PRESERVATION OF COTTON FISH NET TWINES BY TANNING:

I. OPTIMUM CONCENTRATION OF TANNING BATH

(Smt.) P. J. CECILY AND *M. K. KUNJAPPAN
Central Institute of Fisheries Technology, Craft & Gear Wing, Cochin-5

Samples of tannin-containing preservatives used by fishermen in India for treating cotton nets were collected and qualitative and quantitative characterisation of the tannins made. The concentrations of different tannins required to impart optimum periods of preservation to the net were worked out and found to be 2% in 8 out of 10 materials studied.

INTRODUCTION

Tanning is by far the most widely adopted method of preservation for fishing net twines of vegetable origin. Migita (1943) has expressed the view that for economic treatment, a 4% solution of cutch may be used, while maximum effectiveness is afforded by a solution having 6-7% concentration. Takayama and Shimozaki (1957) used 3-4% cutch or tannin extract ln fresh or salt water for their experiments. Firth and Carlson (1949) used a 5% treating solution of cutch extract or tan bark of 5.9 kg (13 lbs) in the same weight of water. In the Philippine method, Clague and Datingaling (1950) reported the use of a 6% cutch solution while Sulit and Panganiban (1954) recommended a 5½% solution. Chubb (1954) described the

proportion used in some parts of England as 3.2 kg (7 lbs) of cutch per 45.5 l (10 imp gal) of water. The Danish method (Anon, 1956) preserved the net material in 4-5% cutch in water. von Brandt (1955) and Koura (1963) advocated a 2% cutch solution for the primary treatment and doubled the strength for retreatments. Miyamoto and Shariff (1959) used powdered dry shells of myrobolan nuts in water in the ratio of 1:3, crushed Panachikka (Diospyros embryopteris) fruit paste in 1:1 and dried bark in 1:5. Kuriyan and Nayar (1961) and Nayar and Naidu (1962) used 5% solution of the extracts of bark containing tannin and Nayar et al (1962) indicated the use of 4% solution for the preservation bath. While giving the methods of preservation of cotton net twines Kuriyan and Nayar (1963)

^{*}Present Address: Cochin Port Trust, Cochin.

recommended the use of 4-5% cutch or 15 to 20% bark in water. Although tannin preservation is quite common, the preservation methods so far conducted do not indicate the relative effectiveness of the preservative bath with respect to the tannin content and the type of tannin present in the raw material. This aspect has been given due emphasis in the present study by the authors and the results of the first series of experiments are incorporated in this paper.

MATERIALS AND METHODS

Tannin yielding materials commonly used by the fishermen along both coasts of India were collected. The materials under tests were boiled with water in the ratio of 1:10 by weight (Kuriyan and Nayar, 1961, loc cit) for one hour. The solution was then filtered and the filtrate examined for tannin content by AOAC (1960) method. Tannin content was

determined on dry weight basis in all cases except Panachikka where green fruit was used for extraction. The functional groups of tannin in the different extracts were assessed by qualitative tests characteristic of pyrogallol and catechol tannins (Nierstein, 1934; Thorpe, 1954). The outlines of the tests are presented in Table I. Table II presents the particulars of tanning material under study along with the tannin content and type of tannin analysed in the laboratory.

Preservation and method of test

Solutions of varying concentrations of tannin ranging from 1-5% were prepared. Cotton twines of specification 20s/4/3 which were previously soaked in water for 24 hours and dried were treated in the respective solution keeping the material to bath ratio as 1:10 (Kuriyan and Nayar 1963 loc cit.) The dyeing bath was boiled for half an hour

Table I Qualitative tests for identification of the functional group of tannin

Reactions		Catechol	Pyrogallol	
Ferric chloride		A deep green colouration turning red on adding sodium carbonate and violet on adding sod. acetate.	Deep blue colouration.	
2.	Bromine water	A precipitate formed.	No precipitate.	
3.	Iron alum	Greenish black precipitate	Blue black precipitate	
4.	5 ml tannin mixed with 10 ml acetic acid (10%) and 5 ml lead acetate (10%)	No precipitate	Precipitate of lead tannate, filtered, and the filtrate with a few drops of ferric alum (1%) gave bluish violet colour.	
5,	50 ml of tannin solution boiled for a few minutes with 10 ml of 40% for- maldehyde and 10 ml of HCl (1:1) and then cooled and filtered.	Tannins completely precipitated. Filtrate with 1 or 2 drops of gelatin and salt solution and 1 ml of ferric alum (1%) with the addition of 5 g of sod. actate gave no precipitate or colour.	Filtrate with 1 or 2 drops of gelatin and salt solution and 1 ml of ferric alum (1%) with the addition of 5 g of sod. acetate gave blue or violet layer at the junction of the ferric salt.	
6.	Ammonium molybdate.	Red colouration, yellow in dilute solution and destroyed on adding oxalic acid.		

Table II Particulars of tanning materials studied.

	_		_		Details of the solu	Tannia content in		
Material	Area where used	Local Name	Source of tannin	Type of tannin	Ratio of material to water		n content of material %	the solution used by fishermen
1	2	3	4	5	6	7	8	9
Terminalia chebula	Kerala	Kadukka	Dried fleshy part of fruit.	Pyrogallol	114 g powdered dry shells /300 ml water	Boiled for 15 mts, & filtered.	41.54	400
Odina wodier	Kerala W. Bengal	Kalasam I Harithaki	Bark	Catechol	454-681 g bark / 4.5 l water.	Dried bark chopped and boiled with water.	10.2	1.26
Albizzia lebbek	Madras	Kattuvaka pattai	-do-	-do-	10 g bark /100 ml water.	Boiled with water for about 2 hours.	6.1	0.61
Morinda tinctoria	Andhra	Thogaru chettu	-do-	-do-	10 g bark/300 ml water.	Boiled with water for sufficiently long time till a brown liquor is got.	20.2	0.67
Meucas sp.	Andhra	Thumma∘ chekka	-do-	-do-	5 g bark /100 ml water	-do-	15.8	0.79
Terminelia crenulata	Goa	some '	-do-	-do-	1:10 to 1:15	Dried and crushed bark boiled for 2-3 hours.	16.3	1.28
Terminalia	Bombay	Sajad	-do-	-do-	12.5 g of bark / 100 ml water.	Soaking the bark in water and kept exposed in earthern pots, in sun for 3 to 4 days. For urgent use, the bath is boiled in G. I. barrels.	7.2	0.90
Careya arborea	Kerala	Kumbi Ayma Pelu or Alam Araya	-do-		1:10 to 1:15	Dried and crushed bark boiled for 2 to 3 hrs.	15.3	1.22

Table III Hydrographic details of the test site during the test period

	Material an	d period of imm	ersion		Month of	Water surface Salinit			nity %0	ity %0	
	Mattia an	d period or min			observation	Average	mum mum o mum				Mini- mum
fj.	Kadukka Kalasam	12-12-1967 12-12-1967	to to	29-12-1967 5-1-1968	December, 1967	29.1	30.0	28.5	31.9	34.0	28.2
2	Kattuvaka pattai Thumma chekka	12-12-1967 12-12-1967	to to	23-1-1968 8-1-1968	January, 1968	28.5	29.5	27.0	32.5	35.0	28.2
1 =]	Terminalia crenulata Kumbi	12-12-1967 29-3-1968	to to	23-1-1968 16-4-1968	February, 1968	29.2	30.5	28.5	32.7	34,7	28.2
	Khayis Panachikka	29-3-1968 8-2-1968	to to	16-4-1968 7-3-1968	March, 1968	30.4	31.0	29.5	28.6	29.3	27.8
2	Pulinkuru Gedari chekka	8-2-1968 12-12-1967	to to	7-3-1968 23-1-1968	April. 1968	31.0	32.0	29.5	28.3	32.6	26,2

and the treated material allowed to remain in the cooling solution overnight. The next day the material was taken out, dried at room temperature to uniform moisture level and kept in desicator for 3 hours. The impregnation of the preservative was assessed on the basis of the weight of material before and after treatments.

The treated twines along with the control were subjected to continuous immersion test in Cochin back-waters. Table III shows the exposure time, water temperature and salinity observed during the test period.

The strength of twines was tested at periodic intervals.

RESULTS

Fig 1 shows the course of rotting of twines treated in 1-5% tannin concentrations of different tanning materials belonging to the three groups of tannin.

The data on the percentage impregnation of the preservative in 1-5% tannin concentrations are presented in Table IV.

DISCUSSION

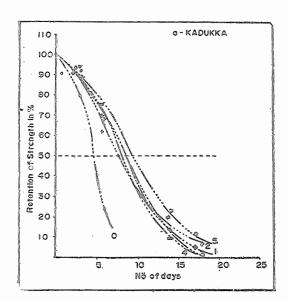
It is evident from the impregnation data that with increase in concentration

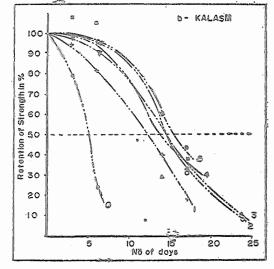
of tannin bath the treated materials show increase in the values of impregnation. It is to be mentioned that among the tanning materials studied, the impregnation values are comparatively low in the case of 'Panachikka' and 'Pulinkuru'. The effective days at 50% strength level was determined from Figs 1 to 10 for the various treatments and the effectiveness was calculated by the method suggested by Nayar et al (1962 loc cit) Fig. 11 depicts the relation between the effectiveness and concentration of bath of the various samples studied. It is evident from this graph that the increase in effectiveness with respect to concentration of dye bath is not linear, there is an optimum level to get the maximum effectiveness and thereafter the effect of the different preservatives seems to be more or less in the same level as that of optimum concentration. Out of the samples studied. pyrogallol tannin was inferior catechol and mixed tannins in the unfixed state.

The data were statistically analysed to obtain the optimum concentration of the different tanning materials. The average breaking strength (X), variance (S^2) and the co-efficient of variation (C.V.) at different levels of concentrations of

Table IV Percentage impregnation of cotton twines treated in 1-5% tannin concentrations

Material				n concentration	
141631011631	1 %	2%	3 %	4%	5%
Kadukka	5.39	5.09	7.44	10.20	12.99
Kalasam	3.50	3.72	4.64	6.76	6.78
Terminalia crenulate	4.37	5.58	9.81	9.76	12.22
Kattuvaka pattai	2.07	3.66	6 43	12 94	13.45
Khayis	3.41	5.71	6.74	12.58	13.52
Kumbi	2.97	4.38	5.58	8.55	9.82
Thumma chekka	5.29	9.68	7.99	6.20	9.38
Panachikka	0.49	1.17	2.23	4.43	6.54
Pulinkuru	0.79	0.96	2.37	3.64	5.66
Gedari chekka	4.45	4.95	8.19	9.71	13.32



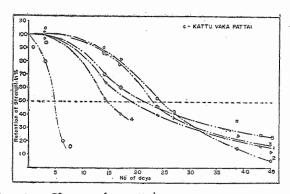

Fig 1. Course of rotting of twines treated in Kadukka.

0: Untreated.

1: tannin

Treated in 1% 2: 3:

4: 5:

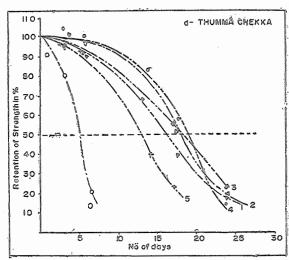

Kalasam Fig 2.

Untreated

tannin 1: 2:

Treated in 1%
2%
3%
4%
5% 3: 22 4: 5:

pyrogallol, catechol and mixed tannins were calculated for the preservative effect and the same is presented in Table V.


Kattu vaka patlai Fig 3.

Untreated 0:

1: tannin

Treated in 1%, 2%, 3% 2: 3: 4:

3 % 4 % 5 % ,, 5:

Thumma chekka Fig 4.

Untreated

tannin

Treated in 1%
,, 2%
,, 3%
,, 4%
,, 5% 2: 3: 5 2

4: 5:

The average breaking strength was taken as a measure of effectiveness and the co-efficient of variation as a measure of consistency.

It is evident from the table that in case of 'Kadukka', the optimum concentration is 1%, while all the catechol tannins studied and two of the mixed tannins come under 2% concentration level. The optimum concentration of 'Pulinkuru' is

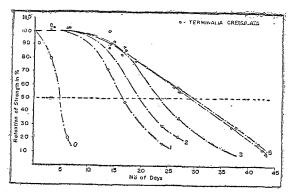


Fig 5: Terminalia crenulata

0:	Untreate	ed.		
1:	Treated	in	1%	tannin
2:	,,		2%	,,
3:	9 9		3%	,,
4:	9 9		4%	9 9
5:	9 9		5%	9 9

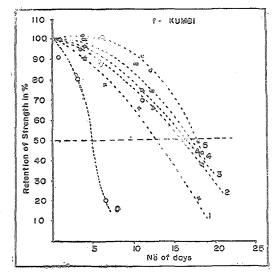


Fig 6. Kumbi

0:	Untreate	ed		
1:	Treated	in	1%	tannin
2:	9 9		2%	22
3:	,,		3%	99.
4:	22		4%	, 99
5.			5 %	

3%. It is also seen that the efficiency of preservation is more in catechol and mixed tannins compared to pyrogallol type. It is to be mentioned that 'Kadukka' in higher concentration did not show any enhanced effectiveness. This may perhaps be due to the higher solubility of pyrogallol type of tannin over the other two groups. However, the behaviour of the three groups of tannin by fixation will be dealt

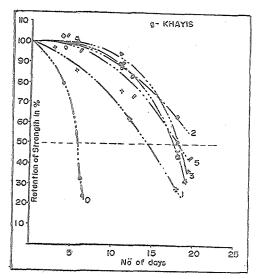


Fig 7. Khayis

\mathbb{O} :	Untreate	$_{ m ed}$		
1:	Treated	in	1%	tannin
2:	9 9		2%	99
3:	99		3%	9 9
4:	99		4%	99
5:	99		5%	22

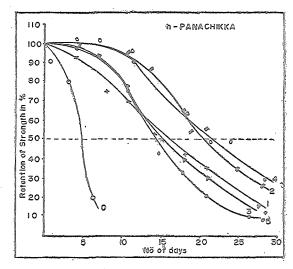


Fig 8. Panachikka

0:	Untreate	ed	
1:	Treated	in 1%	tannin
2:	99	2%	9 9
3:	99	3%	99
4:	. 99	4%	39
5:	9 9	5%	9 9

in detail in the next series. The proportion of tanning material to water to get the optimum concentration was worked out and presented in Table VI.

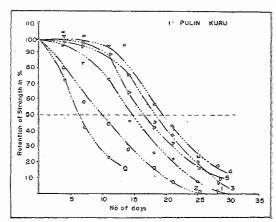


Fig 9. Pulinkuru

0: Untreated
1: Treated in 1% tannin
2: ,, 2% ,,
3: ,, 3% ,,
4: ,, 4% ,,
5: ,, 5% ,,

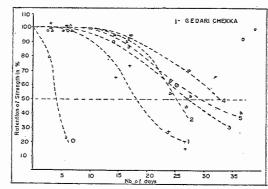


Fig 10. Gedari chekka

0: Untreated

1: Treated in 1% tannin

2: ,, 2% ,, 3: ,, 3% ,, 4: ,, 4% ,, 5: ,, 5% ,,

The optimum concentration to produce the maximum effectiveness when compared with the actual concentration used by fishermen (Table 1) shows that the concentration of tannin used by fishermen is far below the optimum in many cases. Among local fishermen as well as fishing industrialists, the popular method of preservation is still tanning without fixation. In such cases, if the optimum concentrated dye bath is used for preserving nets, it will not only

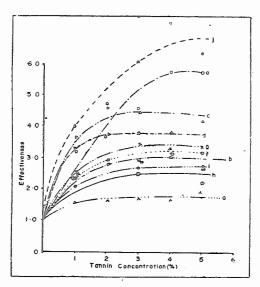


Fig 11. Relation between tannin concentration and effectiveness.

Kadnkka, a.
Kalasam, b.
Kattuvaka pattdi, c.
Thumma chekka, d.
Terminalia crenulate, e.
Kumbi, f.
Khayis, g.
Panachikka, h.
Pulinkuru, i
Gedari chekka, j.

effect the full utilisation of the preservative more economically, but also avoid re-treatment frequently. The present studies also bring to light the fact that if the concentration of tannin bath is more than the optimum, it will not bring any added benefits.

SUMMARY

A survey of the methods of preservation of cotton nets used by the fishermen in India was conducted and information regarding the type of material, preparation of dyeing bath etc collected. Samples of preservatives were procured and extraction, estimation and analysis of the functional groups of tannin were carried out. The optimum concentration of tannin to get the maximum effectiveness was assessed and it was found that the majority of the material comes under 2%

Table V Statistical analysis on the concentration of tannin and the effectiveness of the treatments

A. Pyrogaliol:

	of tannin source	Level of concentration %	n	Average (X)	Variance (S2)	Co-efficient of variation (C.V.) %
	(1)	(2)	(3)	(4)	(5)	(6)
Α.	Pyrogallol					
1.	Kadukka	0	5	40.64	2142.15	113.90
		1		55.10	1582.57	72.19
		2	99	54.10	1718.37	76.61
		2 3	٠,	55.36	1921.24	79.16
		4	9 5	57.36	2263.84	82.94
		5	9 9	59.24	1624.88	68.05
B.	Catechol:	3	99	39.24	1024.00	00.03
1.	Kalasam	0		40.64	2142.15	113.90
	, 10,000,777	1	, ,	67.06	1270.24	53.14
		2	",	77.60	956.18	39.85
		3	99	70.24	1291.86	51.19
		4	99	80.80	723.20	33.29
		5	9 9	74.86	912.05	
		5 .	"	74.00	912.03	40.33
2.	Kattuvaka	0	9 9	40.64	2142,15	113.90
,	pattai	1	99	83.80	564.07	28.34
	<i>p</i>			94.40	49.92	7.49
		2	99	96.20	27.57	5.46
		4	99	95.20	43.20	6.91
		5	99	97.30	109.80	10.77
		•		40.44	4510.50	404.00
3.	Thummachekka	0	9 9	40.64	1713.72	101.90
		1	9 9	80.74	608.69	30.56
		2	,,	88.50	443.00	23.79
		3	9 9	82.80	330.45	21.96
		4	9 9	87.40	363.43	21.81
		5	99	71.00	1265.08	50.09
4.	Terminalia	0		40.64	2142.15	113.90
	crenulata	1	99	83.80	564.07	28.34
				94.40	49.92	7.48
		3	,,	96.20	27.57	5.46
		4	99	95.20	43.20	6.91
		2 3 4 5	99	97.30	109.80	10.77
~	16 h :	^		25.40	1076 74	105.60
5.	Kumbi	0	6	35.40	1976.74	125.60
		1 2 3 4	99	68.30	786.74	41.07
		2	9 9	77.73	542.93	29.97
		3	99	77.60	423.39	26.52
			99	84.62	409.76	26.68
		. 5	99	87.92	371.49	21.93

(Contd.....)

	(2)	(3)	(4)	(5)	(6)
6. Khayis	0	22	35.40	1760.26	118.50
•		9 9	74.70	713 53	35.76
	2	99	88.15	188.13	15.56
	3	9 9	88.72	542.53	26.25
	1 2 3 4 5	9 . D	85.55	520.43	26.67
	5	27	86.10	366.69	22.24
C. Mixed:					
1. Panachikka	0	99	41.62	1535.79	92.02
	1	22	71.50	601.89	34.32
	2	29	88.25	345.78	21.07
	2 3	99	76.63	604.88	32.09
	4	22	81.60	433.49	25.52
	5	,,	73.73	869.43	39.98
2. Pulinkuru	0	9 9	41.60	1538.45	94.26
			55.70	984.73	56.33
	1 2 3	9 9	72.65	883.60	40.92
	3	9 9	82.33	417.15	25.38
	<i>3</i>	5 0	87.90	321.82	20.41
	4 5	99			· · · · · · · · · · · · · · · · · · ·
	J	9 9	82.75	1371.94	44.75
3. Gedarichekka	0	5	40.64	2142.15	113.90
	1	99	87.60	300.80	19.80
	2	99	97.40	6.30	2.58
	3	99	90.56	247.07	17.36
	4	9.1	97.80	4.83	2.25
	5	9 F 9 9	93.90	22.80	5.08

Table VI Proportion of tanning material to water to get optimum concentration

Cd	ptimum oncentr- ion (%)	Tannin content of raw materi- al (%)	Material required for opti- mum con- centration (g/100 ml)
Kadukka	1	41.5	2.41
Kalasam	2	10.2	19.65
Kattuvaka pattai	99	6.1	32.80
Thumma chekka Terminalia	2 2	15.8	12.70
crenulata	22	16.3	12.30
Kumbi	99	15.3	13.10
Khayis	29	8.0	25.00
Panachikka	99	10.2	19.60
Pulinkuru	3	15.6	19.25
Gedari chekka	2	18.2	11.00

concentration in the unfixed state. The proportion of tanning material to water to get the optimum concentration of tannin bath was worked out, compared with which the strength of solution used by local fishermen was found to be far low. The use of optimum concentrated tannin bath is suggested to derive the full benefits of preservation.

ACKNOWLEDGEMENTS

Authors sincerely thank Dr. V. K. Pillai, Director, Central Institute of Fisheries Technology, for his kind permission to publish this paper. They express their gratitude to Shri G. K. Kuriyan, Fishery Scientist (Craft and Gear Division) for his keen interest and criticism offered during the preparation of this paper. Thanks are also due to

165 Fishery Technology

Smt. K. Radhalakshmi, Assistant Fishery Scientist for her encouragement during the course of the experiment. The assistance rendered by Shri H. Krishna Iyer, Assistant Fishery Scientist, in statistical analysis of data is also acknowledged.

REFERENCES:

- Anon 1956. Svensk Fiskeri Tidskrift, 65 (3), 47.
- Chubb, A.E. 1954. World Fishing, 3(2), 64. Clague, John, A. and Datingaling, Bien venide 1950 Research Report No. 22, U.S. Dept. of Interior Fish and Wild Life Service.
- Firth, F. B. and Carlson, C. B. 1949.

 Fishery Leaflet 66, U. S. Fish & Wild

 Life Service.
- Koura, R. 1963 Protokolle zur Fischerei technik, 38 (8), 268-290.
- A. O. A. C. 1960 Methods of Analysis,

- Association of official Agricultural Chemists, Washington. D. C.
- Miyamoto, H. and Shariff, A. T. 1959 Ind. J. Fish., VI (1), 145-185.
- Migita, M. 1943 Fish. Bull. 13 Fisheries Research Station, Ministry of Forestry and Agriculture, Japan
- Nayar, S. Gopalan, George N. A. and Narayanan K. P. 1962. Ind. J. Fish., IX (1) B, 16-22.
- and Naidu R. Mangayya 1962. *Ibid*, 37-46.
- Nierstein, M. 1934 Natural Organic Tannins, J & A Churchill Ltd., London.
- Sulit, J. I. and Panganiban, P. 1954, Procs. Indo-Pac. Fish Coun., 5 (2), 156-162.
- Takayama, S. and Shimozaki, Y. 1937 Modern Fishing Gear of the World, 113-122, Fishing News (Books) Ltd., London.
- Thorpe, J. F. 1954 Thorpe's Dictionary of Applied Chemistry, XI, Longmans Green & Co., London.
- von Brandt, A. 1955. Der Fischertlatt, 3 (3), 44-48.