# Effect of Electric Stimulation on Heart Beat and Body Muscle in Fish

#### K. P. BISWAS

Orissa Maritime and Chilka Area Development Corporation, Bhubaneswar

AND

## S. P. KARMARKAR

Wilson College, Bombay

The effect of AC and DC electric stimulations on the heart-rate and the entire body of Heteropneustis fossillis, Tilapia mossambica and Macrobrachium rosenbergii were studied and presented in kymograph tracings. The reaction of spinal cord in Puntius ticto, Heteropneustis fossilis and Tilapia mossambica to D.C. field was observed to find out its role in electric shocks. A test-check of the electrical resistance of a few species was also conducted. The effect of D.C. and A.C. on the body muscle was found to be the same as that in the case of frog. Different degrees of cardiac slowing were observed in AC and DC. Unbalanced galvanotropic movements were also noticed in spinal fishes.

Electric shock response in man (Dalziel & Lee, 1968) has shown that electric current is the best measure of the strength of the sensible shock effect. Similar results were observed in fishes also (Cuinat, 1967). The primary function of the electro fishing system is to establish an electric current in water near the fish. Depending on the ratio of fish and water conductivity a portion of this current will pass through the fish and elicit the desired response. The skin of fish with the numerous sensory organs is an important receptor for physical and chemical stimuli (Brett, 1957). In this paper the authors report their attempts to measure the electrical resistance of the skin and body of fish, the contraction of fish body by direct currents and also the effect of electrical stimulation on the heart beat in fishes.

### Materials and Methods

The electrical resistance of the skin and body and also between different points of the body were measured by using a dermometer described by Whelan (1950) which had a range of 1,000 to 4,50,00,000 ohms and about 5% accuracy. Live fishes were measured for length and maximum width and kept in between the folds of filter paper to remove water from the surface. One

end of the silver electrode was connected to the instrument and the other end pressed against the fish, the instrument switched on and adjusted to  $2\mu A$ . The resistance of the fish was directly read from the voltmeter and multiplied by 10 or 100 depending the range selected. The resistance between different body parts, namely, mouth to top of head, mouth to mid-dorsal fin, mouth to caudal peduncle and mouth to vent were measured with platinum electrodes. To record the contraction of the body in Hetropneustics fossilis, its peduncle was clamped firmly, upper jaw connected through a thread to a lever provided with a writing pen. The writing pen touched the black surface of a smoked paper wound round a cylindrical drum moving at constant speed. The pen drew a horizontal line (abscissa) on the smoked paper when the drum rotated. The brain together with a portion of spinal cord was destroyed by inserting and rotating a needle. The lever turned on the fulcrum, jerked up and the pen drew a curve on the smoked paper. The time was furnished by a tuning fork vibrating at 100 times per second.

The effect of electrical shock on the heart rate by the applied underwater field was recorded graphically on a constant

slow moving drum. The fish after destroying the brain and spinal cord was firmly clamped upside down at the bottom of the experimental tank, where a homogenous electrical field was created by two copper plates, placed vertically along the tank extremeties. The heart of the animal was then exposed and the ventricle was connected to a lever, fitted with a writing point, which in turn touched the blackened surface of a tracing paper wound round a drum. After recording normal heart beat for some time, the animal as a whole was subjected to electric shocks of different intensities and the heart rhythm was recorded for some time. The recordings continued even after switching off the current till the heart came to normal rhythm. Currents of different forms and stimulations of different types were tested on H. fossilis and Tilapia mossambica. Visual observations of the effect of electrical shock on the heart rate of Macrobrachium rosenbergii were also made. The spinal cord of Puntius ticto, H. fossilis and T. mossambica were severed first behind the supraoccipital and were allowed to rest for two hours before exposing them to electric shocks. The experimental set up and the procedure were similar to that already described. Observations were made for the sensitivity and response in these animals and the minimum field strength required to elicit response in them.

# Results and Discussion

The resistance of Mystus aor was the lowest  $(6 \times 10^3 - 7 \times 10^3 \text{ ohms})$  and of M. rosenbergii the highest  $(24 \times 10^3 - 25 \times 10^3)$ ohms) as shown in Table 1. The result of tolerance test showed 100 per cent mortality in M. aor and Cirrhina mrigala within 25 to 35 and 65 to 75 min after exposure to current. 60% of *Notopterus notopterus* and 40% of *M. rosenbergii* died after 85 to 105 and 92 to 120 min respectively. 25 per cent of Labeo robita and Catla catla were found dead within 115 to 135 and 218 to 255 min respectively after exposure to current (Table 2). An increase in the latent period by 20 milliseconds under 3 volts was recorded over that of 8 and 17 volts in H. fossilis. A sharp rise (contraction) with two peaks and a gradual fall (relaxation) were observed at all the shock intensities tested. The contraction phase lasted for 80, 160 and 180 milliseconds for 3, 8 and 17 volts respectively. The corresponding relaxation phases were 120, 140 and 110 milliseconds. In *T. mossambica* two distinct curves with double peaks and a latent period of 90 milliseconds were recorded for D.C. 3, 8 and 17 volts. At 3 volts the amplitude of the second curve was more than the first one. But the amplitude of the first curve increased with the intensity of current (8 and 17 volts). The contraction phase lasted for a higher period in 7 volts than the relaxation period.

At 20 volts the curve of muscle twitch in H. fossilis showed a sharp rise and fall with two small peaks at the top. When raised to 40 volts, two peaks along with a wide valley at the top was noticed. At 60 volts, a single peak of highest amplitude was drawn. The contraction phases remained for 190, 450 and 425 milliseconds for 20, 40 and 60 volts respectively. The corresponding relaxation phases however lasted for 20, 30 and 185 milliseconds respectively. The contraction of body muscle of T. mossambica due to A.C. 20, 40, 60 and 80 volts revealed the formation of two curves during each stimulus. The height of the second curve was more than the first and a double peak was noticed in the second curve at 80 volts.

The latent period was prolonged by 15 to 50 milliseconds from the third stimulation onward. The length of contractions were also increased irrespective of D.C. and A.C. After an initial rise during the the first few contractions, the height of the curve reduced uniformly. The relaxation phase was prolonged with the number of stimuli and after 30 to 40 contractions, the writing lever took several milliseconds to return to the baseline.

The heart rate of *M. rosenbergii* when exposed to field intensity of 0.0792 to 0.23768 for 15-180 seconds, showed a decrease of 10-12 per min during the shock. But heart beat decreased under current intensities of 0.792 to 1.988 till the heart stopped during narcosis. Increasing shock intensity suppressed heart beat (61-116 per min) but accelerated to 146-212 per min immediately after recovery from narcotic condition

\*Air temperature 33°C, water temperature 32.5°C

Table 1. Electrical resistance of the body of different species of fish\*

|                              |              |                   |                                              | Electrical resistance in<br>ohms             | resistance in<br>ohms                        |                                              | Electrical resistance<br>of body           |
|------------------------------|--------------|-------------------|----------------------------------------------|----------------------------------------------|----------------------------------------------|----------------------------------------------|--------------------------------------------|
| Species                      | Length<br>mm | Animals<br>tested | Mouth to<br>top of<br>head                   | Mouth to<br>middorsal<br>fin                 | Mouth to<br>caudal<br>peduncle               | Mouth to<br>vent                             | ohms/cm                                    |
| Macrobrachium<br>resenbergii | 95–115       | 41                | i                                            | l                                            | 27 x 10 <sup>3</sup><br>29 x 10 <sup>3</sup> |                                              | 24 x 10 <sup>3</sup> -25 x 10 <sup>3</sup> |
| Labeo rohita                 | 180–205      | 16                | 11 x 10 <sup>3</sup><br>12 x 10 <sup>3</sup> | 13 x 10³<br>18 x 10³                         | 15 x 10 <sup>3</sup><br>21 x 10 <sup>3</sup> | 12 x 10 <sup>3</sup><br>16 x 10 <sup>3</sup> | $7 \times 10^3 - 9.5 \times 10^3$          |
| Catla catla                  | 160–195      | 12                | $10 \times 10^3$<br>$13 \times 10^3$         | 15 x 10 <sup>3</sup><br>16 x 10 <sup>3</sup> | 15 x 10 <sup>3</sup><br>18 x 10 <sup>3</sup> | 13 x 103<br>15 x 103                         | 10 x 10 <sup>3</sup> -11 x 10 <sup>3</sup> |
| Cirrhina mrigala             | 90-100       | 16                | $12 \times 10^3$<br>12.5 x 10 <sup>3</sup>   | 16 x 10 <sup>3</sup><br>21 x 10 <sup>3</sup> | 22 x 10 <sup>3</sup><br>25 x 10 <sup>3</sup> | 15 x 10 <sup>3</sup><br>16 x 10 <sup>3</sup> | $75 \times 10^3 - 8 \times 10^3$           |
| Notopterus notopterus        | 100–120      | 12                | $10 \times 10^3$<br>$13 \times 10^3$         | 15 x 103<br>16 x 103                         | $22 \times 10^3$<br>$25 \times 10^3$         | 15 x 10 <sup>3</sup><br>16 x 10 <sup>3</sup> | 8 x 10 <sup>3</sup> -9 x 10 <sup>3</sup>   |
| Mystus aor                   | 153–184      | 10                | 12 x 10 <sup>3</sup><br>21 x 10 <sup>3</sup> | 15 x 10 <sup>3</sup><br>20 x 10 <sup>3</sup> | 26 x 10 <sup>3</sup><br>30 x 10 <sup>3</sup> | $15 \times 10^3$<br>$20 \times 10^3$         | 6 x 10 <sup>3</sup> -7 x 10 <sup>3</sup>   |

Table 2. Effect of D.C. shocks (direct contact) on animals\*

| Time required for death after shock treatment min | 115–135<br>218–255<br>65– 75                    | 25–35                                         | 92–120                                                   |
|---------------------------------------------------|-------------------------------------------------|-----------------------------------------------|----------------------------------------------------------|
| Percentage<br>death                               | 25<br>25<br>100                                 | 100                                           | 9 4                                                      |
| Effect of direct shock Immediate effect           | No narcosis<br>No narcosis<br>Narcosis for      | 12–22 sec Narcosis for 56–84 sec Narcosis for | 5–7 sec<br>No narcosis                                   |
| Contact<br>voltage in<br>volts                    | 1.4–2.0<br>1.4–1.8<br>2.1–2.4                   | 2.1–2.3                                       | 2.6-2.8                                                  |
| Animals<br>tested                                 | 222                                             | 10                                            | 10                                                       |
| Size range<br>mm                                  | 180–205<br>160–195<br>90–100                    | 153–184                                       | 95–115                                                   |
| Species                                           | Labeo rohita<br>Catla catla<br>Cirrhina mrigala | Mystur aor                                    | notopterus<br>notopterus<br>Macrobrachium<br>rosenbergii |

<sup>\*</sup> Intensity of shock 25 μA, duration 10 sec, temperature of water 32.5°C

Table 3. Effect of D.C. shocks on heart rate of Macrobrachium rosenbergit\*

|       | Electric        | shock        | sec        |          | 150- 180 | 25- 24     | 27 - 31 | 23- 28  | 30-34   |
|-------|-----------------|--------------|------------|----------|----------|------------|---------|---------|---------|
| ıte   | After           | recovery     | from       | narcosis | ]        | ********** | 146-150 | 194–198 | 200–212 |
|       | During          | shock        | taxis      |          | 114–116  | 96 - 104   | 83-87   | 75- 80  | 61 64   |
| Heart | Before          | shock        | Normal     |          | 124–128  | 126–130    | 104-109 | 172–176 | 176–180 |
|       | Animals         | tested       |            |          | 12       | 10         | 12      | 12      | 12.     |
|       | Current density | in which the | animal was | narcosed | 0.0792   | 0.2376     | 0.7920  | 0.9900  | 1.9800  |

<sup>\*</sup> Electrical resistance 22.5 x 103 ohms/cm², length of fish 120-170 mm, weight 25-55g, water temperature 29°C

(Table 3). T. mossambica showed slowing of heart beat soon after exposition at D.C. 0.88 and 1.28 caused momentary cardiac slowing, but afterwards came back to normal rhythm prior to shock treatment. H. fossilis when subjected to increasing intensity of A.C., its heart curve showed initial rise during first few contractions followed by uniform decrease till the current intensity reached 0.558. At a field intensity of 0.758 irregular fluttering of heart was recorded which regained normal rhythm when the current was switched off. Gradual cardiac slowing was observed when H. fossilis exposed to sharp current rise of 0.35 and 0.55% and heart stopped in the relaxing phase after 35 and 11 contractions respectively. Exposure at higher current intensity (0.758)caused stoppage of heart beat after 3 contractions.

Stimulating the heart with current intensities at  $0.7\delta$  and  $1.1\delta$  in a media of calcium chloride (1:1500) having a resistance of  $8 \times 10^3$  ohms/cm², the relaxation after each contraction became more and more incomplete, until finally the heart stopped

in a tonically contracted condition. In potassium chloride solution of identical concentration and resistance, the tonic condition of the heart increased with 0.2 to 0.75 & current and the contractions lasted as long as the current flow continued. During treatment with current intensities of 0.2 and 0.35 &, however, the amplitude of heart beats was more when compared to shocks of higher intensities.

When P. ticto was stimulated with the increasing field intensity, they responded for first reaction (sensing of surrounding electric field) vibration and leap frogging movement towards the anode and strong swimming movement towards the positive electrode at times accompanied by anodic curvature with head turning towards the anode at currents of 0.4 to 0.048\$ 0.08 to 0.0968 and 0.112 to 0.168, respectively. 80 to 90% fishes reached for anodic movement in the second and third stage of reaction, while 10 to 20% exhibited vibration of fins accompanied by anodic curvature turning their heads towards the positive electrode in varying current intensities (Table 4).

Table 4. Response of Puntius ticto to D. C. shocks\*

| Classification of reaction | Response with the increasing intensity                                                                         | Current density in $\mu$ A required to bring out the response | Percentage<br>responded |
|----------------------------|----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|-------------------------|
| Stage-I                    | Expansion of dorsal, pectoral, pelvic fins accompanied by tremour of caudal fir                                | 0.04-0.048<br>as                                              | 100                     |
| Stage-II                   | Leaped towards the +ve electrode a little with jerk of body                                                    | 0.08-0. 96                                                    | 90                      |
|                            | Vibration of pectoral fins and turn its head to the +ve electrode                                              | 0.08-0. 96                                                    | 10                      |
| Stage-III                  | Moved towards the + ve electrode with jerks of body                                                            | 0.112-0.16                                                    | 80                      |
|                            | Bending of body turning its head                                                                               | 0.112-0.016                                                   | 10                      |
|                            | towards +ve electrode Anodic curvature of the body and turned to anode with movement towards the +ve electrode | 0.112-0.16                                                    | 10                      |

<sup>\*</sup> Electrical resistance of water 16 x 10<sup>3</sup> ohms/cm<sup>2</sup>, size of 6sh 72-90 mm, temperature 24°C, number of animals tested 20

Table 5. Response of Heteropneustis fossilis to D.C. shocks\*

| Classification of reactions | Response with the increasing intensity                                                                                                                                     | Current density<br>in $\mu$ A required<br>to bring out the<br>response | Percentage<br>responded |
|-----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|-------------------------|
| Stage-I                     | Vibration of barbels and occasional bending of the body                                                                                                                    | 0.016-0.04                                                             | 100                     |
| Stage-II                    | Forced swimming towalds the anode with bending of body and sideward movement of head till they reached the electrode                                                       | 0.096-0.12                                                             | 81.4                    |
|                             | Bending of body turning its head towards the anode till their body became parallel to current lines, when they moved violently towards the +ve electrode in that condition | 0.12-0.16                                                              | 8.6                     |
| Stage-III                   | Immobilized with expanded fins and maxilla facing +ve electrode                                                                                                            | 0.16-0.176                                                             | 64.4                    |
|                             | Curvature of body pointing their head and tail towards the anode                                                                                                           | 0.16-0.176                                                             | 35.6                    |

<sup>\*</sup> Resistance of water 19 x 10<sup>3</sup> ohms/cm<sup>2</sup>, size of fish 100-124 mm, temp. 25°C, fishes tested 18

Subjecting H. fossilis to increasing field intensity, their reactions were observed at three stages in the current densities of 0.016 to 0.04, 0.96 to 0.16 and 0.16 to 0.176 respectively. Forced swimming towards the positive electrode and immobilization near the anode were observed in 81.4 and 64.4% cases, whereas, initial bending of the body during second stage and the anodic curvature during third stage were noticed in 8.6 and 35.6% of fishes. All the organisms responded for vibration of barbels and bending of body during the first reaction (Table 5).

All the *T. mossambica* showed quivering of pectoral, pelvic and caudal fins followed by the curvature of body in current intensities of 0.08 to 0.096 $\delta$ . With the rise of field densities of 0.144 to 0.16, 75% of them remained either perpendicular or at 45° to the field lines without any movement. The remaining 25% glided towards the cathode

in an unbalanced manner. Change of body colour and discharge of milt after cease of current flow were noticed in 12.5% animals at this stage. Momentary muscular rigidity in up side down condition occured in case of 12.5% fishes at current intensities of 0.16 to 0.248 (Table 6).

In order to control fish by electricity in freshwater, a high field strength is required because the conductivity of the fish is higher than that of the water (Bary, 1956). When a fish comes to an electric field, the charge induced on the fish is proportional to the cube of its body length (Kuroki, 1952). According to Holzer (1931), when the conductivity of animal body is higher than the surrounding water (fresh water) all the potential lines are directed towards the body with better conductivity and the fish is thus satisfactorily influenced by electricity. The knowledge of electrical resistance of the animal body is thus important in initiating

**Table 6.** Response of Tilapia mossambica to D.C. shocks\*

| Classification of reactions | Response with the increasing intensity                                                                  | Current density in $\mu$ A required to bring out the response | Percentage<br>responded |
|-----------------------------|---------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|-------------------------|
| Stage-I                     | Curvature of the body, quivering of tail, pectoral and pelvic fins                                      | 0. 08-0.096                                                   | 100.0                   |
| Stage-II                    | Un-co-ordinated movement towards the negative electrode                                                 | 0.144-0. 16                                                   | 25.0                    |
|                             | Remain either perpendicular or at 45° to the field lines                                                | 0.144-0. 16                                                   | 75.0                    |
|                             | Body colour darkens deep black during current flow and discharge of milt after stoppage of current flow | 0.144-0. 16                                                   | 12.5                    |
| StageIII                    | Momentary muscular rigidity and stayed at the bottom with ventral surface up                            | 0. 16-0. 24                                                   | 12.5                    |

<sup>\*</sup> Resistance of water 15 x 10<sup>3</sup> ohms/cm<sup>2</sup>, size of fish 90–122 mm, temperature 23.5°C, number of fishes tested 24

the responses and determination of reaction thresholds.

Halsband (1968) measured the electrical resistance of trout body through water media. In the present study the electrical resistance was determined directly by the dermometer and represented as ohms/cm2 of body and between different points of body as studied by Denzer (1956) for rainbow trout. The electrical resistance (ohms/cm<sup>2</sup>) was found to be lowest in case of M. aor (devoid of scale) and lughest in M. rosenbergii (with a chitinous shell). As observed by Denzer (1956) the resistance between mouth to caudal peduncle of all the test animals was highest than between any other part of the body which is due to the largest body extremities of the animal. It is observed that the order in which fishes affected by electric shocks are M. aor, C. mrigala, N. notopterus, L. rohita and C. catla. A fixed amount of current (25µA) was allowed to through their body by direct contact for a period of 10 seconds. The contact voltage varied from 1.4 to 2.4 volts depending on the species. The severity of shocks (as observed by the percentage of death and the

time required for death) indicate that the test fishes are sensitive to D.C. as described earlier.

The skeletal muscle, or its nerve when stimulated by a single induction current resulted in a single short sharp contraction followed immediately by a relaxation (Starling, 1947). To determine the time relations of muscle contraction it was necessary to employ the graphic method. The mechanical changes that the fish as a whole had undergone by D.C. and A.C. were represented by kymograph tracings along with a time record.

Starling (1947) demonstrated that the simple muscle twitch in frog consists of three main phases, namely, the latent period (during which no apparent change takes place in the muscle), contraction (a phase of shortening) and a phase of relaxation. When the whole body of *H. fossilis* and *T. mossambica* were stimulated by D.C. of varying intensities, the latent period was delayed in currents of low intensities. According to Meyer —Waarden (1957) the

effective period inducing narcosis (relaxation of muscle) in fishes is inversely proportional to the intensity of the field. The occurrence of second contraction before attaining complete relaxation in both the test fishes can be explained by Pfluger's principle (Pfluger, 1853), that is, the closing of the circuit has a stimulating effect on the nerves or muscles within the range of the cathode and the opening of the circuit has also a stimulating effect within the range of the anode and the reaction to the opening of the circuit is much smaller than the reaction to the closing of the circuit. But in case of D.C. on T. mossambica, the amplitude of the second curve (due to opening of the circuit) was found to be greater than 3 volts when compared to currents of 8 and 17 volts.

In A.C. also, double curves for each stimulation was obtained in case of T. mossambica. But in H. fossilis, two peaks at 20 and 40 volts and a single peak of highest amplitude during 60 volts could explained by summation effect of two stimuli during closing and opening of When the intervals between the circuit. two currents were shortest, a greater response was observed with a single peak. But during longer intervals between the first and second shocks, as in case of 20 and 40 volts, the excitatory condition of muscle was maintained, so that instead of forming two isolated muscle twitch a second contraction occurred before the fading of the effect of previous stimulus forming two peaks in one curve. The effect of repeated stimulation by both D.C. and A.C. on H. fossilis showed that the latent period was prolonged, with the length of contractions. The A.C. and interrupted D.C. caused heavy stimulation of the central nervous system which led to tetanic condition of the muscles (Meyer-Waarden, 1957). According to him, this state of immobility is the consequence of cramp occurring in the muscles caused by the superposition of numerous individual contraction as observed in the present test with H. fossilis for A.C. William (1885) demonstrated in the eel that almost any sort of peripheral stimulation caused inhibition of the heart beat and this appeared to be generally true in unanesthetized fish. Cardiac slowing in *M. rosenbergii* was observed during the application of D.C. depending on the current intensity. A

slight hyperactivity of the heart was noticed after recovery from narcosis. Momentary cardiac inhibition of *T. mossambica* was also observed in D.C. of varying intensities

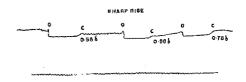



Fig. 1. Effect of sharp increase in A. C. current on heart beat of H. fossilis

(0.12 to 1.28). Studies in man and animals with A.C. indicated the occurrence of ventricular fibrillation (Novotny & Priegel, 1974). The heart of H. fossilis, when exposed to A.C. with slowly rising intensity, exhiphenomenon (Starling, bited staircase 1947) at current densities of 0.18 cardiac slowing at 0.558 and irregular fluttering at 0.758. In sharp current rise, cardiac arrest occurred in relaxation phase even at 0.358. Switching off current flow immediately after stoppage of heart beat, regained the normal rhythm once again indicating that the period of exposure in relation to current intensity is responsible for inhibition of heart rate (Fig. 1). The inhibiting effect of Cacl<sub>2</sub> solution and the accelerating effect of KCl on heart muscle (Starling, 1947) was confirmed from the present tests also, where the heart of H. fossilis stopped in a tonically contracted condition, when stimulated through Cacl, solution and continued to contract in the tonically contracted state even during the current exposure while stimulating through KCl solution (Fig. 2).

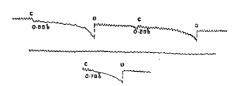



Fig. 2. Effect of A. C. current on heart beat of H. fossilis (Medium - Potassium chloride 1:1500)

In the nervous control of locomotion and of movements, the spinal cord clearly plays an important role. Pfluger (1853) severed the spinal cord of eel (Anguilla anguilla) immediately behind the medulla oblongata and described various reflexes shown by the posterior portion. Von Holst (1934) concluded that after the spinal section only the anterior part of teleosts (Carassius auratus, Carassius carassius and Cyprinus carpio) showed rhythmical swimming movements, the hind part being motionless excepting when stimulated.

The fishes (P. ticto, H. fossilis and T.mossambica) after spinalization behaved in the similar way as described by Von Holst (1934) when exposed to D.C. shocks of varying intensities. The occurrence of anodic taxis, anodic narcosis and anodic curvature in P. ticto and H. fossilis were observed in a much lower thresholds as that of intact animal (Biswas, 1974). The un-co-ordinated movement of T. mossambica towards the negative electrode in lower threshold than the intact animal (Biswas, 1974) confirmed the findings of Cuinat (1967) that the sharp spinal section allowed the persistance of galvanotaxis at the threshold of the intact animal which became unbalanced through the functional suppression of the cerebellum (spinalization).

Thanks are due to Prof. A. J. Borde, Principal, Wilson College. Bombay for kindly permitting us to work in the zoology laboratory.

#### References

- Bary, M. Mck. (1956) Mar. Res. 1, 1
- Brett, J.R. (1957) In *Physiology of Fishes* (Margaret F. Brown, Ed.) Vol. II, p. 121, Academic Press Inc., New York
- Biswas, K. P. (1974) Studies on the Effect of Electrical Energy on Certain Aquatic Organisms. M.Sc. Thesis, University of Bombay

- Cuinat, R. (1967) In Fishing With Electricity, Its Application to Biology and Management (R. Vibert, Ed.) p.131, Fishing News (Books) Ltd., London, EC4
- Dalziel, C.P. & Lee, W.R. (1968) Trans. Instn. Elec. & Electron-Eng. IGA-4,647
- Denzer, H.W. (1956) Electrical Fishing, Handbuch der Binnenfischerei Mitteleuropas. Schweizerbart'sche Verlagsbuchhandlung. Stuttgart. 5, 142
- Holzer, W. (1931) Fischfang mit Elektrizitat, Elecktrotechu. Ztschr. 52, 1442
- Halsband, E. (1968) Helgolander wiss. Meeresunters. 17, 224
- Healey, E.G. (1957) In *Physiology of Fishes* (Margaret E. Brown, Ed.) Vol. II, p.2, Academic Press Inc. NewYork
- Kuroki, T. (1952) Bull. Jap. Soc. Scient. Fish. 18, 25
- Meyer-Waarden, P.F. (1957) Electrical Fishing. FAO Fisheries Study No. 7 Food and Agriculture Organization of the United Nations, Rome
- Novotny, D.W. & Priegel, G.R. (1974) Dep. Natn. Resour. Tech. Bull. 73, 1
- Pfluger, E. (1853) Die sensorischen functionen des Ruckenmarks der Winbelthiere nebst einer neuen Lehre Uter die-Lietungsgesetze der Reflexionen. A. Hirsch-Wald, Berlin
- Starling, E.H. (1947) Principles of Human Physiology. p.101, J & A. Churchill Ltd., London
- Von Holst, E. (1934) Z. Vergleich. *Physiol.* **20,** 582
- Whelan, F.G. (1950) Science. 3, 496
- William, M.C. (1885) J. Physiol. 6, 192