current densities.

Introduction

Techniques of electrofishing have aroused great interest in many fishing countries during the last decade. Impulse currents which have a considerably greater physiological effect on living organisms than A. C and D. C and which have been used in electric shock therapy for a long time, were introduced into electrical fishing by the German Scientists Denzer and Kreutzer after the second world war. The first step of the problem was to study how the fish behaved in different forms of electric current. Houston (1949) observed

that pulsating current of triangular wave shape with sharp rise and gradual fall caused fishes to place themselves with heads pointing towards the increasing potential. Groody et al (1952) found that saw-tooth-shaped pulses of 133 milliseconds (ms) repeated 5 times a second were effective on sardines. Kuroki (1952) observed an increase in mean value of electric current intensity with rise of frequency in the case of Carassius auratus. The observations of Norman (1954) did not agree with those of Kuroki in that a pulse frequency as high as 60 to 80 per

second reduced the average optimal current density to 50% of the amount required at a frequency of 5 per second. Hosel (1955) however confirmed the findings of Norman and stated that impulses of short duration reduced the power requirement considerably.

This paper is the first of a series dealing with studies on the effect of electrical field on the behaviour of S. irideus, C. carpio and I. melanotus, which have been carried out in the laboratory of Landesanstalt fur Fischerei, West Germany, with the aim of obtaining threshold current densities and impulse frequencies for directional swimming of fish.

MATERIALS AND METHODS

A wooden trough 200 cm x 54 cm x 25 cm placed on a tubular stand was used as experimental tank. To the breadthwise ends of the tank zinc plates, 54 cm x 25 cm were attached vertically which served as electrodes. The tank was filled with water to a depth of 10 cm to form a homogeneous electrical field between the electrodes which were then connected to the A.C. The pantostat 523 (Fig 1), an electronic impulse transmitter of 60 W capacity, produced continuous D. C and impulse D. C of variable frequencies. voltmeter connected in parallel to the terminals of electrodes indicated the potentital difference between them. The amount of current drained was recorded by a milliamperemeter attached to the pantostat Wave form of impulse D. C was checked through a cathode ray oscilloscope. A thermometer suspended from a clamp attached to the tank recorded the temperature of the water during the experiments.

The conductivity of water was measured with Siemen's conductivity meter (Fig 2) and was expressed as Siemen's

Fig 1. Siemen's Pantostat 523

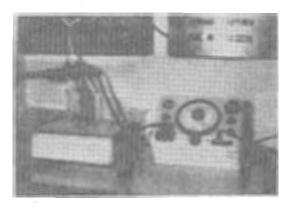
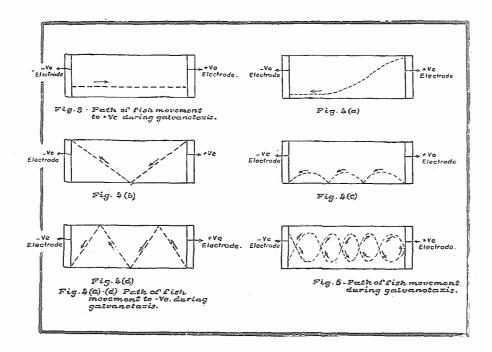



Fig 2. Siemen's conductivity meter

conductivity per cc The test fish after acclimatised being in the laboratory for 24 hrs and measured for total length, was released in the experimental tank and allowed to settle. intensity of electrical field in the tank was raised from zero till the fish exhibited increased gill movement, expansion dorsal, pectoral and caudal fins accompanied by tremour of the body and occasional jerks (first reaction). With the rise of current intensity beyond these visible reactions, a directional movement of the fish to the electrode (galvanotaxis) was observed when the fish lay parallel to the direction of the current But when the fish did not lie parallel to the direction of current, it first turned its head towards and then moved to the electrode. further rise of current intensity, the fish could no longer move out and lay on its side when the intensity reached its thre-

shold value (galvanonarcosis). The quantity of current required for these different reactions of fish and the potential drop between the electrodes were recorded. A fresh fish was used for each experiment. The conductivity of water in the tank was raised by dissolving sodium chloride. Continuous D. C and impulse D. C were used for different series of experiments.

RESULTS AND DISCUSSION

When a potential difference created between the electrodes, an electrical field was set up in the water and a current started flowing from one electrode to the other, the exact magnitude and direction of which at any point depended on the shape, location of the electrodes and the boundary conditions of the conducting medium. Since the electrodes used in these experiments were plane and parallely placed in the water at a distance of 200 cm, a uniform electric field was produced in The density of current in the the tank. electric field 8 was calculated as the current in μ A passing through a unit area of cross section. Current density was found to be the most critical factor in producing forced directional movement of fish. The visible reactions of fish in these experiments were observed in several phases with the gradual rise of current density. The first visible reactions were increased gill movement, expansion of fins and vibration of body when the fish lay parallel to the direction of current. With the inrease in current density the fish rapidly swam towards the anode when the head was facing the anode and took a straight path (Fig 3).

The fish took an elliptical path and moved violently towards the cathode during galvanotaxis when the fish head was pointed towards the negative electrodes (Fig. 4a, d). The fish in transverse position to the current direction exhibited irregular movements between the electrodes during galvanotaxis (Fig 5). With further rise of current density the fish sank to the bottom and lay on its side ceasing all voluntary Houston (loc cit) observed movements. the tendency of fish to place themselves with heads pointing towards the increasing potential. Cod and herring were observed to swim to anode when released in an electrical field (Meyer-Waarden 1952). Morgan (1953) also stated that the fish could be attracted to positive pole with interrupted D. C. Cattley (1955) described the reactions of fish in an electrical field in three definite stages which corresponded with first reaction, galvanotaxis and galvanonarcosis in the present series of experiments. The mean threshold current densities required for the three reactions in the case of *C. carpio* of various lengths at different impulse frequencies and conductivities of water are given in table 1.

In higher water conductivity, the threshold current densities for different reactions varied inversely with the length, irrespective of impulse frequencies.

The requirements of current densities for ihe three reactions in the case of S. irideus of different lengths are given in table 2.

Schemanzky (1938) observed the three reactions in *Phoximus laevis* with rise in current density, the ratio of which for these reactions have been calculated as 1:16:30 in fishes of length 36 mm. He also stated that not only the absolute current density decreased with increase in size of fish, but also the ratio of current densities for a particular reaction decreased with increase of fish size. *P. laevis* of median length 19 mm exhibited a mean ratio of current density of 1:17:25 for the three reactions while the corresponding ratio for fish of 66 mm length was 1:10:17.

Both C. carpio and S. irideus in the present experiments exhibited the three reactions with increase in current densities. The ratio of threshold current densities for these reactions were found to be 1:3:10 and 1:1:4 in C. carpio of lengths 91 mm and 230 mm, which agrees with the observations of Schemanzky (loc cit). In the case of S. irideus of lengths 140 mm and 250 mm, the corresponding ratios were 1:3:10 and 1:2:5. Groody et al (loc cit)

Table I Threshold current densities for different reactions of C. Carpio in relation to its body length

Length No. of Mean threshold current Length fishes in mm used lst Galvano- Galva reaction taxis narce	osis 5°C
in mm used reaction taxis narco	osis 5°C
Impulse D. C: 34/sec. water temp: 10.	
Siemen's conductivity of water 2x10-4	/cc.
91 3 .008 .023 .06	7
94 4 .0085 .0305 .07	3
95 5 .01 .024 .05	4
96 2 .013 .025 .05	
100 6 .008 .024 .05	
242 4 .005 .015 .03	7
247 8 .006 .015 .03	
250 5 .004 .015 .03	6
Impulse D. C: 25/sec. water temp: 1 conductivity: 2x10-4/cc.	5°C
91 7 .045 .125 .19	2
92 4 .042 .086 .16	
93 5 .04 .096 .15	
94 6 .04 .089 .17	
95 4 .03 .077 .16	6
98 4 .029 .067 .16	3
100 5 .025 .067 .19	2
241 3 .009 .029 .11	
242 4 .009 .025 .07	7
245 6 .008 .03 .08	б
248 4 .008 .025 .08	6
250 5 .006 .025 .05	7
Impulse D. C: 34/sec. water temp. 10. conductivity: 8x10-4/cc	5°C
94 3 .029 .077 .07	
95 6 .027 .077 .07	
100 7 .028 .077 ,07	7
241 6 .019 .042 .07	1
250 12 .017 .038 .06	1
Impulse D. C: 25/sec. water temp: 10. conductivity: 8x10-4/cc.	5°C
91 4 .059 .121 .12	1
94 5 .052 .125 .12	
95 6 .05 .125 .12	
100 5 .05 .106 .10	
224 7 .035 .086 .16	
230 8 .027 .055 .15	

Table II Threshold current density for different reactions of *S. irideus* in relation to its body length.

Impulse D. C: 5/sec. water temp: 20.5°C Siemen's conductivity of water: 2x10⁻⁴/cc.

Length	No. of	Mean threshold current density infor						
in mm	fishes used	lst reaction	Galvano- taxis	Galvano- narcosis				
140	6	.006	.016	.016				
141	8	.009	.015	.052				
142	7	.006	.011	.044				
151	5	.006	.011	.042				
152	4	.008	.015	.036				
155	5	.006	.013	.036				
157	7	.006	.011	.029				
158	5	.004	.008	.029				
220	6	.006	.008	.023				
223	7	.008	.008	.023				
226	5	.006	.008	.019				
230	6	.006	.008	.019				
241	4	.004	.008	.017				
242	5	.004	.008	.017				
247	6	.004	.006	.017				
250	8	.003	.005	.015				

observed that the current density required to produce directional swimming in Pacific sardines varied inversely with the size of fish. Norman and Laukashkin (1954) noticed that optimal average current density required for galvanotaxis and control of movements of Sardinops cacrulea increased with decrease in length of fish. This observation was confirmed by Meyer-Waarden (loc cit) and Miyake and Steiger (1957). The latter indicated that peak current requirements for electrotaxis of Kuhlia sandvicensis decreased with increase in length in a pulsed direct current of square wave form. According to Harris (1953) water resistivity has a very great effect on the current density required for producing electrotaxis and paralysis.

Experiments with S. irideus were conducted in different water conductivities and the results are presented in table 3.

It is seen from the table that threshold current densities required to exhibit a specific reaction by this fish increased with the increase in conductivity of water, irrespective of size of fish. Though the optimum current density for a particular reaction varied directly with the increase in conductivity of water, their ratios in waters of different conductivities remained constant viz; 1:2:5. Meyer-Waarden (loc cit) stated that the effect of electrical field on fish was greatly dependent on conductivity of water mass.

TABLE III THRESHOLD CURRENT DENSITIES FOR DIFFERENT REACTIONS OF S. irideus in relation to Different sizes and water conductivities

		Wat	er temper	ature: 1	7°C	Impul	se D. C:5	/sec.		
Size in mm	No. of	F	irst reactio			d current densities required for Galvanotaxis Galvanonaicosis				osis
	fish	A	В	C	Α	В	\mathbb{C}	\mathbb{A}^{n}	В	C
121-130	30	0.014	0.029		0.020	0 051		0.041	0 074	
131-140	17	0.010	0 019		0.013	0 031		0 030	0 0 5 0	-
141-150	47	0.011	0 019	0 042	0.017	0.036	0 090	0 049	0 089	0.385
151-160	46	0 008	0 017	0 029	0.015	0.037	0.072	0 050	0 094	22
161-170	41	0.006	0 014	0.027	0 013	0 031	0 065	0 046	0.074	0.382
171 - 180	34	9.9	0.011	,,	0.012	0 025	••	0.045	0.071	2 2
181-190	31	99	0.014	99	9 9	0 028	0.064	0.049	0.084	0.381
191-200	36	0.004	, 9	99	9 9	0.026	9.9	0.057	0.072	0.374
201-210	34	0.003	0.009	0.025	0.010	0.025	0.061	99	0.076	0.372

A: Siemen's conductivity: $2.0x10^{-4}/cc$, B: $7.6x10^{-4}/cc$, C: $26.0x10^{-4}/cc$.

The optimum current densities required for first reaction, galvanotaxis and galvanonarcosis of I.melanotus and C. carpio of different lengths are shown in table 4. The threshold current densities for different reactions increased with rise in conductivity of water irrespective of impulse frequencies in both cases. Houston (loc cit) and Meyer-Waarden (1953) reported that impulse current has greater physiological effects on fishes than ordinary A. C and continuous D. C. Morgan (loc cit) confirmed the superiority of interrupted D. C over continuous D. C not only with respect to increased electrotactic and electronarcotic effects on fishes but also due to attraction of the fish to the positive pole.

Optimum current densities required for exhibiting the first reaction in the case of S. irideus of different lengths in continuous D. C, impulse D. E of different frequencies and at different conductivities of water are shown in table 5.

The corresponding values required for galvanotaxis and galvanonarcosis are shown in tables 6 and 7 respectively.

These values not only prove the superiority of impulse D. C over continuous D. C but also show the reduction in the requirement of electric power with the former.

Houston (loc cit), using impulse D. C of triangular wave shape having frequencies of 2 to 20 pulses per second with impulse duration of 2 ms, could regulate the size and type of fishes caught by varying the pulse rates. Best effect was obtained by Kreutzer (loc cit) with impulse current of sudden increase and slow decrease and duration of 2 ms, when small fishes showed best results with 20 shocks per second and larger fishes with 2 shocks per second.

In the present studies, impulse D. C of square wave form having frequencies between 26 and 48 per second with varying impulse duration from 1 to 18 ms and

TABLE IV THRESHOLD CURRENT DENSITIES FOR DIFFERENT REACTIONS OF 1. melanotus and C. carpio in relation to different water conductivities

	Water t	emperature: 16	5°C	Name of fish: I melanotus					
Size in mm	No. of fish			Mean threshold curre First reaction Galv A B A		t densities otaxis B	required Galvanos A		
171-180 181-190 191-200 171-180 181-190 191-200 171-180 181-190 191-200	18 19 21 17 16 15 21 21	38 ,, 26 ,, 25	0-008 0,008 0-006 0:029 0.021 0:019 0.029 0.021	0.021 0.021 0.017 0.033 0.025 0.023 0.040 0.025 0.023	0 015 0 015 0 015 0 035 0 033 0 029 0 035 0 033	0 046 0.038 0.035 0 059 0.057 0 042 0.067 0.059 0.057	0 027 0 023 0 021 0 083 0.065 0.061 0 096 0.077 0.065	0 063 0 059 0.055 0 117 0 115 0 086 0.132 0.115	
		N	ame of fis	h: C. ca	arpio		:		
91-100 241-250 91-100 241-150	18 19 18 19	38 25	0.009 0 006 0.031 0.013	0.019 0.073 0.044	0 027 0 015 0.085 0.033	0.071 0:036 0.123 0.100	0 057 0 042 0 179 0 092	0 075 0 069 0 157 0.125	

A: Siemen's conductivity 2x10-4/cc B: ,, , , 8x ,,

Table V Threshold current densities required for first reation in S. irideus in relation to type of current, impulse frequency and water conductivity

Water temp: 16°C Pause duration: 20 ms Siemen's conductivity: 2x10-4/cc

Size in	American Company Comment (1998) and the contract (1998	Mean thr	eshold cur				for 1st	reaction
	No. of fish		j	n D.C and	l impluse	currents		
mm		$\mathbb{D}.\mathbb{C}$	I	II	III	\mathbb{IV}	\mathbb{V}	VI
111-120	21	0.048	0.0008	0.006	0.009	0.012	0.015	0.019
121-130	18	0.046	0.0006	0.005	0.008	0.010	0.014	0.019
131-140	19	0 044	7 9	0.004	,,	9 9	0.011	0.017
141-150	21	0.042	0.0004	0.002	0.006	0.009	,,,	0.016
151-160	19	9 🤊	9 9	. 99	99	9 9	0.010	0.015
161-170	19	0.040	99	99	0.004	0.008	99	9.9
171-180	21	59	,,	0.001	99	99	0.008	0.014
181-190	21	0.039	99	,,	9 9	0.006	9 9	0.012
		Sieme	n's conduc	tivity: 7.5	x10-4/cc			
121-130	16				0.019	0.021	0.024	
131-140	18				99	0.019	0.021	
141-150	19				0.017	0.017	0.019	
151-160	15				0 012	0.012	99	
161-170	16				99	99	0.018	
171-180	21				0.011	0.011	0.016	
181-190	13				0.010	99	0.013	
191-200	13				0.009	0.010	9 9	
201-210	15				9 9	0.009	0.009	

Table VI Threshold current densities required for galvanotaxis in S. irideus in relation to type of current, impulse frequency and water conductivity.

Wate	r temp: 16°C	Pause d	uration: 2	0 ms S	Siemen's c	onductivit	y:2x10-4	¹/cc	
Size in	D I	Mean th	Mean threshold current densities in 8 required for galvanotas						
mm	No. of fish	D 0				se currents			
	•	D.C	. I	II	III	\mathbb{IV}	\mathbb{V}	VI	
111-120	21	0.153	0.002	0.015	0.018	0.021	0.025	0.046	
121-130	18	0.110	99	99	,,	99	0.024	99	
131-140	19	0.100	,,	0.012	9.4			0.036	
141-150	21	0.096	0.001	99	0.014	0.019	0 023		
151-160	19	0.086	,,	0.011	222	0.017	0.019	0.031	
161-170	19	0.055	9 9	,,	0.013	0.015	0.017	0.030	
171-180	21	0.046	0.0008	9 9	0.012	0.014	0.015	0.027	
181-190	21	0.044	0 0006	0.010	0.011	0.013	0.014	0.023	
		Siemen'	's conduct	ivity: 7.6	5x10-4/cc)		-	
121-130	16				0.027	0.029	0.046		
131 - 140	18				9 9	99	99		
141-150	19				0.021	0.027	0.042		
151-160	15				99	9 9	25		
161-170	16				$0.0\hat{1}9$	0.025	0.041		
171-180	21				9 0	99	0.036		
181-190	14				0.018	0.024	0.029		
191–200	13				0,017	0.023	0.027		
201–210	15				0.017	0.021	0.025		
I : 4	8 impulses/sec	for 1 ms	IV		impulses/:		ms		
II : 4		3 ,,	\mathbb{V}		9 9	₉ , 12	,,		
III : 3	8 ", ",	6,,	VI	: 26	• •	12	9.5		

Table VII Threshold current densities required for galvanonarcosis in S. irideus in relation to type of current, impulse frequency and water conductivity.

Water	temp: 16°C	Pause du	Pause duration: 20 ms Siemen's conductivity: 2x10-4/cc.						
Size in mm	No. of fish	N	Mean threshold current densities in δ required f galvanonarcosis in D.C. and impulse currents						
844 178 8		D.C	I	II	III	IV	\mathbb{V}	VI	
111-120	21	0.163	0.013	0.019	0.031	0.038	0.050	0.057	
121-130	18	0.153	0.012	0.017	0.030	,,	,,	,,	
131-140	19	,,	0.009	0.015	0.029	0.037	0.047	0.056	
141-150	21	0.150	,,	. ,,	0.027	,,	,,	5 9	
151-160	19	0.144	0.008	0.014	99	9 9	0.044	. 99	
161-170	19	0.136	0.007	0.013	0.025	0.036	0.042	0.055	
171-180	21	0.121	99	99	0.024	9 0	0.040	9.9	
181-190	21	0 110	0.006	0.010	0.023	99	0.038	0.050	
		Siemen	's conduc	tivity: 7	.6x10-4/cc	;			
121-130	16				0.057	0.077	0.11		
131-140	18				0.055	9 9	0.098		
141-150	19				0.054	0.076	0.096		
151-160	15				0.052	0.075	0.094		
161-170	16				0.050	0.074	0.092		
171-180	21				0.048	2 2	,,		
181-190	14				0.046	0.067	0.090		
191-200	13				9.9	0.057	0.067		
201-210	15				9 9	93	9 7		
I : 4	48 impulses/se	c for 1 ms	IV	V : 34	impulses/	sec for 9	ms		
II :	43 ,,	,, 3,,	I	7 : 31	9 9	,, 12	,,		
III : 3	3.8	,, 6,,	\mathbb{V}	I : 26	• •	,, 18	5 9 ·		

constant pause duration of 20 ms was used. The optimum current densities required for the three reactions of S. irideus were found to vary inversely with rise of impulse frequency (Tables 5 to 7). observing the behaviour of Carassius arratus under the influence of shocks. it frequency electric noticed that the mean value of electric current intensity increased with the increase of frequency of impulses. Kreutzer and Peglow (1951) found that a square wave pulse of 2 ms repeated 50 times a second is very effective on cod and herring, Groody et al (loc cit) observed the effectiveness of saw-tooth-shaped pulses of 133 ms repeated 5 times a second on sardines.

The threshold current densities re-

quired for first reaction in 1. Melanotus of different lengths increased with decrease of impulse frequencies in water having conductivity of 2 x 10⁻⁴/cc. In a higher conductivity of 7.6 x 10⁻⁴/cc, the values rose with decrease of Impulse frequencies in fishes of similar size grades. The threshold values of current densities for the second and third reactions varied inversely with the rise of impulse frequency irrespective of size of fishes and conductivity of water. These results are shown in table 8.

Morgan (loc cit) observed that the peak current value reached during a pulse was an important factor influencing the response of fish to the current. The present series of experiments were aimed at determining the minimum peak current

Table VIII Threshold current densities required for the reactions in I melanotus in relation to impulse frequency and water conductivity

	W	ater temp	o: 16°C]	Pause dur	ation: 20 m	ıs	Siemen	s conductiv	ity: 2x10	$0^{-4}/cc$		
Size	No. of		Mean threshold current density in 8 for 1st reaction			Mean threshold current density in 8 for galvanotaxis			Mean threshold current density in 8 for galvanonarcosis				
in mm	11511	A	В	C	D	A	В	C	D	Α	В	C	D
161—170	25	0.006	0.009	0.029	0.029	0.012	0.042	0.042	0.042	0.021	0.027	0.083	0.096
171—180	24	,,	0.008	0.021	0.021	0.011	0 015	0.035	0.040	0.019	0.023	0.065	0.077
181-190	18	,,	,,	**	9 9	,,	0.014	,,	0.035	0,017	0.021	,,	0.065
191-200	21	0.005	0.006	0.019	0.020	0.010	0.013	0.029	9 9	,,	,,	0.061	,,
					Siemen's	conductivit	y: 7.6x1	0-4/cc		-			
161-170	22	0.021	0.023	0.033	0.046	0.046	0 053	0.053	0.059	0.086	0.063	0.117	0.155
171-180	20	0.020	, ,	0.030	0.040	0.042	0.050	0.057	0.083	0.060	0.092	0.115	0.132
181–190	18	0.017	0 021	0.025	0.038	0.040	0.046	0.055	0.080	0.059	0.086	0 110	0.130
191–200	16	> 9	0.017	0.023	0.025	0.035	0.038	0.042	0.067	0.055	0.084	0.086	0.106
A: 34 imp	A: 34 impulses/sec for 9 ms B				es/sec for	12 ms C	: 26 im	oulses/sec	c for 18 ms	D:2	5 impuls	es/sec for	r 20 ms

Table IX Threshold current densities required for reactions in relation to species and conductivity

Impulse duration 20 ms

Impulse frequency: 25/sec.

Pause duration: 20 ms

				Siemen's co	nductivity	$: 2x10^{-4}/cc$				
Size	No. of		Mean threshold current density in 8 for 1st reaction			eshold curre for galvano		Mean threshold current density in δ for galvanonarcosis		
in mm	fish	Ι	II	111	I	II	III	I	II	III
161-170	24	0.015	0.029	0 030	0.030	0 042	0.058	0.055	0.096	0.115
171-180	18	0.014	0.021	0.029	0.027	0.040	0.056	9 9	0.077	0.110
181-190	21	0.012	**	0.028	0.023	0.035	0.055	0.050	0.065	0.100
191-200	24	0.010	0.020	99	0 025	9)	0.050	,,	3 9	,,
			4,3-4,	Siemen's con	ductivity	: 8x10-4/cc				
161-170	18		0.046	0 059		0.086	0.110	-	0.155	0.157
171-180	15		0.040	0.058		0.083	0.100		0.132	0.145
181-190	12		0.038	0.055		0.080	0.095		0.130	0.140
191-200	12		0.025	0.050		0.067	0.090		0.106	0.135
I:/	irideus	II : 1. me	lanotus	III : C. carpic						

Water temp: 16°C

value required by fishes to exhibit different reactions in electric field. Norman (loc cit) while describing the behaviour of sardine in electric field, observed that any frequency of current pulsation from 2 to 80 per second can have full control over fish movement in directional swimming. A pulse frequency as high as 60 to 80 per second reduces the average optimal current density to 50% of the amount required at a frequency of 5 per second. Hosl (loc cit) observed that impulse current of 1 ms duration and interruption of 9 ms has greater physiological effect on fish than D. C or A. C of 50 c/s.

The threshold current densities required for the three reactions in *S. irideus I.melanotus* and *C.carpio* of different lengths at two different water conductivities are shown in table 9.

The values for S. irideus were the minimum and those for C. carpio the maximum which was in conformity with the observation of Meyer-Waarden (loc cit) who found that these values were specific for species and size of fish.

CONCLUSIONS

The first reaction, galvanotaxis and galvanonarcosis in fishes occur only when the current density in the surrounding field has reached a specific value dependent on length of fishes, conductivity of water, nature of current, impulse frequency and variety of fishes. It is found in S. irideus and C. carpio that the values of optimum current densities vary inversely with length of the fish. The mean ratio of current densities required for different reactions of C. carpio and S. irideus decreases with increase of fish length, decreasing from 1:3:10 in S. irideus of 140 mm length to 1:2:5 in the same fish of 250 mm length. The current densities increase with rise in conductivity of water. Impulse D. C is more effective than continuous D. C. The

values decrease with increase of impulse frequencies reaching a minimum at 48 impulses per second in water conductivity of $2 \times 10^{-4}/\text{cc}$. In higher conductivities the threshold values decreased with increase in impulse frequencies. The values are also specific for different species of fish.

ACKNOWLEDGEMENTS

The author gratefully acknowledges his indebtedness to Dr. H. W. Denzer, Director, State Institute of Fisheries, Al Baum, West Germany, for his advice and all possible help for conducting these studies in his institute.

REFERENCES

- Cattley J. G., 1955, World Fishing, 4 (3). Groody, T. Loukashkin, A and Grant, N., 1952, Proc, Cal. Acad. Sci. 27, 311-323.
- Harris, V. E. 1953, Atlantic Fisherman 34 (1), 13.
- Hosl, A. 1955, Der Fischwirt, 5 (8), 235.
- Houston, R. B. 1949, U. S. Dept. of Interior, Fish and Wildl. Serv. Fishery Leaflet, No. 348, 1-4.
- Kreutzer, C. 1951, Fischereiwelt, 3 (10), 160-161.
- —— and Peglow, H. 1949, Fish graz, N. Y. 66, 52 & 79.
- Kuroki, T. 1952, Jap. Soc. of Sci. Fish. 18 (1) 25.
- Meyer-Waarden, P. F. 1952, Fishereiwelt, 4 (5), 73-74.
- _____, 1953, Der Fischwirt, Nr. 7.
- _____, 1954, Ibid. Nr. 6.
- ______, 1955, Elektronik, 4 (7).
- _____, 1957, F. A. O study no. 7.
- Miyake, I and Steiger, W. R. 1957, Spec. sci. Rep. fish. Nr. 233.
- Morgan, M. F. 1953, Pacific. sci. 7 (4), 482-492.
- Norman, Gand Loukashkin, A. S. 1954, Proc. of the Calif Acad of sci. 28 (6), 328.