STUDIES ON MOLLUSCA OF SAURASHTRA COAST-III COMPOSITION

R. T. SARVAIYA

Marine Biological Research Station, Port Okha-361, 350

The paper presents the seasonal variations in moisture, protein, salt and ash in the meat of Murex virgineus, Solen sp., Loligo sp., Sepiella inermis and Octopus sp. Moisture and fat contents of twenty two species of mollusca are reported. Inverse relationship between protein and ash has been observed. Cephalopoda recorded higher meat, moisture and protein contents than amphineura, gastropoda and pelecypoda. Pelecypoda contains higher fat than amphineura, gastropoda and cephalopoda.

INTRODUCTION

Common marine gastropod, Murex virgineus of the Gulf of Kutch is consumed mostly by people of low income group. The razor clam, Solen sp., available throughout the year in the Gulf of Kutch, on the northern side of Gopi near Okha Port is consumed partly as food and partly as bait for long lining in Maharashtra region (Nagappan Navar and Mahadevan, 1974) narayanan, Shylaja Kumari and Alexander (1973) have suggested exploitation of four molluses including two species of cephalopods on commercial basis as they are excellent sources of protein and are rich in calorific value. Fat is an important component in determining the quality and food value of fish, since fatty fish has a higher calorific value (Stansby and Lamon, 1941). The present paper deals with seasonal variation in the chemical composition of five species and that in moisture and 'fat contents in twenty two species of mollusca.

MATERIALS AND METHODS

Several specimens of mollusca as given in Table I and II were collected from various centres of Saurashtra. Fresh specimens were used for the study.

Individual specimens were measured and weighed after cleaning, washing and removing adhering water with filter paper. Mantle length was measured in the case of Loligo sp. and Speiella inermis. The shell of the live specimen was opened and the muscle was used for analysis in case of Ischnochiton sp., Oliva gibbosa, Pitar erycina, Placenta placenta, Crassostrea gryphoides, C. cucullata and Pinna bicolor. The digestive

Fish. Technol.

systems were removed and edible tissues were used for analysis in the case of Nerita domeyi, Astrea semicostata, Xancus Pyrum and species of genera Turbo, Murex and Thais. The meat of mantle, arms and head of the cephalopods was used for analysis.

Moisture, protein, salt and ash were estimated by the methods described in a previous paper in this series (Sarvaiya 1977a). Fat content was estimated by the method of A. O. A. C. (1970).

RESULTS AND DISCUSSION

M. virgineus, Solen sp., S. inermis and Octopus sp. whose lengths varied between 51-100 mm., 69-127mm., 65-235mm., 29-145 mm. and 525-805 mm. respectively were used for the studies on seasonal variation. Table I shows seasonal variations in five mollusca. Table II presents the moisture and fat contents in the twenty two species of mollusca. 5.7-9.8%, 31.3-59.2%, 72.5 -85.6%, 58.6-76.5% and 88.4-90.0% of meat was observed in M. virgineus, Solen sp., Loligo sp., S. inermis and Octopus sp. respectively (Table I). The meat content of cephalopods (58.6-90.0%) is comparatively much higher than the values reported by Sarvaiya (1977 a, b) for gastropods (3.5-54.8%) and pelecypods (3.6-41.3%).

During monsoon, the moisture contents of M. virgineus, (69.92-70.00%) and Solen sp. (75.00-85.20%) were lower than those during other seasons. Lower moisture contents were found during pre-monsoon compared to other seasons in the case of Loligo sp. and S. inermis. Moisture content (83.12 - 84.31%) was lower during monsoon than during winter (84.92%) in the case of Octopus sp. (Table I). Highest

moisture percentages (83.82-85.60%) were exhibited by cephalopoda followed by ampheneura (84 49 %), pelecypoda (76.90 -88.74%), and gastropoda (69.50-80.80%) (Table II). The moisture content in M. virgineus (69.92-76.13%) is lower than that reported by Suryanarayanan et al. (1973) The moisture for Pila virens (78.87%). contents in Loligo sp. (84.09-88.76%) and S. inermis (79.98-88.02%) are higher than those mentioned by Suryanarayanan et al. (1973) for Loligo indica (75.05%) and Sepiella inermis (74.78%) and by Pandit and Magar (1972) for Loligo vulgaris (79.73%).

In the case of M. virgineus, Loligo sp. and S. inermis the protein contents were high during pre-monsoon compared to other season/s. The protein content (75.34-81.38%) was high during monsoon in Octopus sp. (Table I). The protein content (67.38-75.25%) of M. virgineus is higher and lower respectively than those (59.94-70.63%) reported by Ansell, Sivadas and Narayanan (1973) for Bullia melanoides and that recorded by Suryanarayanan et al. (1973) for gastropods (75.32% and 76.20%).

The protein content of cephalopods is comparatively higher (72.63-86 10%) than most of the species of gastropoda and pelecypoda reported by Sarvaiya (1977 a, b).

Salt content was relatively high (1.57-5.34%) during monsoon in the case of *M. virgineus*. High salt content (3.7-5.0%) was noted during pre-monsoon while it was low (1.2-3.7%) during monsoon in *Solen* sp. Sarvaiya (1977 b) has reported low salt content during monsoon in three species of oyster. Low salt content was obtained during pre-monsoon in the case

sarvaiya: Mollusca of Saurashtra coast

TABLE I
SEASONAL COMPOSITION OF MOLLUSCS OF SAURASHTRA COAST

			Total			manara maga ngagagan an Malaka Malaka Panganan an an ang ngagan kan an a	Percentage on dry meat weight basi		
Species		Season	Length (mm.)	weight %	Meat %	Moisture %	Protein %	Salt %	Ash %
				70		/0	/6	70	/0
Murex virgineus	(1)	Pre-monsoon	51-100	15.2-139.5	7.1-9.0	70.65-75.18	67.38-75.25	1.30-4.51	6.90-8.50
(Roding)	` '	(Feb. to May)				(74.34)	(73.34)	(2.75)	(7.76)
		Monsoon	55-80	22.7-70.1	5.7-9.6	69.92-70.00	68.25-73.50	1.57-5.34	7.60-8.00
		(June to July				(69.96)	(70.88)	(3.45)	(7.80)
		Winter	60-70	22.3-43.0	6.0-9.8	75.32-76.13	70.88-74.38	2.58-3.43	6.80-6.93
		(Dec. to Jan.)				(75.73)	(72.63)	(3.00)	(6.87)
Solen sp. ((2)	Pre-monsoon	78-124	11-49	32.3-45.7	72,80-86.20		3.70-5.00	7.60-10.80
		(March to April)				(80.65)		(4.3)	(8.9)
		Monsoon (June to Sept.)	69-126	8-45	44.4-59.2	75.00-85.20 (78.7)	53.80 - 70.00 (61.25)	1.20-3.70 (2.73)	6.30-10.0 (7.83)
		Post-monsoon	77-127	10-43	31.7-58.4			2.90-3.90	4.30-9.30
		(Oct. to Nov.)				(82.4)		(3.4)	(6.6)

Vol									
Loligo sp.	(3)	Pre-monsoon (Feb. to May)	85-235	31-210	72.5-85.6	84.28-85.65 (84.59)	80.50-81.90 (81.36)	1.64-2.38 (1.90)	4.20-4.60 (4.45)
No. 2		Winter (Dec. to Jan.)	65-166	15-205	73.5-82 4	84.09-88.76 (86.92)	72 . 63-75.25 (73.94)	2.07-2,39 (2.23)	5.92-7.70 (6.81)
Sepiella inermis (F'erussac & d'on	(4) bigny	Pre-monsoon (Feb. to May)	40-145	13-297	58.6-66.6	80.60-86.10 (83.26)	81.38-86.10 (83.74)	1.58-2.60 (2.11)	3.65-6.10 (5.12)
		Post-monsoon (Nov. to Dec.)	29-46	7-20	68.9-76.5	79.98-88.02 (84.00)	74.38-75.25 (74 82)	1.82-3.06 (2 44)	5.60-6.40 (6.00)
Octopus sp.	(5)	Monsoon' (July to Sept.)	525-805	108-230	88.4-90.0	83.12-84.31 (83.72)	75.34-81.38 (78.36)	2.20-6.03 (4.32)	7.50-7.65 (7.58)
		Winter (Janu a ry)	600	210	90.0	84.92	74.38	8.25	8.60

^{1.} Centre of collection: Poshetra (Lat. 22°25' N Long. 69°12' E)

Note: Figures in parantheses are mean value.

^{2.} Centre of collection:- Gopi area (Lat. 22°24' N Long. 69°04' E)

^{-3.} Centre of collection:- Off Dwaraka* (Lat. 22°23' N Long. 68°23' E) Off Dwaraka† (Lat. 22°15' N Long. 68°45' E)

^{4.} Centre of collection:- off Dwaraka*
Centre of collection:- off Dwaraka;

^{5.} Centre of collection:- Poshetra

Table II COMPOSITION OF MOLLUSCS OF SAURASHTRA COAST

Species	Collection centre	Length (mm.)	Moisture %	Fat% (on dry meat weight basis)
Ischnochiton sp.	Okha (Lat. 22°28'N Long. Long. 69°05' E)	36-35	82.49	10.75
Nerita dombeyi R'ecluz	Okha	25-32	80.80	3.75
Astrea semicostata (Kiener)	Okna	7-25	75.01	2.74
Turbo intercostalis Menke	Okha	19-31	73.52	3.60
T. coronatus Gmelin	Okha	19-28	77.38	4.00
Murex virgineus (Roding)	Poshetra (Lat. 22°25' N (Long. 69°12' E	50-60	77.90	1.00
M. trapa Roding	Poshetra	100	74.36	2.06
Murex sp.	Okha	55-62	71.44	3.35
Thais rugosa (Born)	Poshetra	42-50	71.50	3.80
T. rudolphi (Lamarck)	Okha	40-60	71.06	4.05
Oliva gibbosa (Born)	Okha	16-29	76.91	8.10
Cypraea sp.	Okha	58-67	77.32	5.85
Xancus pyrum Linn.	Okha	85	69.50	2.85
		Mean	74.73	3.76
Pitar erycina (Linn'e)	Sikka (Lat. 22°27' N Lohg. 69°51' E)	60	88.74	8.21
Solen sp.	Gopi area (Lat. 22°24' N Long. 69°04' E	96-100	81.66	6.25
Placenta placenta (Linn'e) Poshetra	110-145	84.81	9.80
Crassostrea gryphoides (Newton & Smith)	Balapur (Lat. 22°27′ N Long. 69°08′ E	82-174	76.90	13.25
C. cucullata (Born)	Balapur	90-110	85.25	14.50
Pinna bicolor Gmelin	Sikka	120-240	76.90	13.25
		Mean	82.34	10.84
Loligo sp.	Off Dwaraka (Lat. 22°23'N Long. 68°23' E)	110-140	84.78	5.80
Sepiella inermis (F'erussac & d'orbigny)	Off Dwaraka	130	83.82	4.00
Octopus sp.	Sikka	250-300	85,60	4.75
		Mean	84.73	4.85

Fish. Technol.

of Loligo sp. and S. inermis. Octopus sp. exhibited low salt content during monsoon (Table I).

Higher ash content (7.60-8.00%) was noted during monsoon compared to other seasons in the case of M. virgineus. Ash content gradually decreased from premonsoon to post-monsoon period in the case of Solen sp. Low ash content was observed during pre-monsoon compared to other seasons in the case of Loligo sp. and S. inermis. Higher ash content was noted during winter in the case of Octopus sp. (Table I). The ash content (6.80-8.50%) of M. virgineus is lower than the values (11.74-28.77%) reported by Ansell et al. (1973) for Bullia malanoides. The ash values obtained here for Loligo sp. (4.20-7.70%) and Sepiella inermis (3.65-6.40%) are lower than the values reported by Suryanarayanan et al. (1973) for Loligo indica (12.50 %) and Sepiella inermis (13.42 %).

From the study of seasonal variations in the chemical composition of these mollusca it appears that the protein contents increases with a decrease in the ash content and vice versa in all cases. Thus, an inverse relationship between protein and ash content is apparent in M. virgineus, Loligo sp., S. inermis and Octopus sp. Sarvaiya (1977 a, b) has reported similar relationship between protein and ash in Tnais rugosa, Crasostrea gryphoides, C. cucullata and Placenta placenta.

Fat contents vary between 1.00 to 14.50% in mollusca, the lowest being in *M. virgineus* and the highest in *C. cucullata*. Generally higher fat contents (6.25-14.50%) were observed in pelecypoda and they were low (1.00-8.10%) in gastropoda.

10.75% and 4.00-5.80% of fat was noted in ampheneura and cephalopoda respectively. Higher fat content was noted in all the cases when all body tissues were used for estimation (Table II).

ACKNOWLEDGEMENTS

The author is thankful to Shri. Moosa Raza, I.A.S., Commissioner of Fisheries for providing all facilities. He takes pleasure to record his gratitude to Prof. N. D. Chayya, Joint Director of Fisheries for going through the manuscript and his keen interest and to Shri. M. Bhaskran, Research Officer for unstinted encouragement.

REFERENCES

- A. O. A. C. 1970. Methods of Analysis, 11th Ed.. Association of Official Analytical Chemists, 128, Washington.
- Ansell, A. D., P. Sivadas and B. Narayanan. 1973. Special Publication dedicated to Dr. N. K. Panikkar, Marine Biological Association of India, Cochin: 333.
- Nagappan Nayar, K. and S. Madhavan. 1974. The Commercial Molluscs of India, Bulletin No. 25, C.M.F.R.I., Cochin: 40.
- Pandit, A. R. and N. G. Magar. 1972. Fish. Technol., 9, 2:122.
- Sarvaiya, R. T. 1977. Fish. Technol., 14, 1: 27.
- Sarvaiya, R. T. 1977 b. Fish. Technol., 14, 1:33.
- *Stansby, M. E. and J. M. Lemon. 1941.

 Research Report No. 1., U. S. Fish and Wild Life Service.
- Suryanarayanan, H., R. Shylaja Kumari and K. M. Alexander. 1973. Fish. Technol., 10, 2:100.

 *Not referred in original.

a brief account of ship stability in which the general principles and various definitions and terms used are highlighted. The last chapter titled 'Miscellaneous' describes the use and reading of Aneroid Barometer, uniform system of buoyage and wreck marking system and navigational marks. This chapter is made more attractive with coloured illustrations.

The 22 tables and 131 illustrations

with supporting captions are very valuable and informative which make the text easily understandable to the reader. In the appendix, a bibliography of current literature and useful addresses of fisheries interest are compiled. A good index comprising abbreviations, symbols and a glossary of navigational terms help to make the book a valuable addition to the library.

-N. A. GEORGE