SEASONAL VARIATIONS OF BACTERIAL FLORA OF FRESH OIL SARDINES (Sardinella longiceps)

T. C. KARTHIAYANI AND K. MAHADEVA IYER

Central Institute of Fisheries Technology, Ernakulam, Cochin-II

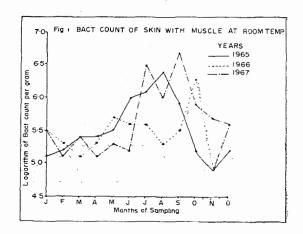
An elaborate study was made on the qualitative and quantitative seasonal variations in the bacterial flora of fresh oil sardines and their biochemical reactions. It was observed that the total bacterial loads and their phosphorescent and biochemical characters were influenced by changes in seasons. During monsoon season total bacterial count was high. Mesophiles predominated during summer, but phosphorescent bacteria were less. Winter favoured the selection of biochemically less active groups of bacteria.

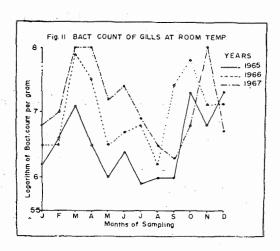
INTRODUCTION

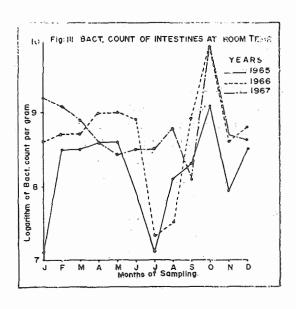
Qualitatively, the bacterial flora of marine environments in different parts of the world show some differences. Much work has not been done on the effect of seasonal and environmental differences on the bacterial flora of fish. (1966) has reported some quantitative and qualitative variations in the bacterial flora of North Sea fish, depending upon season. The Food Investigation Board (1950) has reported that luminiscent bacteria present in the slime of halibut in appreciable numbers from April to October. Preliminary experiments with oil sardines in this laboratory for a period of one year had suggested seasonal variations in the quantitative and qualitative pattern of bacterial flora. Bacterial counts of the skin with muscle recorded high peaks during the months of June and September and those of intestine in June and October (Karthiayani and Iyer, 1967). Also, the microorganisms present were found to be biochemically less active during December and January. The present study was undertaken to obtain more information regarding the effect of seasons upon the bacterial flora of oil sardines caught off Cochin.

MATERIALS AND METHODS

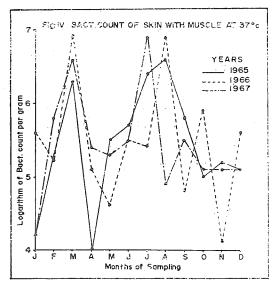
Studies were carried out for three years. Fresh oil sardines caught off Cochin were transferred to sterile bottles and brought to the laboratory without delay. Skin with muscle, gills and intestines were pour plated with sea water agar. The plates were incubated at room temperature (30°C) and at 37°C for 48 hours and total

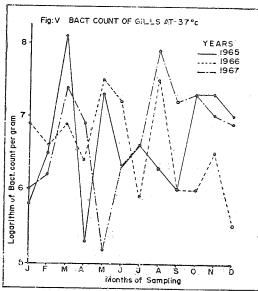

plate counts were taken. The counts of luminiscent bacteria were taken in a dark room.


Bacterial colonies were picked at random from plates incubated at room temperature and transferred to sea water peptone. Biochemical characteristics of the organisms, like reduction of nitrate to nitrite, gelatin liquefaction, indole production, acid and gas production from glucose, lactose, sucrose, mannitol and maltose were studied.


RESULTS AND DISCUSSION

Figures I, II and III respectively represent the logarithms of total bacterial counts of skin with muscle, gills and intestines at room temperature for three years. Peak values are obtained during July-October for skin with muscle, March-April and September-November for gills and October for intestines. Georgala (1958) reported such high peaks in June and October for the counts of skin for North Sea cod. The higher bacterial counts during the July-October season may be attributed to the effect of monsoon.


Figures IV, V and VI represent the logarithms of total bacterial counts of skin with muscle, gills and intestines respectively at 37°C for three years. Peak values are obtained during March and July-August for skin with muscle, March-May and August-November for gills and March-April and October for intestines. Peak values during July-August, August-November and in October may be attributed to the fact that peak values for total bacterial counts at room temperature were also obtained during the above seasons. The common peak values for skin with muscle, gills and intestines during March show the presence of greater numbers of mesophiles. This may be due to the effect of summer.



Tables I, II and III represent the total phosphorescent bacterial counts on skin with muscle, gills and intestines respectively for three years. From the data it is evident that phosphorescent

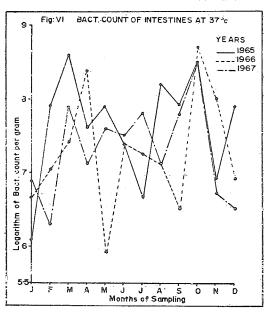


Table I Total count of phosphorescent bacteria on skin with muscle for three years.

	Bacte	rial counts	per gram.		
Months of	Year	Year	Year		
sampling	1965	1966	1967		
January	0	1.2x10 ³	9.0x103		
February	0	1.8x103	0		
March	0	0	0		
April	0	0	0		
May	0	0	0		
June	0	0	0		
July	0	3.0x10 ²	0		
August	I.4x104	0	0		
September	0	0	7.0x103		
October	1.1x104	2.1×104	0		
November	1.7x10 ³	0	0		
December	4.1x104	1.0x103	1.2x103		

Table II Total count of phosphorescent bacteria on gills for three years

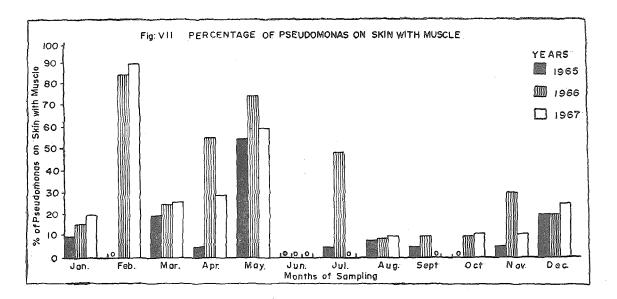
	Bacte	per gram.				
Months of	Year	Year	Year			
sampling	1965	1966	1967			
January	9.0x104	3.0x104	1.5x104			
February	1.1x105	1.2x104	0			
March	0	1.5x105	0			
April	0	0	0			
May	0	0	0			
June	0	0	0			
July	0	$4.0x10^{4}$	0			
August	8.3x105	0	0			
September	$6.0x10^{5}$	2.0x104	0			
October	0	3.2x104	0			
November	0	0	0			
December	6.0x105	1.1x10 ⁵	3.8x106			

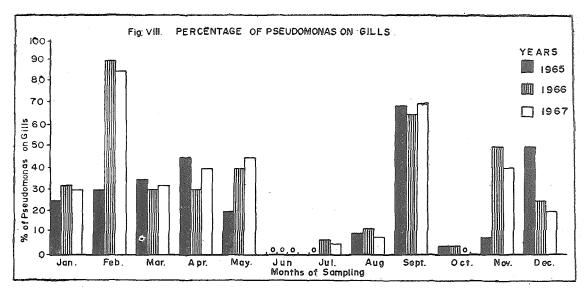
bacteria are not present on skin with muscle during March to June and on gills from April to June. In the case of intestines, phosphorescent bacteria are present almost throughout the year and peak values are obtained during July to October. The absence of phosphorescent bacteria on skin with muscle and gills from March to June may be due to the

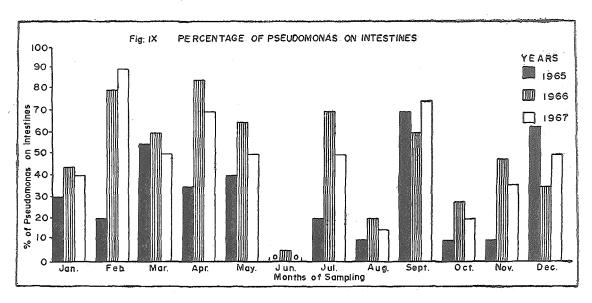
Table III Total count of phosporescent bacteria on intestines for three years

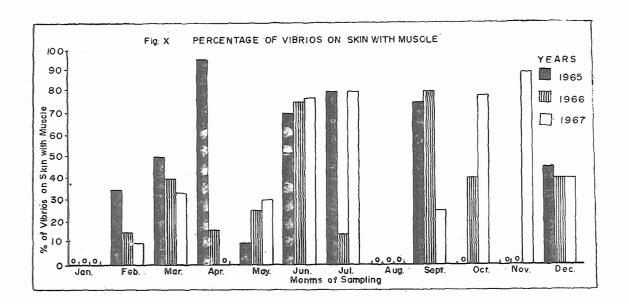
	Bacter	per gram				
Months of	Year	Year	Year			
sampling	1965	1966	1967			
January	0	1.9x106	7.0x105			
February	4.5x106	1.7x107	2.0x105			
March	1.8x104	2.8x104	. 0			
April	0	2.0x104	4.2x103			
May	1.2×10^{4}	4.1x104	9.0x104			
June	1.8x10 ³	1.2x104	6.8x104			
July	4.0x105	1.3x106	2.1x107			
August	2.7x106	1.7x106	2.0x107			
September	5.0x107	1.5×10^{7}	1.0x107			
October	1.4x107	2.0x10s	3.1x105			
November	1.5x105	8.3x106	5.8x106			
December	2.0x106	1.5x107	5.0x106			

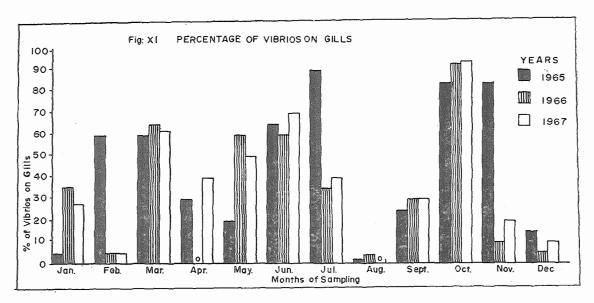
fact that phosphorescent character of bacteria is lost by the high temperature of the season. This is supported by our finding that phosphorescent cultures lost that character when grown at 37°C and also by the lesser phosphorescent bacterial counts on plates incubated at 37°C. The presence of phosphorescent bacteria on intestines from March to June may be due to the fact that complete destruction of phosphore cent bacteria is not effected because of the high initial load.

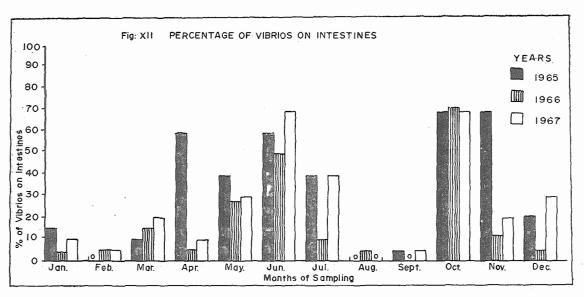

Figures VII, VIII and IX represent the percentages of Pseudomonas present on skin with muscle, gills and intestines respectively for three years. High percentages are obtained during May for skin with muscle, during September for gills and during March and September for intestines. Figures X, Xl and XII show the percentages of Vibrios present on skin with muscle, gills and intestines, respectively for three years Vibrios predominate in June in the case of skin with muscle, in March and June in the case of gills and in June and October in the case of intestines. Figures XIII, XIV and XV show the percentages of Achromobacters present on skin with muscle, gills and intestines respectively for three years. Peak values are obtained during August for skin with muscle, gills and intestines. Generally, Pseudomonas and Vibrios predominate almost during the same seasons of the year, viz, the summer and the end of monsoon, whereas Achromobacters are present in great numbers only during August, the end of monsoon.

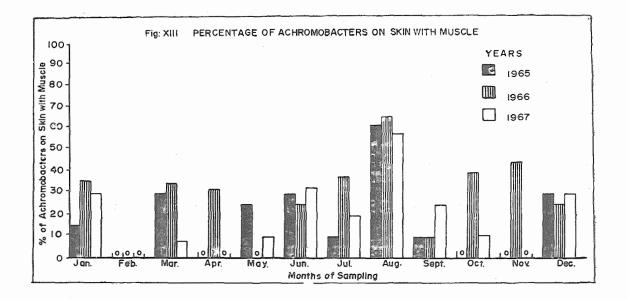

The percentages of bacteria present on skin with muscle, gills and intestines respectively giving particular biochemical reactions are shown in tables IV, V & VI. The results show that among the isolates from the skin with muscle, nitrate-reducers and acid producers from glucose, sucrose, mannitol and maltose were less during January. In the case of the isolates from gills, much variations with season in the biochemical reactions were not noticed, The isolates from intestines were less active biochemically towards sugars in January.

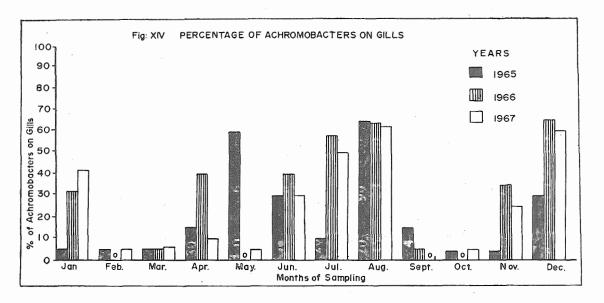

The presence of biochemically less active groups during December and January may be attributed to the low temperature of the winter. This, combined with our observation that the isolates from plates incubated at low temperature were biochemically less active than those from plates incubated at room temperature (unpublished data), shows that low temperature favours the preponderance of biochemically less active groups of bacteria.

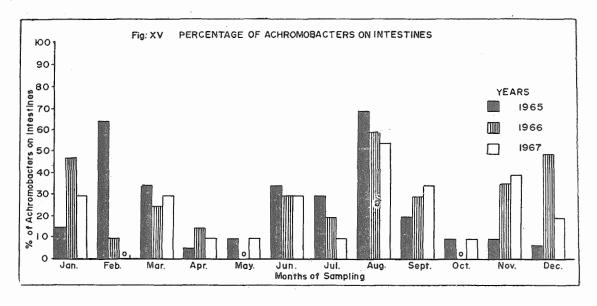

Conclusion


Season has a definite role in determining not only the population of the bacteria present on marine fish, but also on the preponderance of the different genera of bacteria and their phosphorescent and biochemical characters. Generally, monsoon season favours the presence of greater numbers of bacteria. Though









Months Biochemical reactions Years S A O D Ĵ F M A M Jn Ju M Nitrate reduction Glucose Lactose Acid production in Sucrose Mannitol Maltose Gelatin liquefaction

TABLE IV PERCENTAGES OF MICRO-ORGANISMS FROM SKIN WITH MUSCH GIVING POSITIVE REACTIONS

Indole production

TABLE V PERCENTAGES OF MICRO-ORGANISMS FROM GILLS GIVING POSITIVE REACTIONS

				N	Aonths.		Springer, and Marian A.							
Biochemical Reaction	on	Years	J	F	M	A	\mathbf{M}	Jn	Ju	Α	S	O	N	D
		1965	100	100	90	8.5	100	88	100	60	70	60	80	100
Nitrats reduction		1966	90	80	70	80	95	60	85	50	80	100	90	88
		1967	75	95	80	60	88	70	7.5	100	7.5	40	70	92
	ſ	1965	32	5	80	20	9.0	88	40	7.0	60	80	100	70
	Glucose	1966	20	90	100	50	100	65	100	85	95	85	90	55
		1967	30	0	90	70	80	80	100	100	80,	50	75	80
	}	1965	.0	15	0	.0	0	2	0	0	0	10	0	0
	Lactose	1966	0	6	8	0	4	0	0	4	0	8 2	0	6
	İ	1967	0	4	2	0	0	1.0	0	6	0	2	0	0
		1965	48	8	80	25	88	80	45	70	60	80	75	95
Acid production in -	Sucrose	1966	40	86	98	50	95	60	85	50	65	90	70	85
		1967	20	10	90	80	75	75	100	80	70	60	80	60
		1965	16	0	60	30	70	96	45	50	100	100	70	60
	Mannitol	1966	20	90	50	20	75	70	100	70	88	90	60	50
		1967	15	20	70	50	80	80	80	60	65	50	80	40
		1965	4	10	50	25	90	88	45	7.0	70	100	80	95
	Meltose	1966	6	95	100	50	95	60	75	50	80	95	80	85
	j	1967	10	8	90	70	80	80	100	80	80	50	70	70
Gelatin liquefaction		1965	4.5	85	100	60	60	88	100	100	60	55	75	60
		1966	40	80	90	50	75	70	95	50	70	92	90	40
Jejann ilquoiaction		1967	30	72	75	70	80	66	90	70	8,0	90	80	50
Indole production		1965	48	50	70	70	68	75	5	40	40	95	60	65
		1966	40	60	80	60	60	80	85	70	50	80	40	70
		1967	28	40	85	72	40	88	60	80	90	75	100	82

TABLE VI PERCENTAGES OF MICRO-ORGANISMS FROM SKIN WITH MUSCLE GIVING POSITIVE REACTIONS

FISHERY TECHNOLOGY

mesophiles predominate in the warmer months, the numbers of phosphorescent bacteria are less. Also it is noted that during winter, biochemically less active groups of bacteria are predominating in comparison with the other seasons.

ACKNOWLEDGEMENT

The authors are greatly indebted to Dr. V. K. Pillai, Director of this Institute for his keen interest and helpful suggestions. They also thank Shri T. John of this laboratory for the technical assistance rendered during this work.

REFERENCES

- Georgala, D. L. 1958. J. Gen. Microbiol., 18, 84.
- Karthiayani, T. C. and Iyer, K. Mahadeva 1967. Fish Technol. IV (2), 89-97.
- Manual of Microbiological Methods 1957. Society of American Bacteriologists, Mc Graw-Hill Book Company.
- Report of the Food Investigation Board for the year 1950-H. M. S. O., York house, London, Food Trade Review, (1952), 22 (6), 2.
- Shewan, J. M. 1966. Guest Lectures-Supplement to Medlemblad for Den Norske Veterinerforening nr 11.